©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - OSWAAL PUBLICATION PHYSICS (KANNADA ENGLISH)

WAVE OPTICS

Topic 1 Huygen S Principle Very Short Answer Type Questions

1. Who proposed the wave nature of light?

Watch Video Solution

2. What is a wavefront?

- Watch Video Solution

3. When monochromatic light travels from one medium to another its wavelength changes but frequency remains the same. Explain.

Topic 1 Huygen S Principle Short Answer Type Question Ii

1. Derive the law of reflection of light on the basis of Huygens wave theory.

- Watch Video Solution

2. Using Huygens principle, show that the angle of incidence is equal to angle of reflection during a plane wave front reflected by a plane surface.

- Watch Video Solution

3. Arrive at Snell's law of refraction, using Huygen's principle for refraction of a plane wave.
(Watch Video Solution

Topic 1 Huygen S Principle Long Answer Type
Question

1. Arrive at Snell's law of refraction, using Huygen's principle for refraction of a plane wave.

D Watch Video Solution

Topic 2 Interference Very Short Answer

1. What is the shape of a wavefront at a large
distance away from a point source?
2. Define the term' coherent sources' which are required to produce interference pattern in Young's double slit experiment.

- Watch Video Solution

3. What happens to the fringe pattern when
the Youngs double slit experiment is performed in water instead of air ?

Topic 2 Interference Short Answer Type Question

1. State any three conditions for a sustained interference of light waves.

- Watch Video Solution

2. Write the relation between the path
difference and wavelength of light wave used
for constructive and destructive interference of light

D Watch Video Solution

3. Laser light of wavelength 640 mm incident on a pair of slits produces an interference pattern in which the bright fringes are separated by 7.2 mm . Calculate the wavelength of another source of light which produces interference fringes separated by 8.1 mm using same arrangement. Also find the minimum value of the order (n) of bright fringe of shorter wavelength which coincides with that of longer wavelength.

- Watch Video Solution

4. A beam of light consisting of two wavelengths 800 nm and 600 nm is used to obtain the interference fringes in a Young's double slit experiment on a screen placed $1.4 m$ away. If the two slits are separated by 0.28 mm , calculate the least distance from the central bright maximum where the bright fringes of the two wavelengths coincide.
5. (a) Two monochromatic waves emanating
from two coherent sources have the displacements represented by
$y_{1}=a \cos \omega t$
and $y_{2}=a \cos (\omega t+\phi)$,
where ϕ is the phase difference between the
two displacements. Show that the resultant
intensity at a point due to their superposition
is given by $I=4 I_{0} \cos ^{2} \phi / 2$, where $I_{0}=a^{2}$.
(b) Hence obtain the conditions for constructive and destructive interference.

Topic 2 Interference Short Answer Type Question

1. In Young's double slit experiment the two
slits 0.15 mm apart are illuminated by monochromatic light of wavelength 450 nm . The screen is 1.0 m away from the slits.
(a) Find the distance of the second (i) bright fringe, (ii) dark fringe from the central maxima.
(b) How will the fringe pattern change if the screen is moved away from the slits ?

- Watch Video Solution

Topic 2 Interference Long Answer Type Question

1. Obtain the expression for fringe width in the case of interference of light waves.

- Watch Video Solution

2. In Young's double slit experiment, describe briefly how bright and dark fringes are
obtained on the screen kept in front of a double slit. Hence obtain the expression for the fringe width.

OR

Describe Young's double slit experiment to produce interference pattern due to a monochromatic source of light. Deduce the expression or the fringe width.
(b) The ratio of the intensities at the minima to the maxima in the Young's double slit experiment is $9: 25$. Find the ratio of the widths of the two slits.
3. Explain the theory of interference of light.

- Watch Video Solution

4. (a) (i) 'Two independent monochromatic sources of light cannot produce a sustained interference pattern'. Give reason.
(ii) Light waves each of amplitude "a" and frequency "omega", emanating from two coherent light sources superpose at a point. If
the displacements due to these waves is given
by $\quad y_{1}=a \cos \omega t \quad$ and $\quad y_{2}=a \cos (\omega t+\phi)$,
where ϕ is the phase difference between the two, obtain the expression for the resultant intensity at the point.
(b) In Young's double slit experiment, using monochromatic light of wavelength λ, the intensity of light at a point where path difference is $\lambda / 3$.

D View Text Solution

1. A beam of light consisting of two wavelengths 500 nm and 400 nm is used to obtain interference fringes in Young's double
slit experiment. The distance between the slits
is 0.3 mm and the distance between the slits
and the screen is 1.5 m . Compute the least
distance of the point from the central maximum, where the bright fringes due to both the wavelengths coincide.

D Watch Video Solution

2. In Young's double slit experiment, fringes of certain width are produced on the screen kept at a certain distance from the slits. When the screen is moved away from the slits by 0.1 m , fringe width increases by $6 \times 10^{-5} \mathrm{~m}$. The separation between the slits is 1 mm . calculate the wavelength of the light used.

- Watch Video Solution

3. Calculate the distance between $5^{t h}$ and $15^{\text {th }}$
bright fringes in an interference pattern
obtained by experiment due to narrow slits separated by $0.2 m m$ and illuminated by light of wavelength 560 mm . The distance between the slit and screen is $1 m$.

- Watch Video Solution

4. In Young's double slit experiment two coherent sources of intensity ratio of $64: 1$, produce interference fringes. Calculate the ratio of maximum and minimum intensities.

Data $: I_{1}: I_{2}:: 64: 1, \frac{I_{\max }}{I_{\min }}=$?

Watch Video Solution

5. In Young's experiement the width of the fringes obtained with light of wavelength $6000 \AA$ is 2 mm . Calculate the fringe width if the entire apparatus is immersed in a liquid of refractive index 1.33.

$$
\begin{aligned}
& \text { Data } \quad: \quad \lambda=6000 \AA=6 \times 10^{-7} m, \\
& \beta=2 m m=2 \times 10^{-3} m \mu=1.33, \beta=?
\end{aligned}
$$

- Watch Video Solution

6. Two slits 0.3 mm apart are illuminated by
light of wavelength $4500 \AA$. The screen is placed at $1 m$ distance from the slits. Find the separation between the second bright fringe on both sides of the central maximum.

Data $: \quad d=0.3 \mathrm{~mm}=0.3 \times 10^{-3} \mathrm{~m}$,
$\lambda=4500 \AA=4.5 \times 10^{-7} m, D=1 m, n=2$,
$2 x=?$

D Watch Video Solution

7. A parallel bean of monochromatic light is allowed to incident normally on a plane transmission grating having 5000 lines per centimeter. A second order spectral line is
found to be diffracted at an angle 30°. Find the wavelength of the light.

Data : $N=5000$ lines $/ \mathrm{cm}=5000 \times 10^{2}$
lines $/ m, m=2, \theta=30^{\circ}, \lambda=$?

- Watch Video Solution

Topic 3 Diffraction Very Short Answer Type Question

1. How does the angular separation between fringes in single-slit diffraction experiment change when the distance of separation between the slit and screen is doubled?

- Watch Video Solution

2. If a monochromatic source of light is replaced by white light, what change would
you observe in the diffraction pattern?

(Watch Video Solution

3. A diffraction pattern is obtained using a beam of red light. What happens if the red light is replaced by blue light?

(Watch Video Solution

Topic 3 Diffraction Short Answer Type Question I

1. Give any two differences between Fresnel and Fraunhoffer diffraction.

D Watch Video Solution

2. Name the phenomenon which is responsible for bending of light around sharp corners of an obstacle. Under what conditions does this phenomenon take place ? Give one application of this phenomenon in everyday life.
3. For a single slit of width "a", the first minimum of the interference pattern of a monochromatic light of wavelength λ occurs at an angle of $\frac{\lambda}{a}$. At the same angle of $\frac{\lambda}{a}$, we get a maximum for two narrow slits separated by a distance "a" . Explain.

D View Text Solution

4. Write the distinguishing features between a
diffraction pattern due to a single slit and the
interference fringes produced in Young's double slit experiment.

D Watch Video Solution

5. Answer the following questions:
(c) When a tiny circular obstacle is placed in
the path of light from a distant source, a bright spot is seen at the centre of the shadow of the obstacle. Explain why?

D Watch Video Solution

6. A parallel beam of light of wavelength

500nm falls on a narrow slit and resulting diffraction pattern is observed on a screen 1 m away. It is observed that the first minimum is at a distance of 2.5 mm from the centre of the screen. Find the width of the slit.

D Watch Video Solution

7. The following table gives data about the single slit diffraction experiment :

Find the ratio of the widths of ths slits used in
the two cases. Would the ratio of the half angular widths of the first secondary maxima, in the two cases, be also equal to q ?

D View Text Solution

8. Yellow light $(\lambda=6000 \AA)$ illuminates a single slit of width $1 \times 10^{-4} \mathrm{~m}$. Calculate : (i)
the distance between the two dark lines on either side of the central maximum, when the diffraction pattern is viewed on a screen kept
$1.5 m$ away from the slit, (ii) the angular spread of the first diffraction minimum.

D Watch Video Solution

Topic 3 Diffraction Short Answer Type Question li

1. A parallel beam of monochromatic light falls normally on a narrow slit of width 'a' to produce a diffraction pattern on the screen placed parallel to the plane of the slit. Use Huygens' principle to explain that
(i) The central bright maxima is twice as wide as the other maxima.
(ii) The intensity falls as we move to successive maxima away from the centre on either side.

- Watch Video Solution

Topic 3 Diffraction Long Answer Type Question

1. (a) Describe briefly how a diffraction pattern
is obtained on a screen due to a single narrow
slit illuminated by a monochromatic souce of
light. Hence obtain the conditions for the angular width of secondary maxima and secondary minima.
(b) Two wavelengths of sodium light of 590 nm and 596 nm are used in turn to study the diffraction taking place at a single slit of aperture $2 \times 10^{-6} \mathrm{~m}$. The distance between the slit and the screen is 1.5 m . Calculate the separation between the positions of first maxima of the diffraction pattern obtained in the two cases.

View Text Solution

2. State Huygen's principle. Show, with the help of a suitable diagram, how the principle is used to obtain the diffraction pattern by a single slit.

Draw a plot of intensity distribution and explain clearly why the secondary maxima become weaker with increasing order (n) of the secondary maxima.

D View Text Solution

3. Write the distinguishing features between a diffraction pattern due to a single slit and the interference fringes produced in Young's double slit experiment.

- Watch Video Solution

Topic 3 Diffraction Numerical Problems

1. Monochrmoatic light of wavelength 500 mm
from a narrow slit is incident on the double
slit. If the separation of 10 fringes on the screen 1 m away is 1 cms . Find the slit separation.

D Watch Video Solution

Topic 4 Polarisation Very Short Answer Type Question

1. State Brewester's law

D Watch Video Solution
2. Define plane polarised light.

- Watch Video Solution

3. Give one use of polaroid.

- Watch Video Solution

4. Which of the following waves can be polarized (i) Heat waves, (ii) Sound waves. Give reason to support your answer.

Watch Video Solution

Topic 4 Polarisation Short Answer Type Question

1. How do you represent plane polarized and unpolarised light?

- Watch Video Solution

2. Name the phenomenon which proves
transverse wave nature of light. Give two uses
of the devices whose functioning is based on this phenomenon.

D Watch Video Solution

Topic 4 Polarisation Short Answer Type Question

1. (a) Unpolarised light of intensity I_{0} passes
through two polaroids P_{1} and P_{2} such that pass axis of P_{2} makes an angle θ with the pass axis of P_{1}, Plot a graph showing the variation
of intensity of light transmitted through P_{2} as
the angle θ varies from zero to 180°.
(b) A third polariod P_{3} is placed between P_{1} and P_{2} with pass axis of P_{3} making an angle β
with that of P_{1}. If I_{1}, I_{2} and I_{3} represent the intensities of light transmitted by P_{1}, P_{2} and
P_{3} determine the values of angle θ and β for which $I_{1}=I_{2}=I_{3}$.

View Text Solution

2. (a) Using the phenomenon of polarisation, show how transverse nature of light can be demonstrated.
(b) Two polaroids P_{1} and P_{2} are placed with their pass axes perpendicular to each other.

Unpolarised light of intensity I_{0} is incident on
P_{1}. A third polaroid P_{3} is kept in between P_{1} and P_{2} such that its pass axis makes an angle of 30° with that of P_{1}. Determine the intensity of light transmitted through P_{1}, P_{2} and P_{3}.
3. (i) Distinguish between unpolarised and linearly polarised light.
(ii) What does a polaroid consist of ? How does it produce a linearly polarised light ?
(iii) Explain briefly how sunlight is polarised by scattering through atmospheric particles.

D View Text Solution

4. (i) Describe briefly, with the help of suitable
diagram, how the transverse nature of light
can be demonstrated by the phenomenon of polarization.
(ii) When unpolarized light passes from air to a transparent medium, under what condition does the reflected light get polarized?

D Watch Video Solution

5. What is an unpolarized light ? Explain with
the help of suitable ray daigram how an
unpolarized light can be polarized by reflection from a transparent medium. Write
the expression for Brewster angle in terms of the refractive index of denser medium.

D Watch Video Solution

6. How does an unpolarised light get polarised when passed through a polaroid ? Two polaroids are set in crossed positions. A third polaroid is placed between the two making an angle θ with the pass axis of the first polaroid.

Write the expression for the intensity of light transmitted from the second polaroid. In what
orientations will the transmitted intensity be
(i) minimum and (ii) maximum ?

D View Text Solution

Topic 4 Polarisation Long Answer Type Question

1. State Brewster's law . Show that the reflected and refracted rays are normal to each other at the polarising angle of incidence.
2. (a) Distiguish between linearly polarised and unpolarised light.
(b) Show that the light waves are transverse in nature.
(c) Why does light from a clear blue portion of
the sky show a rise and fall of intensity when viewed through a polaroid which is rotated ?

Explain by drawing the necessary diagram.

D View Text Solution

3. (a) How does one demonstrate, using a suitable diagram, that unpolarised light when
passed through a polaroid gets polarized?
(b) A beam of unpolarised light is incident on
a glass-air interface. Show, using a suitable ray diagram, that light reflected from the interface is totally polarised, when $\mu \tan i_{B}$, where μ is the refractive index of glass with respect to air and i_{B} is the Brewster's angle.
4. (a) How dpes an unpolarized light incident on a polaroid get polarized?

Describe briefly with the help of a necessary diagram the polarization of light by reflection from a transparent medium. (b) Two polaroids
'A' and 'B' are kept in crossed position. How should a third polaroid ' C ' be placed between
them so that the intensity of polarized light transmitted by polaroid B reduces to $1 / 8^{\text {th }}$ of the intensity of unpolarized light incident on A ?

