

CHEMISTRY

JEE (MAIN AND ADVANCED) CHEMISTRY

CHEMICAL THERMODYNAMICS

LECTURE SHEET (EXERCISE-I) (LEVEL - I (MAIN) STRAIGHT OBJECTIVE TYPE QUESTIONS)

- 1. An intensive property of theromdynamics means a property which depends
 - A. On the amount of the substance only
 - B. On the nature of the substance only
 - C. Both on the amount as well as nature of the substance
 - D. Neither on the amount nor on the nature

Answer: B

- 2. In which of the following sets, all the properties belong to same category (all extensive or all intensive)
 - A. Mass, volume, specific heat
 - B. Temperature, Pressure, Volume
 - C. Heat capacity, density, entropy
 - D. Enthalpy, Interval energy, volume

Answer: D

Watch Video Solution

3. Which is an extensive property of the system?

A. Volume **B.** Viscosity C. Temperature D. Refractive index Answer: A **Watch Video Solution** 4. A system which can exchange energy with the surrounding but not matter is called A. A heterogeneous system B. An open system C. A closed system D. An isolated system Answer: C

- **5.** An isolated system is that in which:
 - A. There is no exchange of energy with the surroundings
 - B. There is exchange of mass and energy with the surroundings
 - C. There is no exchange of mass and energy with the surroundings
 - D. There is exchange of mass with the surroundings

Answer: C

- **6.** Number of phases present in the following thermodynamic systems are:
- (a) $NH_4HS_{(s)} \Leftrightarrow NH_{3(g)} + H_2S_{(g)}$ (b) $CaCO_{3(s)} \Leftrightarrow CaO_{(s)} + CO_{2(g)}$ (c)

$$N_{2(g)} + 3H_{2(g)} \Leftrightarrow 2NH_{3(g)}$$

- A. b, c, a
- B. c, b, a
- C. a, b, c
- D. c, a, b

Answer: A

Watch Video Solution

7. A gaseous system changes from state $A(P_1, V_1, T_1)$ to $B(P_2, V_2, T_2)$, B to $C(P_3, V_3, T_3)$ and finally from C to

A. The whole process may be called

- A. Reversible process
- B. Cyclic process
- C. Isobaric process
- D. Spontaneous process

Answer: B

Watch Video Solution

- **8.** If W = -20kJ the negative sign indicates that the
 - A. expanding system gains work energy and does work on the surroundings
 - B. expanding system loses work energy and does work on the surroundings
 - C. expanding system gains work energy and does work on the system
 - D. expanding system loses work energy and does work by the surroundings

Answer: B

- **9.** Which of the following statements is correct?
 - A. Only internal energy is a state function but not work
 - B. Only work is a state function but not internal energy
 - C. Both internal energy and work are state functions
 - D. Neither internal energy nor work is a state function

Answer: A

determined

- **10.** Assertion(A): Absolute values of internal energy cannot be
- Reason (R): It is impossible to determine the exact values of constituent energies of the substances
 - A. A and R are true, R explains A
 - B. A and R are true, R does not explain A

- C. A is true, but R is false
- D. A is false, but R is true

Answer: A

Watch Video Solution

- **11.** The expression $[\Delta E/\Delta T]_V$ represent
 - A. Heat capacity at constant volume
 - B. Heat capacity at constant pressure
 - C. Enthalpy change
 - D. Entropy change

Answer: A

12. Assertion (A): Internal energy change in a cyclic process is zero

Reason (R): Internal energy is a state function

A. A and R are true, R explains A

B. A and R are true, R does not explain A $\,$

C. A is true, but R is false

D. A is false, but R is true

Answer: A

Watch Video Solution

13. The enthalpy is maximum for

A. 10gms of water

B. 10gms of ice

C. 10gms of steam

D. same for all

Answer: C

Watch Video Solution

14. A system absorbs 'xJ' heat and does "yJ" work. Its ΔE is +Ve when

A. y > x

B. x > y

C. y=2x

D. x=y

Answer: B

Watch Video Solution

15. A system absorbs 600J of energy and does work equivalent to 400J J of energy. The internal energy changes

B. 200J
C. 600J
D. 300J
Answer: B
Watch Video Solution
16. A system absorbs 10kJ of heat at constant volume and its temperature
rises from 27 $^{\circ}$ C to 37 $^{\circ}$ C. The ΔE of reaction is
rises from 27 $^{\circ}$ C to 37 $^{\circ}$ C . The ΔE of reaction is A. 100kJ
A. 100kJ
A. 100kJ B. 10kJ
A. 100kJ B. 10kJ C. 0

17. In an adiabatic expansion of ideal gas:

A.
$$W = -\Delta E$$

B.
$$W = \Delta E$$

$$C. \Delta E = 0$$

Answer: A

Watch Video Solution

18. An ideal gas occuping a volume of $2dm^3$ and a pressure of 5 bar undergoes isothermal and irreversible expansion against external pressure of 1 bar. The final volume of the system and work involved in the process is

A. $10dm^3$, 1000JB. $8dm^3$, - 800JC. $10dm^3$, - 800JD. $10m^3$, - 1000J**Answer: C Watch Video Solution** 19. Two moles of an ideal gas is expanded spontaneously into a vacuum. The work done is A. zero B. 2J C. 4J D. 8J **Answer: A**

20. The total heat content of a system at constant pressure is

A. Enthalpy

B. Interanl energy

C. Entropy

D. Free energy

Answer: A

Watch Video Solution

LECTURE SHEET (EXERCISE-I) (LEVEL - II (ADVANCED) STRAIGHT OBJECTIVE TYPE QUESTIONS)

1. Which has maximum internal energy at 298K?

- A. helium gas
- B. oxygen gas
 - C. ozone gas
 - D. equal

Answer: C

Watch Video Solution

2. For a gas having molar mass M, specific heat at constant pressure can be given as:

A.
$$\frac{\gamma R}{M(\gamma - 1)}$$

$$M(\gamma - 1)$$
B. $\frac{\gamma}{RM}$

$$\mathsf{C.}\;\frac{M}{R(\gamma-1)}$$

D.
$$\frac{\gamma RM}{\gamma + 1}$$

Answer: A

3. Latent heat of vapourisation of a liquid at 500k and 1atm pressure is 10K. Cal/mole. What is the change in internal energy when 3 moles of the liquid is vapourised at the same temperature

- A. 27kCal
- B. 7k Cal
- C. 33k Cal
- D. 25k Cal

Answer: A

Watch Video Solution

4. Molar heat capacity of water in equilibrium with ice at constant pressure is:

A. zero

B. Infinity (∞)

C. $40.45KJK^{-1}mol^{-1}$

D. $5.48JK^{-1}mol^{-1}$

Answer: B

Watch Video Solution

5. For polytropic process PV^n = constant, C_m (molar heat capacity) of an

ideal gas is given by

$$A. C_{v.m} + \frac{R}{(n-1)}$$

B.
$$C_{v,m} + \frac{R}{(1-n)}$$

$$C. C_{vm} + R$$

D.
$$C_{p,m} + \frac{R}{(n-1)}$$

Answer: B

LECTURE SHEET (EXERCISE-I) (LEVEL - II (ADVANCED) MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)

- 1. The following is/are extensive property/properties
 - A. internal energy
 - B. temperature
 - C. concentration
 - D. heat capacity

Answer: A::D

Watch Video Solution

2. If x and Y are two intensive variables then:

- A. xy is an intensive variable
- B. x/y is an intensive variable
- C. (x + y) is an intensive variable
- D. dx/dy is an extensive property

Answer: A::B::C

Watch Video Solution

- 3. During the isothermal expansion of an ideal gas
- A. the internal energy remains unaffected
 - B. the temperature remains constant
 - C. the enthalpy remains unaffected
 - D. the enthalpy becomes zero

Answer: A::B::C

4. Which of the following	is/are true in	the case of an	adiabatic process

A. q=W

B.
$$\Delta U = q$$

C.
$$q = 0$$

D.
$$\Delta U = W$$

Answer: C::D

5. The internal energy of an ideal gas decreases by the same amount as the work done by the system

A. the process must be adiabatic

B. the process must be isothermal

C. the process must be isobaric

D. the temperature must decrease

Answer: A::D

Watch Video Solution

- 6. For the adiabatic expansion of an ideal gas
 - A. PV^{γ} = constant
 - B. $TV^{\gamma-1}$ = constant
 - C. $T^{\gamma}P^{1-\gamma}$ = constant
 - D. none of these

Answer: A::B::C

7. In a process a system does 140j of work on the surroundings and only 40J of heat is added to the system. Hence change in internal energy is

A. 180J

B. - 180*J*

C. -23.92 cal

D. - 100*J*

Answer: C::D

Watch Video Solution

8. If a gas absorbs 200J of heat and expands by $500cm^3$ against a constant pressure of $2 \times 10^5 Nm^{-2}$ then change in internal energy is

A. 23.92Cal

B. - 100*J*

C. +100J

ח	+300	٦
υ.	+ 200	IJ

Answer: A::C

Watch Video Solution

- **9.** $1gH_2$ gas at STP is expanded so that volume is doubled. Hence, work done is
 - A. 22.4L atm
 - B. 5.6L atm
 - C. 11.2L atm
 - D. 1.135KJ

Answer: C::D

10. 1 mole of an ideal gas A ($C_{v,m} = 3R$) and 2 mole of an ideal gas B are

$$\left(C_{v,m}=\frac{3}{2}R\right)$$
 taken in a constainer and expanded reversible and adiabatically from 1 litre of 4 litre starting from initial temperature of 320K. ΔE or ΔU for the process is (in Cal) (Give your answer after divide with 240)

A. - 240R

B. 240R

C. - 1920 Cal

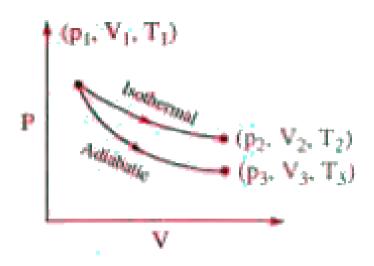
D. -960*R*

Answer: C::D

Watch Video Solution

11. Two mole of an ideal gas is heated at constant pressure of one atmosphere from 27 ° C to 127 ° C. If $C_{v,m}=20+10^{-2}TJK^{-1}mol^{-1}$, then q and ΔU for the process are respectively.

- A. 6362.8J, 4700J
- B. 1522.2 Cal, 1124.4 Cal
- C. 7062.8 5400J
- D. 3181.4J 2350J

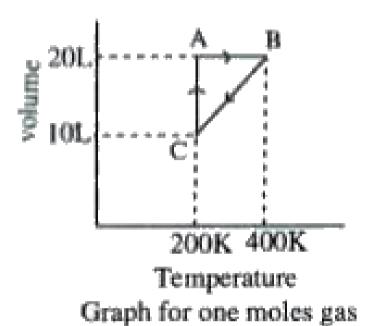

Answer: A::B::C

Watch Video Solution

12. The reversible expansion of an ideal gas under adiabatic and isothermal conditions is shown in the figure. Which of the following

statements(s) is (are) correct?

A.
$$T_1 = T_2$$


B.
$$T_3 > T_1$$

C.
$$W_{\text{isothermal}} > W_{\text{adiabatic}}$$

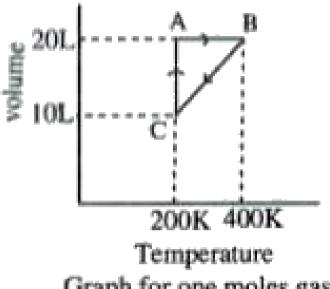
D.
$$\Delta U_{\rm isothermal} > \Delta U_{\rm adiabatic}$$

Answer: A::C::D

Process $A \rightarrow B$ represents

A. isobaric

1.


B. isochoric

C. isothermal

D. adiabatic

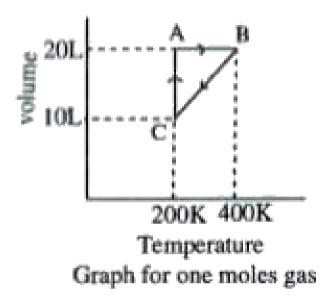
Answer: B

Graph for one moles gas

2.

Work done in the process $C \rightarrow A$ is

A. zero


B. 11.37L atm

C. 22.76L atm

D. unpredictable

Answer: B

The process which occurs in going from $B \rightarrow C$ is

A. isothermal

3.

B. adiabatic

C. isobaric

D. isochoric

Answer: C

4. One mole of an ideal gas for which C_V = 3/2R heated at a constant pressure of 1 atm from $25^{0}C$ to $100^{0}C$

What will be the amount of heat change at constant pressure?

- A. 223.53 cal
- B. 371.25 cal
- C. 155.8 Cal
- D. 355.68 Cal

Answer: B

Watch Video Solution

5. One mole of an ideal gas for which C_V = 3/2R heated at a constant pressure of 1 atm from 25^0C to 100^0C

What will be the amount of work done in the process?

A. -62.32 Cal

B. - 140.925 Cal

C. - 142.27 Cal

D. - 148.5 Cal

Answer: D

1.

Watch Video Solution

LECTURE SHEET (EXERCISE-I) (LEVEL - II (ADVANCED) MATRIX MATCHING TYPE **QUESTIONS**)

the

following

Column-II

P) w = 0; q < 0; $\Delta U < 0$ Q) w < 0, q > 0, $\Delta U > 0$

R) w = 0; q = 0; $\Delta U = 0$

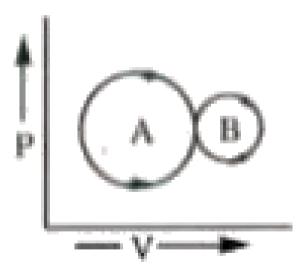
S) w < 0; q > 0; $\Delta U = 0$

columns

Column-I

Match

- A) Reversible cooling of an ideal gas at constant volume
- B) Reversible isothermal expansion of an ideal gas
- C) Adiabatic expansion of non-ideal gas into vacuum
- D) Reversible melting of sulphur at normal melting point

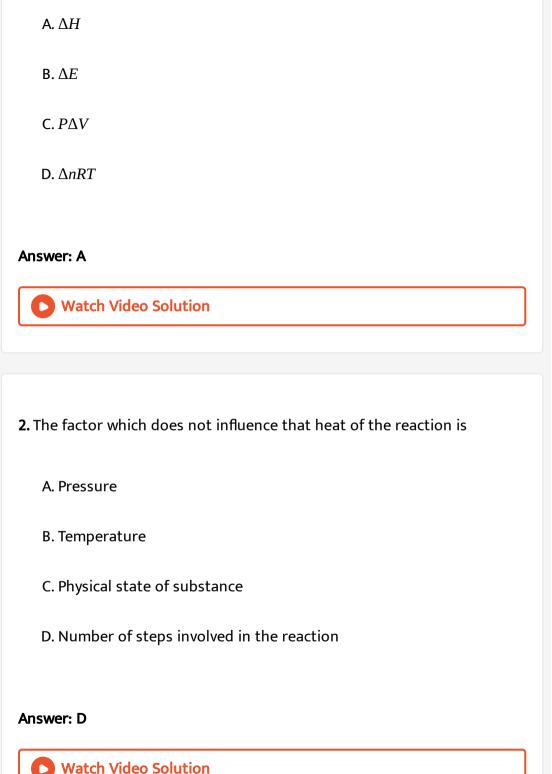


(EXERCISE-I) (LEVEL - II (ADVANCED) INTEGER LECTURE SHEET **QUESTIONS)**

1. Among heat capacity molar heat capacity, molarity, molality, mole fraction, specific heat, the number of extensive properties are?

2. In the present graph, the area of circle A and B are 25 unit and 20 unit respectively work done will be 5x, units, x=

3. 1L of NH_3 at $27\,^{\circ}C$ is expanded adiabatically to x litres and final temperature is -123 $^{\circ}C$. What is the value of x?



4. Calculate the work done by the system in an irreversible (sing step) adiabatic expansion of 2 mole of a polyatomic gas ($\gamma = 4/3$) from 300K and pressure 10atm to 1 atm: (in KJ) (Give your answer after multiplying with 2.08).

LECTURE SHEET (EXERCISE-II) (LEVEL - I(MAIN) STRAIGHT OBJECTIVE TYPE QUESTIONS)

1. When a reaction is conducted in an open vessel, the heat of reaction is represented as

3. Assertion(A): The enthalpies of elements in their standard states are taken as zero

Reason (R): It is impossible to determine the absolute enthalpy of any substance

- A. A and R are true, R explains A
- B. A and R are true, R does not explain A
- C. A is true, but R is false
- D. A is false, but R is true

Answer: B

Watch Video Solution

4. The enthalpies of elements under the following conditions are assumed to be

A. zero at 298K and 1 atm

B. Unity at 298K and 1 atm

C. zero at 273K and 1 atm

D. Unity at 273K and 1 atm

Answer: A

Watch Video Solution

5. For which one of the following systems DE < DH

A.
$$2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$$

$$B.N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$$

$$C. 2NH_{3(g)} \rightarrow N_{2(g)} + 3H_{2(g)}$$

$$D.H_{2(g)} + I_{2(g)} \rightarrow 2HI_{(g)}$$

Answer: C

6. Which of the following relationships is correct for a reaction involving both reactants and products both in either solid or liquid state?

A.
$$\Delta H > \Delta E$$

B.
$$\Delta H = \Delta E$$

$$\mathsf{C}.\ \Delta H < \Delta E$$

D.
$$\Delta H - \Delta E = \infty$$

Answer: B

Watch Video Solution

7. For the reaction , $FeCO_{3(s)} \rightarrow FeO_{(s)} + CO_{2(g)}$, $\Delta H = 82.8kJ$ at 25 ° C

, what is (ΔE or ΔU) at 25 ° C?

A. 82.8kJ

B. 80.32kJ

C. -2394.77 kJ

D. 85.28 kJ

Answer: B

Watch Video Solution

LIST-I

- A) $H_p > H_R$ B) PAV
- C) E + PV
- $|D\rangle/H_R>H_p$ 8.

The correct is

- A B C D
- A. 3 4 2 1
- B. A B C D
 2 3 1 4
- A B C D
- C. ₁ 3 4 2
- A B C D

Answer: A

LIST-H

- 1) Exothermic
- 2) Total heat content
- 3) AH is positive
- 4) Zero at constant volume

9. Which are of the following is an exothermic reaction?

A.
$$N_{2(g)} + 3H_{2(g)} - 92KJ \rightarrow 2NH_{3(g)}$$

$${\sf B.}\,N_{2(g)} + O_{2(g)} + 180.8KJ \,\to\, 2NO_{(g)}$$

$$C.H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_g \rightarrow 2HCl_{(g)}, \Delta H = -184.6KJ$$

D.
$$C_{\text{(graphite)}} + 2H_{2(s)} \rightarrow CH_{4(q)} + 74.8kJ$$

Answer: B

Watch Video Solution

10. The formation of water from $H_{2(g)}$ and $O_{2(g)}$ is an exothermic reaction because

A. $H_{2(g)}$ and $O_{2(g)}$ have a higher chemical energy that water

B. $H_{2(q)}$ and $O_{2(q)}$ have a lower chemical energy that water

- $C.H_{2(q)}$ and $O_{2(q)}$ have a higher temperature that water D. Energy consideration do not arise Answer: A **Watch Video Solution** 11. The enthalpy of elements in their standard states are taken as zero. Hence the enthalpy of formation of a compound is A. always negative
 - B. always positive
 - C. positive (or) negative
 - D. equal to zero

Answer: C

12. Identify the reaction in which the heat liberated corresponds to the heat of formation $\left(\Delta H_f\right)$:

A.
$$C_{(gra\phi te')} + O_{2(g)} \rightarrow CO_{2(g)} + \text{heat}$$

B.
$$2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)} + \text{heat}$$

$$C. C_{\text{(diamond)}} + 2H_{2(g)} \rightarrow CH_{4(g)} + \text{heat}$$

$$D.S_{\text{(rhombic)}} + O_{2(g)} \rightarrow SO_{2(g)} + \text{heat}$$

Answer: D

Watch Video Solution

13. In which of the following equations ΔH^0 reaction equal to ΔH^0_f for the product?

A.
$$2CO_{2(q)} + O_2 \rightarrow 2CO_2$$

$$B. N_{2(g)} + O_{3(g)} \to N_2 O_{3(g)}$$

$$C. CH_{4(g)} + 2Cl_{2(g)} \rightarrow CH_2Cl_{2(l)} + 2HCl_{(g)}$$

$$\mathsf{D}.\mathit{Xe}_{(g)} + 2F_{2(g)} \to \mathit{XeF}_{4(g)}$$

Answer: D

Watch Video Solution

- **14.** $C_{\text{graphite}} + O_{2(g)}$: $\Delta H = -393.5 kJ$. ΔH of the above reaction cannot be
 - A. Heat of formation of CO_2
 - B. Heat of combustion of ${\sf C}$
 - C. Heat of reaction
 - D. Heat of transition

Answer: D

that $\frac{1}{2}S_{8(s)} + 6O_{2(g)} \rightarrow 4SO_{3(g)}, \Delta H^0 = -1590kJ.$ Given standard enthalpy of formation of SO_3 is

B. $-397.5kJmol^{-1}$

C. $-3.975kJmol^{-1}$

Answer: B

Watch Video Solution

16. ΔH^0 for a reaction $F_2 + 2HCl \rightarrow 2HF + Cl_2$ is given as -352.8kJ. ΔH_f^0 for HF is $-268.3 KJmol^{-1}$, then ΔH_f^0 of HCl would be

A.
$$-22kJmol^{-1}$$

B. 880kJmol⁻¹

 $C. -91.9kJmol^{-1}$

D. - 183.8kJmol - 1

Answer: C

Watch Video Solution

17. The standard enthalpies of formation of $H_2O_{2(l)}$ and $H_2O_{(l)}$ are - 187.8kJmole -1 and - 285.8kJmole -1 respectively. The ΔH^0 for the decomposition of one mole of $H_2O_{2(l)}$ to $H_2O_{(l)}$ and $O_{2(g)}$ is

A. -473.6*kJ*. mole ⁻¹

B. -98.9*kJ* mole -1

C. +473.6kJ mole $^{-1}$

D. +187.8kJ mole -1

Answer: B

18. The heats of combustion of carbon hydrogen and acetylene are -394kJ, -286kJ and -1301kJ respectively. Calculate heat of formation of

 C_2H_2

B. 454kJ

A. 621 kJ

C. - 227 kJ

D. 227 kJ

Answer: D

Watch Video Solution

19. Assertion (A): The enthalpy of formation of $H_2O_{(l)}$ is greater than that of $H_2O_{(a)}$

Reason (R): Enthalpy change is negative for the condensation reaction

 $H_2O_{(g)} \rightarrow H_2O_{(l)}$

A. A and R are true, R explains A

B. A and R are true, R does not explain A

C. A is true, but R is false

D. A is false, but R is true

Answer: A

Watch Video Solution

20. Work done during the combustion of one mole of CH_4 in bomb calorimeter is

A. zero

C. -24.2J

B. -101J

D. - 1*J*

Answer: A

21. The heats of combustion of ethane, ethene and acetylene are -341.1 kcal, -330 kcal and -310.9 kCal mol^{-1} respectively. The best fuel among them is

- A. Ethane
- B. Ethene
- C. Acetylene
- D. All are equal

Answer: C

Watch Video Solution

22. The enthalpy change for the process $C_{\text{(graphite)}} \rightarrow C(g)$, $\Delta H = +xKJ$ represents enthalpy of

B. Sublimation C. Combustion D. Vapourisation **Answer: B Watch Video Solution** 23. Enthalpy of neutralisation of all strong acids and strong bases has the same value because A. Neutralisation leads to the formation of a salt and water B. Strong acid and bases are ionic substances C. Acids always furnish H^+ ions and bases always furnish OH^- ions D. The net chemical change involves the combination of 1 mole of H^+ ions and 1 mol OH ions to form water.

A. Fusion

Answer: D

Watch Video Solution

24. $H_2SO_{4(aq)} + 2KOH_{(aq)} \rightarrow K_2SO_{4(aq)} + 2H_2O_{(l)}, \Delta H$ for the above reaction is

- A. 13.7 kCal
- B. +57.3 kCal
- C. 27.4 kCal
- D. 137 kJ

Answer: C

Watch Video Solution

25. The enthalpy change for the reaction $C_2H_{6(g)} \rightarrow 2C_{(g)} + 6H_{(g)}$ is x kJ. The bond energy of C-H bond is:

- Α.
- B. -
- c. $\frac{x}{6}$
- D. data insufficient

Answer: D

Watch Video Solution

26. The bond dissociation energies for Cl_2 , I_2 and Icl are 242.3, 151 and

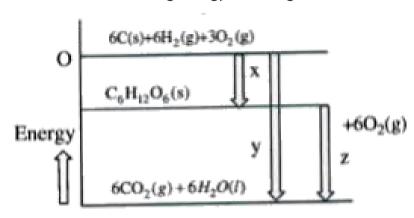
211.3 kJ/mol respectively. The enthalpy of sublimation of iodine is 62.8

- kJ/mol. What is the standard enthalpy of formation of $ICl_{(s)}$?
 - A. 211.3 kJ/mol
 - B. 4019Cal/mol
 - C. 16.8 kJ/mol
 - D. 33.5 kJ/mol

Answer: B::C

Watch Video Solution

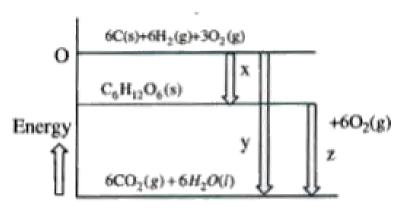
27. What is the bond enthalpy of Xe-F bond? $XeF_4(g) \rightarrow Xe^+(g) + F^-(g) + F_2(g) + F(g)$, $\Delta_f H = 292$ kcal/mol. Given that I.E of Xenon =279k Cal/mole, B.E of $F_2 = 38$ k Cal/mol. E.A of F=85k Cal/mole.


- A. 24k Cal/mol
- B. 34 k Cal/mol
- C. 8.5 k Cal/mol
- D. 142.12 k Cal/mol

Answer: B::D

LECTURE SHEET (EXERCISE-II) (LEVEL - I(MAIN) LINKED COMPREHENSION TYPE **QUESTIONS**)

1. Consdier the following energy level diagram:


The heat of formation of glucose is

D.
$$-x + x$$

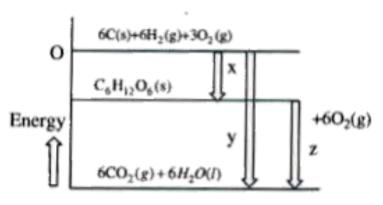
Answer: A

2. Consdier the following energy level diagram:

In the given diagram z refer to

A.
$$6 \times \Delta H_{f(CO_2)}^0$$

$$\mathsf{B.}\,\Delta H_{f\left(C_{6}H_{12}O_{6}\right)}^{0}$$


$$\mathsf{C.}\,\Delta\boldsymbol{H}_{\mathsf{Combustion}\,\left(\,\boldsymbol{C}_{6}\boldsymbol{H}_{12}\boldsymbol{O}_{6}\,\right)}^{0}$$

D.
$$\Delta H_{\text{combustion}}^{0} \left(C_6 H_{12} O_6 \right)^{+} \Delta H_{f}^{0} \left(H_2 O_{(I)} \right)$$

Answer: C

3. Consdier the following energy level diagram:

The quantity y is equal to

A.
$$\Delta H_{\text{combustion }C(s)} + \Delta H_{\text{combustion}H_2(g)}$$

$$B.x + z$$

$$C. x - z$$

D.
$$\Delta H_{fCO_2} + \Delta H_{H_2O}$$

Answer: B

4. Change in enthalpy and change in internal energy are state functions. The value of ΔH , ΔU can be determined by using Kirchoff's equation. Calculate ΔH when $10dm^3$ of helium at NTP is heated in a cylinder to $100\,^{\circ}$ C, assuming that the gas behave ideally.

- A. 927.9J
- B. 279.2J
- C. 729.3J
- D. 999J

Answer: A

Watch Video Solution

5. Change in enthalpy and change in internal energy are state functions.

The value of $\Delta H, \Delta U$ can be determined by using Kirchoff's equation.

Calculate the heat of formation of methane, given that heat of formation

water = $-286kJmol^{-1}$, heat of combustion of methane $= -890kJmol^{-1}$ heat of combustion of carbon $= -393.5kJmol^{-1}$

 $C. -75.5 k Imol^{-1}$

A. $90.5kJmol^{-1}$

B. - 240kJmol - 1

D. 95.6kJmol⁻¹

Answer: C

LECTURE SHEET (EXERCISE-II) (LEVEL - I(MAIN) MATRIX MATCHING TYPE **QUESTIONS**)

Match the following columns 1. Column-I

- S) $\Delta H = \Delta U = 0$

Column-II

Q) $\Delta H = \Delta U \neq 0$

P) $\Delta H < \Delta U$

R) $\Delta H > \Delta U$

2. Match the following columns

Column-I

- A) $C_{(s, graphite)} + O_{2(g)} \rightarrow CO_{2(g)}$ B) $C_{(s, graphite)} \rightarrow C_{(g)}$
- C) $CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)}$
- D) $CH_{4(g)} \rightarrow C_{(g)} + 4H_{(g)}$

- Column-II
- P) ΔH*combustion
- Q) ΔH^{*}formation
- R) ΔH atomization
- S) $\Delta H^*_{sub-lim-ation}$

LECTURE SHEET (EXERCISE-II) (LEVEL - I(MAIN) INTEGER TYPE QUESTIONS)

1. What is the difference between heats of reaction at constant volume and constant pressure for the reaction $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$

2. Heat of combustion of A(s) is -10kcal mol^{-1} and that of B(s) is -15 Kcal mol^{-1} . Mixture containing 3 moles A(s) and x moles B(s) on combustion released 105 kcal of heat. What is the value of x?

Watch Video Solution

3. The bond dissociation energies of gaseous H_2 , Cl_2 and HCl are 104, 58 and 103 kCal/mole respectively. If magnitude of heat of formation of HCl = 11x, x=?

Watch Video Solution

4. If $S + O_2 \rightarrow SO_2$, $\Delta H = -398.5kJ$

$$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3, \Delta H = -98.7kJ, SO_3 + H_2O \rightarrow H_2SO_4, \Delta H = -130.5kJ$$

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O, \Delta H = -227.3kJ$$

If magnitude of enthalpy of formation of sulphuric acid at 298K is 95x, x=?

5. Heat of neutralisation of a polybasic acid by strong base is -54.8 kcal mol^{-1} . What is basicity of the acid?

Watch Video Solution

What is the resonance energy of Benzene in the same units?

Watch Video Solution

LECTURE SHEET (EXERCISE-III) (LEVEL - I(MAIN) STRAIGHT OBJECTIVE TYPE QUESTIONS)

1. 1st law does not tell about

A. Law of conservation of energy

B. Workdone whether +ve (or) -ve

- C. Feasibility of a process
- D. ΔE at const T

Answer: C

Watch Video Solution

- 2. False statement regarding second law of thermodynamics is
 - A. It is impossible to construct a machine working in cycles which transforms heat from a lower temperature region to higher temperature region without intervention of any external agency
 - B. Heat cannot flow from a colder body to a hotter body on its own
 - C. For any spontaneous process taking place in an isolated system

 $\Delta S < O$

D. All spontaneous processes are thermodynamically irreversible & entropy of the system increases in all spontaneous processes

Answer: C

Watch Video Solution

- **3.** Entropy of a system depends upon
 - A. Volume only
 - B. Temperature only
 - C. Pressure only
 - D. Pressure, Volume and temperature

Answer: D

- **4.** Which one of the following has ΔS^0 greater than zero?
 - $A. CaO_{(s)} + CO_{2(g)} \Leftrightarrow CaCO_{3(s)}$

 $B. NaCl_{(aq)} \Leftrightarrow NaCl_{(s)}$

 $C. NaNO_{3(s)} \Leftrightarrow Na_{(aq)}^+ + NO_{3(aq)}^-$

 $D. N_{2(g)} + 3H_{2(g)} \Leftrightarrow 2NH_{3(g)}$

Answer: C

- **5.** Which of the following process has negative value of ΔS ?
 - A. Dissolution of sugar in water
 - B. Stretching of rubber band
 - C. Decomposition of lime stone
 - D. Evaporation of water

Answer: B

6. For the process Dry ice
$$\rightarrow CO_{2(g)}$$

A. ΔH is positive and ΔS is negative

B. Both ΔH and ΔS are negative

C. Both ΔH and ΔS are positive

D. ΔH is negative and ΔS is positive

Answer: C

Watch Video Solution

7.
$$S_{H_{2(g)}}^{0} = 130.6JK^{-1}mol^{-1}, S_{H_{2}O_{(l)}}^{0} = 69.9JK^{-1}mol^{-1}, S_{O_{2(g)}}^{0} = 205JK^{-1},$$

Then the absolute entropy change of $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)}$ is

A.
$$-163.2 Jmol^{-1}K^{-1}$$

B.
$$+163.2 Jmol^{-1}K^{-1}$$

C.
$$-303 Jmol^{-1}K^{-1}$$

D.
$$+303 Jmol^{-1}K^{-1}$$

Answer: A

Watch Video Solution

8. The direct conversion of A to B is difficult, hence it is carried out by the following shown path $A \to C \to D \to B$. Given $\Delta S_{A \to C} = 50$ eu, $\Delta S_{C \to D} = 30$ eu, $\Delta S_{B \to D} = 20$ eu

Answer: B

9. Enthalpy of vapourisation for water is 186.5 KJ mole⁻¹. The entropy change during vapourisation is $___KJ$ mole⁻¹

A. 0.5

B. 1.0

C. 1.5

D. 2.0

Answer: A

Watch Video Solution

10. Considering entropy (s) as a thermo dynamic parameter, the criterion for the spontanity of any process is

A.
$$\Delta S_{\rm sys} + \Delta S_{\rm surr} > 0$$

B.
$$\Delta S_{\rm sys'}$$
) - Delta $S_{\rm _}(surr > 0)$

$$C. \Delta S_{SVS'} > 0$$
 only

D. $\Delta S_{\text{surr}} > 0$ only

Answer: A

Watch Video Solution

11. $\Delta S_{\text{says}} \text{for} 4Fe_{(s)} + 3O_2 \rightarrow 2Fe_2O_{3(s)}$ is -550J/k/mol at 298K. If enthalpy change for same process is -1600kJ/mol, DS_{total} (in J/mol/K) is

A.
$$\left[\frac{1600}{298} \times 10^3\right] + 550 > 0$$

B. 550 -
$$\left[\frac{1600}{298}\right]$$
 (< 0)

C.
$$\left[\frac{1600}{298} \times 10^3 \right] - 550 > 0$$

D.
$$\left[\frac{1600 + 550}{298} \right] > 0$$

Answer: C

12. Suppose that a reaction has $\Delta H = -400kJ$ and $\Delta S = -50J/K$. A t what temperature range will it change from spontaneous to non-spontaneous?

A. 0.79K to 0.81 K

B. 799 K to 801 K

C. 801 K to 799K

D. 0.81 K to 0.79 K

Answer: B

Watch Video Solution

13. If an endothermic reaction is non-spontaneous at freezing point of water and becomes feasible at its boiling point, then

A. ΔH is -ve, ΔS is +ve

B. ΔH and ΔS both are +ve

C. ΔH and ΔS both are -ve

D. ΔH is +ve and ΔS is -ve

Answer: B

Watch Video Solution

14. The favourable conditions for a spontaneous reaction are

A.
$$T\Delta S > \Delta H$$
, $\Delta H = + ve$, $\Delta S = + ve$

B.
$$T\Delta S > \Delta H$$
, $\Delta H = + ve$, $\Delta S = -ve$

C.
$$T\Delta S = \Delta H$$
, $\Delta H = + ve$, $\Delta S = -ve$

D.
$$T\Delta S = \Delta H$$
, $\Delta H = + ve$, $\Delta S = + ve$

Answer: A

Watch Video Solution

15. Incorrect statement related to an irreversible process is

- A. Entropy of the universe goes on increasing
- B. Gibbs energy of the system goes on decreasing
- C. Total energy of the universe goes on increasing
- D. Total energy of the universe remains constant

Answer: C

Watch Video Solution

- 16. The process of evaporation of a liquid is accompanised by
- (A) Increase in enthalpy (B) Increase in entropy (C) Decrease in Gibbs

energy

The correct statement(s) is/are

- A. Only a and c
- B. Only b and c
- C. Only a and b
- D. All

Answer: D

Watch Video Solution

17. Which of the following is true for a spontaneous process?

A.
$$\Delta G > 0$$

B.
$$\Delta G < 0$$

$$C. \Delta G = 0$$

D.
$$\Delta G = T\Delta S$$

Answer: B

Watch Video Solution

18. $H^+_{(aq)} + OH^-_{(aq)} \rightarrow H_2O_{(l)}, \Delta H = -ve \text{ and } \Delta G = -ve$ then the reaction is

A. spontaneous and instantaneous

B. Spontaneous and endothermic

C. Spontaneous and slow

D. Non spontaneous and slow

Answer: A

Watch Video Solution

19. An equilibrium reaction $X + Y \Leftrightarrow W + Z$, $\Delta H = + ve$ is spontaneous in the forward direction. Then corresponding sign of ΔG and ΔS should be respectively

$$C. + ve, + ve$$

Answer: B

Watch Video Solution

LIST-I (Melting of Ice)

- A) Ice at -10°C
- B) Ice at +10°C
- C) Ice at 0°C

20. The correct match is

LIST-II (Condition)

- ∆G = 0
- 2) $\Delta G = +Vc$
- 3) $\Delta G = -Ve$

The correct is

A B C

A. 1 2 3

A B C

B. 3 2 1

A B C

C. ₂ 3 1

A B C

Answer: C

21. What of the following relationship is correct?

A.
$$\Delta G^0 = -RT \ln K$$

$$B. K = e^{-\Delta G^0/RT}$$

C.
$$K = 10^{-\Delta G^0/2.303RT}$$

D. All are correct

Answer: D

Watch Video Solution

constant of the reaction at 227 $^{\circ}$ C

22. ΔG^0 for the reaction $x + y \Leftrightarrow z$ is -4.606 kcal. The value of equilibrium

- A. 100
- B. 10
- C. 2
 - D. 0.01

Answer: A

Watch Video Solution

23. (A): Entropy of a perfect crystalline substance at absolute zero is zero

(R): At absolute zero translation kinetic energy of a system is zero.

- A. A and R are true, R explains A
- B. A and R are true, R does not explain A
- C. A is true, but R is false
- D. A is false, but R is true

Answer: A

Watch Video Solution

LECTURE SHEET (EXERCISE-III) (LEVEL - II (ADVANCED) STARAIGHT OBJECTICE TYPE QUESTIONS)

1. What are the sign of the entropy change (+ or -) in the following:

I: A liquid crystallises into a solid

II: Temperature of a crystalline solid is raised from OK to 115K

III:
$$2NaHCO_{3(g)} \rightarrow Na_2CO_{3(g)} + CO_{2(g)} + H_2O_{(g)}$$

$$\mathsf{IV}: H_{2(g)} \to 2H_{(g)}$$

Answer: A

Watch Video Solution

2. Calculate ΔS for 3 moles of a diatomic ideal gas which is heated and compressed from 298K and 1bar to 596K and 4 bar

A. - 14.7 cal
$$K^{-1}$$

B. +14.7cal K^{-1}

C. -4.9cal K^{-1}

D. 6.3cal K^{-1}

Answer: D

Watch Video Solution

3. One mole of an ideal monoatomic gas at $27\,^{\circ}C$ is subjected to a reversible isoentropic compression until final temperature reaches 327 ° C. If the initial pressure was 1.0 atm then find the value of $\ln P_2$:

A. 1.75

B. 0.176

C. 1.0395

D. 2.0

Answer: A

4. One mole of an ideal monoatomic gas expands isothermally against constant external pressure of 1 atm from initial volume of 1l to a state where its final pressure becomes equal to external pressure. If initial temperature of gas is 300K then total entropy change of system in the above process is: $[R = 0.082L \text{ atm } mol^{-1}K^{-1} = 8.3Jmol^{-1}K^{-1}]$

A. 0

B. R In (24.6)

C. R In (2490)

D. $\frac{3}{2}$ R ln (24.6)

Answer: B

5. For a perfectly cyrstalline solid $C_{p,m}=aT^3+bT$, where a and b are constants. If $C_{p,m}$ is 0.40 J/K mol at 10K and 0.92 J/K mol at 20K, then

molar entropy at 20K is
$$0.2x \times R$$
 joules. Then the value of x is

B. 8.66 J/K mol

C. 0.813 J/K mol

D. none of these

Answer: C

 $Fe_2O_{3(s)} + 3H_{2(q)} \rightarrow 2Fe_{(s)} + 3H_2O_{(l)}$

6. Calculate standard entropy change in the reaction

Given:

 $S_m^0(Fe_2O_3, s) = 87.4S_m^0(Fe, s) = 27.3, S_m^0(H_2g) = 130.7, S_m^0(H_2O, 1) = 69.9JK$

7. When charcoal burns in air signs of
$$\Delta H$$
 and ΔS are $2C_{(s)} + O_{2(g)} \rightarrow 2CO_{(g)}$

A. $AH \Delta S$

A. $AH \Delta S$

B. $AH \Delta S$

C. $AH \Delta S$

C. $AH \Delta S$

A. $AH \Delta S$

C. $AH \Delta S$

Answer: B

D. _

A. $-212.5JK^{-1}$

8. For the following process

$$H_2O(l)(1 \text{ bar } 373.15K) \Leftrightarrow H_2O(g)$$

(1 bar, 373.15 K) identify the correct set of thermodynamic parameters.

A.
$$\Delta G = 0$$
, $\Delta S = + ve$

B.
$$\Delta G = 0$$
, $\Delta S = -ve$

$$C. \Delta G = + ve, \Delta S = 0$$

D.
$$\Delta G = -ve$$
, $\Delta S = +ve$

Answer: A

Watch Video Solution

9. Consider the ΔG_f^0 and ΔH_f^0 (kJ/mol) for the following oxides. Which oxide can be most easily decomposed to form the metal and oxygen gas?

B.
$$Cu_2O(\Delta G^0 = -146.0, \Delta H^0 = -168.8)$$

A. $ZnO(\Delta G^0 = -318.4, \Delta H^0 = -348.3)$

C.
$$HgO(\Delta G^0 = -58.5, \Delta H^0 = -90.8)$$

D.
$$PbO(\Delta G^0 = -187.9, \Delta H^0 = -217.3)$$

Answer: C

Watch Video Solution

10. Calculate
$$\Delta_r G^0$$
 for $\left(NH_4Cl,s\right)$ at 310K. Given: $D \le ta_f H^0$ for

$$\left(NH_4Cl,s\right) = -314.5$$
 KJ/mol,
$$\Delta_r C_P = 0S_{N_2(g)}^0 = 192JK^{-1}mol^{-1}, S_{H_2(g)}^0 = 130.5JK^{-1}mol^{-1}, S_{Cl_2(g)}^0 = 233JK^{-1}mol^{-1}$$

. All given data at 300K

B. -426.7kJ/mol

D. none of these

Answer: A

Watch Video Solution

11. At 25 ° C, ΔG^0 for the process $H_2O_{(l)} \Leftrightarrow H_2O_{(g)}$ is 8.6kJ. The vapour pressure of water at this temperature, is nearly

- A. 24 torr
- B. 285 torr
- C. 32.17 torr
- D. 100 torr

Answer: A

Watch Video Solution

12. Correct statements among the following are

- A. The net change in entropy of system is zero in any cyclic process
- B. the free energy change of the system at freezing point is zero
- C. the change in free energy with pressure for one mole of a perfect

gas,
$$\Delta G = RT \ln \frac{P_2}{P_1}$$

D. for a spontaneous change $(\Delta G)_{T,P} > 0$

Answer: A

Watch Video Solution

LECTURE SHEET (EXERCISE-III) (LEVEL - II (ADVANCED) MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)

- **1.** All the antural processes in this universe produce
 - A. a decrease in entropy of the universe
 - B. an increase in entropy of the universe
 - C. An increase in entropy of system and surroundings

D. sometimes increase or sometimes decrease in entropy

Answer: B::C

Watch Video Solution

2. Which of the following conditions is/are favourable for the feasibility of a reaction?

A.
$$\Delta H = -ve$$
, $T\Delta S = +ve$

B.
$$\Delta H = -ve$$
, $T\Delta S = -ve$, $T\Delta S < \Delta H$

C.
$$\Delta H = + ve$$
, $T\Delta S = + ve$, $T\Delta S < \Delta H$

D.
$$\Delta H = + ve$$
, $T\Delta S = + ve$, $T\Delta S > \Delta H$

Answer: A::B::D

3. Select the correct expressions among the following

A.
$$\frac{\Delta G - \Delta H}{T} = \left(\frac{\partial \Delta G}{\partial T}\right)_{P}$$

$$\mathrm{B.} \; \frac{\Delta G - \Delta H}{T} = \left(\frac{\partial \Delta G}{\partial T}\right)_{V}$$

$$C. \frac{\Delta S}{nF} = \left(\frac{\partial E_{\text{cell}}}{\partial T}\right)_{P}$$

D.
$$\left(\frac{\partial T}{\partial P}\right)_{H} = \frac{-\left(\frac{\partial H}{\partial P}\right)_{T}}{C_{P}}$$

Answer: A::C::D

Watch Video Solution

4. Which of the following conditions are true about spontaneous process?

A.
$$\left(\Delta G_{\text{system}}\right)_{T.P} < 0$$

B.
$$\Delta S_{\text{system}} + \Delta S_{\text{surr}} > 0$$

$$C. \left(\Delta G_{\text{system}} - (T, P) = 0 \right)$$

D.
$$\Delta S_{\text{system}} + \Delta S_{\text{surr}} < 0$$

Answer: A::B

Watch Video Solution

5. $A \rightarrow B$, Graph between $long_{10}$ P and $\frac{1}{T}$ is a straight line of slope $\frac{1}{4.606}$.

Hence, ΔH is

B. -4.18 J

C. 4 cal

D. -1 cal

Answer: B::D

LECTURE SHEET (EXERCISE-III) (LEVEL - II (ADVANCED) LINKED COMPREHENSION TYPE QUESTIONS)

1. As per second law of thermodynamics a process taken place spontaneously if and only if the entropy of the universe increases due to the process. Change in entropy is given by

$$\Delta S = \frac{Q_{rev}}{T}$$
 What is the change in

What is the change in entropy of the universe due to the following reaction occurring at 27 $^{\circ}C$?

$$A + 2B \rightarrow C + 2D, \Delta H = +1.8kJmol^{-1}$$

Molar entropy values of A, B, C and D are 1,2,3 and $4JK^{-1}mol^{-1}$ respectively.

B.
$$6JK^{-1}mol^{-1}$$

D.
$$1.2JK^{-1}mol^{-1}$$

Answer: A

2. As per second law of thermodynamics a process taken place spontaneously if and only if the entropy of the universe increases due to the process. Change in entropy is given by

$$\Delta S = \frac{Q_{rev}}{T}$$

A gas $C_V = (0.2T)CalK^{-1}$. What is the change in its entropy when one mole of it is heated from 27 ° C to 127 ° C at constant volume ?

A.
$$20$$
cal K^{-1} mol^{-1}

B. 15cal
$$K^{-1}$$
mol⁻¹

C. 35cal
$$K^{-1}$$
mol⁻¹

D. 25cal
$$K^{-1}mol^{-1}$$

Answer: A

3. The change in Gibbs free energy of the system along provides a criterion for the spontaneity of a process at constant temperature and pressure. A change in the free energy of a sytem at constant temperature and pressure will be: $\Delta G_{\rm system} = \Delta H_{\rm system}$ - $T\Delta S_{\rm system}$

The free energy for a reaction having $\Delta H = 31400$ cal, $\Delta S = 32$ cal $K^{-1}mol^{-1}$ at $1000\,^{\circ}\,C$ is

- A. -9336 cal
- B. 7386 cal
- C. 1936 cal
- D. +9336 cal

Answer: A

Watch Video Solution

4. For a system in equilibrium Δ G= 0 under conditions of constant:

A. temperature and pressure B. temperature and volume C. pressure and volume D. energy and volume Answer: A **Watch Video Solution** LECTURE SHEET (EXERCISE-III) (LEVEL - II (ADVANCED) MATRIX MATCHING TYPE **QUESTIONS**) Column-II (Entropy Change) Column-I (Process) P) $\Delta S_{\text{system}} > 0$ A) Reversible isothermal compression of ideal gas Q) $\Delta S_{\text{system}} < 0$ B) Isothermal free expansion $(P_{ext} = 0)$ of an ideal gas R) $\Delta S_{\text{system}} = 0$ C) Reversible adiabatic expansion of an ideal gas D) Reversible expansion of ideal gas S) Information insufficient **View Text Solution**

following 2. Match the columns Column-II Column-I [Sign AH and AS]

- P) Spontaneous only at low temperatures O) Spontaneous only at high temperatures
- R) Spontaneous at all temperatures S) Non-Spontaneous at all temperatures
- Watch Video Solution

A) -& -

B) - & +

(C) + & +

D)+&-

LECTURE SHEET (EXERCISE-III) (LEVEL - II (ADVANCED) INTEGER TYPE **QUESTIONS**)

- 1. In how many of the following entropy increases?
- $(a)N_{2(a)} + 3H_{2(a)} \rightarrow 2NH_{3(a)}$
- $(d)H_2O_{(1)} \to H_2O_{(a)}$ $(c)H_2O_{(s)} \to H_2O_{(a)}$

 $(b)PCl_{5(a)} \rightarrow PCl_{3(a)} +$

 $(e)2NaHCO_{3(s)} \rightarrow Na_2CO_{3(s)} + H_2O_{(q)} + CO_{2(q)} \quad (f)NH_2CO_2NH_{4(s)} \rightarrow 2N_2CO_3(s) + CO_2(s) + CO_2($ $(h)CO_{2(s)} \rightarrow CO_{2(a)}$ $(g)H_2O_{(1)} \rightarrow H_2O_{(s)}$

2. For a liquid, enthalpy of fusion is $1.435 \times 10^3 calmol^{-1}$ and molar entropy change is 5.26calmol⁻¹. Calculate the melting point of the liquid.

3. For the reaction, $Ag_2O_{(s)} \Leftrightarrow 2Ag_{(s)} + \frac{1}{2}O_{2(g)}\Delta H$, ΔS and T are 40.63 kJ mol^{-1} , $108.8JK^{-1}mol^{-1}$ and 373K respectively. Free energy change ΔG of the reaction will be ____

4. Calculate the equilibrium constant (in multiples of 10^{-4}) for the reaction $PCl_{5(g)} \rightarrow PCl_{3(g)} + Cl_{2(g)}$ at 400K, if $\Delta H^0 = 77.2 K J \text{mole}^{-1}$ and $\Delta S^0 = 122 J K^{-1} \text{mole}^{-1}$

- **5.** Calculate the free energy change in kJ when 1 mole of NaCl is dissolved in water at 298 K, Given
- a) U of NaCl (U = lattice energy) = 778kJmole⁻¹

b) Hydration energy of NaCl = -774.3kJmole⁻¹ (c) Entropy change at 298K = 43mole ⁻¹ Watch Video Solution PRACTICE SHEET (EXERCISE- I) (LEVEL- I (MAIN) STRAIGHT OBJECTIVE TYPE **QUESTIONS)** 1. The intensive property among these quantities is A. Mass **B.** Density C. Enthalpy

D. Volume

Watch Video Solution

Answer: B

2. Assertion (A): Mass and volume are extensive properties

Reason (R): Mass/volume is also an extensive property

A. A and R are true, R explains A

B. A and R are true, R does not explain A

C. A is true, but R is false

D. A is false, but R is true

Answer: C

Watch Video Solution

3. A well stoppered thermos flask contains some ice cubes. This is an example of

A. Closed system

B. Open system

C. Isolated system

D. Non-thermodynamic system

Answer: C

Watch Video Solution

LIST-I

- A) Work
- B) Enthalpy
- C) Temperature
 - D) P, V, T and n
- The correct match is

The correct match is

ABCD

A. ₄ 1 2 3

A B C D

1 2 3 4

A B C D

C. 4 3 2 1

A B C D

D. 4 3 1 2

Answer: A

LIST-II

- 1) Extensive property
- 2) Intensive property
- 3) State variable
- 4) Path function

- **5.** Which of the following statements is false?
 - A. Work is a state function
 - B. Temperature is a state function
 - C. Change of state is completely defined when initial and final states

D. Work appears at the boundary of the system

Answer: A

are specified

- **6.** When freezing of a liquid takes place in a system
 - A. may have q > 0 or q < 0 depending on the liquid
 - B. is represented by q > 0
 - C. is represented by q < 0

D. has q = 0

Answer: C

Watch Video Solution

- 7. On which of the following factors does internal energy depend upon
 - A. Mass of the system
 - B. Temperature of the system
 - C. Nature of the system
 - D. All the above

Answer: D

8. According to IUPAC conventions, which one of the following is/are correct?

A. The heat absorbed by a system is taken as positive

B. If a system is a compained by decrease in energy, ΔE is negative

C. The work done by the system is taken as negative

D. All the above three statements are correct

Answer: D

9. The heat of reaction at constant volume and temperature is represented by

A. ΔE

B. Δ*H*

 $\mathsf{C}.\,\Delta P$

D.	ΔV

Answer: A

Watch Video Solution

- 10. During isothermal expansion of an ideal gas, its internal energy
 - A. Decreases
 - **B.** Increases
 - C. May increase or decrease
 - D. Remains unchanged

Answer: D

11. During a process work equivalent to 400J is done on a system, which gives out of 125J of energy. The change in internal energy is

- A. 525J
- B. 375J
- C. 275J
- D. 200J

Answer: C

Watch Video Solution

12. One mole of an ideal gas at 300K is expanded isothermally reversibly from an initial volume of 1 litre to 10 litres. The ΔE for this process is (R = 2 cal $mol^{-1}K^{-1}$)

- A. 163.7 cal
- B. zero

C. 1381.1 cal
D. 9lit atm

Answer: B

Watch Video Solution

13. An ideal gas expands in volume from $10^{-3}m^3$ to $10^{-2}m^3$ at 300 K against a constant pressure of 10^5Nm^{-2} . The work done is

A. -900*J*

B. 900kJ

C. 270kJ

D. -900kJ

Answer: A

14. 5 mole of an ideal gas expands isothermally and irreversibly from a pressure of 10 atm to 1 atm against a contant external pressure of 1 atm. $W_{\rm irr}$ at 300K is:

A. - 15.921*kJ*

B. - 11.224*kJ*

C. - 110.83kJ

D. none of these

Answer: B

Watch Video Solution

15. 2 mole of an ideal gas at $27\,^{\circ}C$ expands isothermally and reversibly from a volume of 4 litre to 40 litre. The work done (in kJ) by the gas is

A. w = -28.72kJ

B. w = -11.488kJ

$$C. w = -5.736kJ$$

D.
$$w = -4.988kJ$$

Answer: B

Watch Video Solution

16. The molar heat capacity of water at constant pressure, C, is $75JK^{-1}mol^{-1}$. When 1.0KJ of heat is supplied to 100g of water which is free to expand, the increase in temperature of water is :

- A. 1.2K
- B. 2.4K
- C. 4.8K
- D. 6.6K

Answer: B

17. Enthalpy "H" can be given as

$$A. H = E - PV$$

$$B. H = E + PV$$

$$C. H = E + P + V$$

$$D. H = E - TS$$

Answer: B

Watch Video Solution

PRACTICE SHEET (EXERCISE- I) (LEVEL- II (ADVANCED) STRAIGHT OBJECTIVE TYPE QUESTIONS)

1. One mole of an ideal monoatomic gas at temperature T and volume 1L expands to 2L against a constant external pressure of one atm under adiabatic conditions, then final temperature of gas will be:

D. $T - \frac{2}{3 \times 0.0821}$

C.T

A. $\frac{T}{2^{2/3}}$

B. $T + \frac{2}{3 \times 0.0821}$

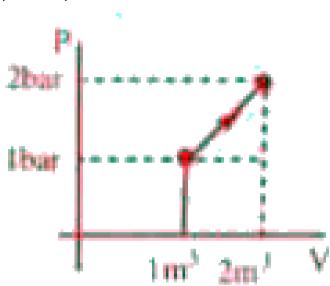
Answer: D

Watch Video Solution

2. Which statement(s) is correct,

A.
$$\left(\frac{\delta H}{\delta T}\right)_P - \left(\frac{\delta U}{\delta T}\right)_V = R$$

$$\begin{pmatrix} \delta T \end{pmatrix}_P & \begin{pmatrix} \delta T \end{pmatrix}_V$$


$$\mathsf{B.} \left(\frac{\delta H}{\delta T} \right)_P > \left(\frac{\delta U}{\delta T} \right)_V$$

C.
$$\left(\frac{\delta H}{\delta V}\right)_T$$
 for ideal gas is zero

D. All of these

Answer: D

3. What is ΔU for the process described by figure. Heat supplied during the process q= 100kJ

B.
$$-50kJ$$

$$\mathsf{C.-}150kJ$$

Answer: B

PRACTICE SHEET (EXERCISE- I) (LEVEL- II (ADVANCED) MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)

1. In the isothermal expansion of an ideal gas

A.
$$\Delta U = 0$$

$$B. \Delta T = 0$$

$$C. q = 0$$

D.
$$W = -q$$

Answer: A::B::D

Watch Video Solution

2. Calculate the work done by the system in an irreversible (sing step) adiabatic expansion of 2 mole of a polyatomic gas ($\gamma = 4/3$) from 300K

and pressure 10atm to 1 atm: (in KJ) (Give your answer after multiplying with 2.08).

A. - 227*R*

B. -810 Cal

C. -405*R*

D. -3.367*kJ*

Answer: B::C::D

Watch Video Solution

3. 2 mole of an ideal mono atomic gas undergoes a reversible process for which $PV^2 = C$. The gas is expanded from initial volume of 1L to a final volume of 3L starting from initial temperature of 300K. Find ΔH for the process

A. -600*R*

B. - 1000*R*

C. -3000R

D. - 2*k* Cal

Answer: B::D

Watch Video Solution

when 1 mol of water is vapourised at 1 bar pressure and $100\,^{\circ}C$ (given : molar enthalpy of vaporisation of water at 1 bar and

4. Assuming that, water vapour is an ideal gas the internal energy (ΔU)

 $373K = 41kJmol^{-1}$ and $R = 8.3JK^{-1}mol^{-1}$)) will be

A. 41.00*kJmol* ⁻¹

B. 4.100*kJmol* ⁻¹

C. 3, 790*Jmol* ⁻¹

D. 37.9kJmol⁻¹

Answer: C::D

A.

bar

PRACTICE SHEET (EXERCISE- I) (LEVEL- II (ADVANCED) LINKED COMPREHENSION TYPE QUESTIONS)

- 1. If the boundary of system moves by an infinitesimal amount, the work involved is given by $dw = -P_{\rm ext}dV$, for irreversible process $W = -P_{\rm ext}\Delta V$ (where $\Delta V = V_f V_i$). For reversible process, $P_{\rm ext} = P_{\rm int} \pm dP \cong P_{\rm int}$, so for reversible isothermal process $W = -nRT \ln \frac{V_f}{V_i}$ 2 mole of an ideal gas undergoes isothermal compression along three
- different paths: (i) reversible compression from P_i = 2 bar and V_i = 8L to P_f = 20 bar
- (ii) a single stage compression against a constant external pressure of 20
- (iii) a two stage compression consisting initially of compression against a constant external pressure of 10 bar until $P_{\rm gas}=P_{\rm ext}$, followed by compression aganist a constant pressure of 20 bar until $P_{\rm gas}=P_{\rm ext}$

Work done (in bar -L) on the gas in reversible isothermal compression is:

- A. 9.212
- B. 36.848
- C. 18.424
- D. none of these

Answer: B

Watch Video Solution

- **2.** If the boundary of system moves by an infinitesimal amount, the work involved is given by $dw = -P_{\rm ext}dV$, for irreversible process $W = -P_{\rm ext}\Delta V$ (where $\Delta V = V_f V_i$). For reversible process, $P_{\rm ext} = P_{\rm int} \pm dP \cong P_{\rm int}$, so for reversible isothermal process $W = -nRT \ln \frac{V_f}{V}$.
- 2 mole of an ideal gas undergoes isothermal compression along three different paths:
- (i) reversible compression from P_i = 2 bar and V_i = 8L to P_f = 20 bar
- (ii) a single stage compression against a constant external pressure of 20

bar

(iii) a two stage compression consisting initially of compression against a constant external pressure of 10 bar until $P_{\rm gas}=P_{\rm ext}$, followed by compression aganist a constant pressure of 20 bar until $P_{\rm gas}=P_{\rm ext}$

Work done (in bar -L) on the gas in reversible isothermal compression is:

A. 40

B. 80

C. 16

D. none of these

Answer: B

Watch Video Solution

3. If the boundary of system moves by an infinitesimal amount, the work involved is given by $dw = -P_{\rm ext}dV$, for irreversible process $W = -P_{\rm ext}\Delta V$ (where $\Delta V = V_f - V_i$). For reversible process, $P_{\rm ext} = P_{\rm int} \pm dP \cong P_{\rm int}$, so for reversible isothermal process $W = -nRT \ln \frac{V_f}{V_i}$

2 mole of an ideal gas undergoes isothermal compression along three different paths:

(i) reversible compression from $P_i=2$ bar and $V_i=8L$ to $P_f=20$ bar (ii) a single stage compression against a constant external pressure of 20 bar

(iii) a two stage compression consisting initially of compression against a constant external pressure of 10 bar until $P_{\rm gas}=P_{\rm ext}$, followed by compression aganist a constant pressure of 20 bar until $P_{\rm gas}=P_{\rm ext}$

A.
$$w_1 > w_2 > w_3$$

Order of magnitude work is

B.
$$w_3 > w_2 > w_1$$

$$C. w_2 > w_3 > w_1$$

D.
$$w_1 = w_2 = w_3$$

Answer: C

PRACTICE SHEET (EXERCISE- I) (LEVEL- II (ADVANCED) MATRIX MATCHING TYPE **QUESTIONS**)

following Match 1. the columns

Column-I

- A) Reversible isothermal
- B) Reversible adiabatic compression of an ideal gas
- C) Irreversible adiabatic expansion of an ideal gas
- D) Irreversible isothermal compression of an ideal gas

Cohumn-H

- P) W = -2.303nRTlog $\left(\frac{V_2}{V_1}\right)$
- O) PV⁷ = constant
- $R \in \frac{nR}{(\gamma 1)} (T_2 T_1)$
- S) $\Delta H = 0$

Watch Video Solution

following 2. Match the columns

Column-1

- A) $W_{rev} < W_{irr}$
- B) $W_{rev} > W_{irr}$
- C) T₁ < T₁
- D) T_f > T_i

P) Isothermal expansion

Column-II

- Q) Isothermal compression
- R) Adiabatic expansion
- S) Adiabatic compression

PRACTICE SHEET (EXERCISE- I) (LEVEL- II (ADVANCED) INTEGER TYPE QUESTIONS)

- **1.** Gas $\left(A_{x}\right)$ has the ratio of molar specific heats equal to 1.66. The value of x will be
 - Watch Video Solution

 $15^{0}C$ at constant volume. The C_{p} of the gas is ____ cal

2. 4.48 L of an ideal gas at STP requires 12 cal to raise the temperature by

3. 10 grams of argon gas is compressed isothermally and reversibly at a temperature of $27\,^{\circ}C$ from 10L to 5L. Calculate the work done for this process in multiple of 10^{20} calories.

4. Calculate the maximum work done (in multiple of 10^3) in expanding 16g of oxygen at 300K and occupying a volume of $5dm^3$ isothermally, until the voume becomes $25dm^3$ (Give you anwer as nearest integer)

Watch Video Solution

5. Calculate the ΔH for the isothermal reversible expansion of 1 mole of an ideal gas from initial pressure of 1.0 bar to a final pressure 0.1 bar at a constant temperature at 273K.

Watch Video Solution

PRACTICE SHEET (EXERCISE- II) (LEVEL- I (MAIN) STRAIGHT OBJECTIVE TYPE QUESTIONS)

1. When a solid melts there is

A. An increase in enthalpy

B. A decrease in enthalpy

C. No change in enthalpy

D. A decrease in internal energy

Answer: A

Watch Video Solution

2. For $N_2 + 3H_2 \rightarrow 2NH_3$, enthalpy and internal energy changes respectively are, $\Delta H \& \Delta U$ then

A. $\Delta H - 0$

B. $\Delta H \neq \Delta U$

 $\mathsf{C}.\,\Delta H < \Delta U$

 $D. \Delta H > \Delta U$

Answer: C

3. For which of the following reaction $\Delta H = \Delta E + 2RT$

A.
$$2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$$

$$B. NH_4HS_{(s)} \rightarrow NH_{3(g)} + H_2S_{(g)}$$

$$C.N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$$

$$\mathsf{D}.\mathit{PCl}_{5(g)} \to \mathit{PCl}_{3(g)} + \mathit{Cl}_{2(g)}$$

Answer: B

Watch Video Solution

4. Which of the indicated relationship is correct for the following exothermic reaction carried out at constant pressure? $CO_{(q)} + 3H_{2(q)} \rightarrow CH_{4(q)} + H_2O_{(q)}$

A.
$$\Delta E = \Delta H$$

B.
$$\Delta E > \Delta H$$

C. [*]	W < 0
D. (<i>q</i> > 0
Answe	er: B
Watch Video Solution	

5. For which of the following elements, the standard enthalpy is not zero?

A. C(Diamond)

B. C(Graphite)

C. Liquid mercury

D. Rhombic sulphur

Answer: A

6. Which are of the following is an exothermic reaction?

$$A. N_{2(g)} + O_{2(g)} + 180.8k. J \rightarrow 2NO_{(g)}$$

$${\sf B.}\,N_{2(g)} + 3H_{2(g)} - 92k.\,J \,\to\, 2NH_{3(g)}$$

$$C.C_{\text{(graphite)}} + H_2O_{(g)} \rightarrow CO_{(g)} + H_{2(g)} - 131.3kJ$$

D.
$$C_{\text{(graphite)}} + 2S_{(s)} \rightarrow CS_{2(l)} - 91.9kJ$$

Answer: B

Watch Video Solution

7. (A) : The reaction $C + O_2 \rightarrow CO_2$ is an exothermic reaction

Reason (R): In this reaction that total enthalpy of the product is less than

the total enthalpy of the reactants

A. A and R are true, R explains A

B. A and R are true, R does not explain A

C. A is true, but R is false

D. A is false, but R is true

Answer: A

Watch Video Solution

- **8.** For the transition $C_{(\text{diamonid})} \rightarrow C_{(\text{graphite})}$, $\Delta H = -1.5 KJ$. It follows that
 - A. Graphite is stable than diamond
 - B. Diamond is stable than graphite
 - C. Graphite is an endothermic substance
 - D. Diamond is an exothermic substance

Answer: A

of ethanol?

A.
$$CH_3CHO_{(l)} + \frac{1}{2}H_{2(g)} \xrightarrow{Ni} C_2H_5OH_{(l)}$$

B.
$$2C_{\text{graphite}} + 3H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow C_2H_5OH_{(g)}$$

9. Which of the following equation represents standard heat of formation

C.
$$2C_{\text{diamond}} + 3h_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow C_2H_5OH_{(g)}$$

D. $2C_{\text{graphite}} + 3H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow C_2H_5OH_{(l)}$

Answer: D

10. Which of the following is not a combustion reaction

$$A. CO + \frac{1}{2}O_2 \rightarrow CO_2$$

$$B. C + O_2 \rightarrow CO_2$$

$$C. C + \frac{1}{2}O_2 \rightarrow CO$$

D.
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Answer: C

Watch Video Solution

- 11. The chemical process involved in the combustion reactions is
 - A. Oxidation
 - B. Reduction
 - C. Redox reaction
 - D. Disproportionation reaction

Answer: C

is known as

Watch Video Solution

12. $MgSO_{4(s)} + H_2O \rightarrow MgSO_{4(aq)}$, $\Delta H = -84K$. Cals, ΔH of the reaction

A. Heat of dilution

B. Heat of solution

C. Heat of fusion

Watch Video Solution

A. Heat of formation of CS_2

C. Heat of vapourisation of CS_2

D. Heat of transition of carbon

B. Heat of fusion of CS_2

Answer: B

known as

Answer: A

D. Heat of transition

13. The heat change for the following reaction $C_{(s)} + 2S_{(s)} \rightarrow CS_{2(l)}$ is

14. $N_2 + 3H_2 \rightarrow 2NH_3$, $\Delta H = -46K$. Cals. From the above reaction, heat of formation of ammonia is

- A. 46k Cals
- B. -46 kCals
- C. -23 kCals
- D. 23kCals

Answer: C

Watch Video Solution

15. The enthalpies of HCl, NaOH ,NaCl and H_2O are -120, -82, -148 and -68 kCals. Respectively. ΔH of the following reaction is $HCl + NaOH \rightarrow NaCl + H_2O$

- A. -28.7 kCals
- B. 18 kCals
- C. -57.3 kCals
- D. 14 kCals

Answer: D

Watch Video Solution

16. How much energy is released when 6 mole of octane is burnt in air? Given ΔH_f^0 for $CO_{2(g)}$, $H_2O_{(g)}$ and $C_8H_{18(I)}$ respectively

are

- -390, -240 and +160 KJ/mol
 - A. -32.6*MJ*
 - B. -37.4*MJ*
 - C. -35.5*MJ*
 - D. -20.00MJ

Answer: A

Watch Video Solution

17. What is theheat of formation of C_6H_6 , given that the heats of combustion of benzene, carbon and hydrogen are 782, 94 and 68K. Cal respectively

A. +14 kCal

B. - 14 kCal

C. +28 kCal

D. -28 kCal

Answer: A

18. Heat of combustion of C_2H_4 is -337 kCal. If 5.6 lit O_2 is used at STP, in the combustion heat liberated is ____ kCal

- A. 28.08
- B. 14.04
- C. 42.06
- D. 56.16

Answer: A

Watch Video Solution

19. For the following reaction $H_{(aq)}^+ + OH_{(aq)}^- \rightarrow H_2O_{(l)}$, $\Delta H = -Q$, where ΔH represents

A. Heat of formation

- B. Heat of combustion
- C. Heat of neutralisation

D. Heat of dilution

Answer: C

Watch Video Solution

- **20.** For the reaction $2H_2O_{(l)} \rightarrow H_3O_{(aq)}^+ + OH_{(aq)}^-$, the value of ΔH is
 - A. 114.6 kJ
 - B. 114.6*kJ*
 - C. 57.3kJ
 - D. -57.3kJ

Answer: C

Watch Video Solution

21. The heat of neutralisation is maximum when

- A. Sodium hydroxide is neutralised by acetic acid
- B. Ammonium hydroxide is neutralised by acetic acid
- C. Ammonium hydroxide is neutralized by hydrochloric acid
- D. Sodium hydroxide is neutralized by hydrochloric acid

Answer: D

- **22.** Assertion (A): Heat of neutralization of $HClO_4$ with NaOH is same as
- that of HCl with NaOH
- Reason (R): Both HCL and $HClO_4$ are strong acids
 - A. A and R are true, R explains A
 - B. A and R are true, R does not explain A
 - C. A is true, but R is false
 - D. A is false, but R is true

Answer: A

Watch Video Solution

23. In which of the following combinatins of HCL and NaOH, the heat energy liberated is maximum

- A. 10ml of 0.1m HCl + 40 ml of 0.1 M NaOH
- B. 30 ml of 0.1M HCl + 20 ml of 0.1 M NaOH
- C. 25ml of 0.1M HCl + 25 ml of 0.1 M NaOH
- D. 35ml of 0.1M HCl+ 15 ml of 0.1 M NaOH

Answer: C

- A) HNO₃ + KOH
- B) $NH_4OH + CH_3COOH$
- C) CH,COOH + NaOH
- C) CH₃COOH + NaOH
- D) HCl + NaOH

24.

The correct match is

- A B C D
- A. _{1 2 3 4}
- A B C D
- B. 4 3 2 1
- A B C D
- c. 3 4 1 3
- A B C D
- D.

Answer: C

Watch Video Solution

25. Heat of neutralisation for the reaction

LIST-II

1) =55, 22 KJ 2) =58,7 KJ

31 -57.3 KJ

4) -49.3 KJ 5) -51 46 KJ

 $NaOH + HCl \rightarrow NaCl + H_2O$ is - 57.1kJmole⁻¹. The heat relased when

0.25 moles of NaOH is treated with 0.25 moles of HCl is

A. 22.5kJ B. 57.1kJ C. 14.3kJ D. 28.6 kJ **Answer: C** Watch Video Solution **26.** Under the same conditions how many mL of 1M KOH and 0.5M H_2SO_4 solutions, respctively when mixed for a total volume of 100mL produce the highest rise in temperature A. 67:33 B. 33:67 C.40:60D. 50:50

Answer: D

Watch Video Solution

27. Given that the data for neutralization of a weak acid (HA) and strong acid with a strong base is:

$$HA + OH^- \Rightarrow A^- + H_2O$$
: $\Delta H = -41.80kJ$, $H^+ + OH^- \Rightarrow H_2O$, $\Delta H = -55.90kJ$

The enthalpy of dissociation of weak acid would be

A. -97.20*kJ*

B. +97.70kJ

C. - 14.10kJ

D. 14.10*kJ*

Answer: D

28. The standard heat of formation of sodium ions in aqueous solution

from the following data:

Heat of formation of NaOH(aq) at 25 ° C = -470.7KJ:

Heat of formation of OH^{-1} at 25 ° C = -228.8 KJ is :

A. - 251.9*KJ*

B. 241.9KJ

C. -241.9*KJ*

D. 300*KJmol* ⁻¹

Answer: C

Watch Video Solution

29. Heat released in neutralisation of 1 mole of HF with excess NaoH is

A. 57.32kJ

B. > 57.32kJ

- C. < 57.32kJ
- D. none of these

Answer: B

Watch Video Solution

30. Hess's law states that

- A. The standard enthalpy of an overall reaction is the sum of the enthalpy changes in individual reactions
- B. enthalpy of formation of a compound is same as the enthalpy of decomposition of the compound into constituent elements, but with opposite sign
- C. at constant temperature the pressure of a gas is inversely proportional to its volume

D. the mass of a gas dissolved per lit of a solvent is proportional to the pressure of the gas in equilibrium with the solution

Answer: A

Watch Video Solution

31. Given $C + 2S \rightarrow CS_2$, $\Delta Hf^0 = +117.0 KJmol^{-1}$, $C + O_2 \rightarrow CO_2$, $\Delta Hf^0 = -393.0 KJmol$

. The heat of combustion of $CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2$ is

A. -807KJmol -1

B. - 1104KJmol - 1

D. $+807 K J mol^{-1}$

C. $+1104KJmol^{-1}$

Answer: B

32.
$$NaOH_{(aq)} + HCl_{(aq)} \rightarrow NaCl_{(aq)} + H_2O, \Delta H = -13.6$$
 Kcal.

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O, \Delta H = -68$$
 Kcal. What is hat of formation of OH^- ?

- A. -54.4 kCal
- B. +54.4 kCal
- C. +13.6 kCal
- D. 13.6 kCal

Answer: A

Watch Video Solution

33. $N_{2(g)} + 2O_{2(g)} \rightarrow 2NO_2 + xkJ, 2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)} + ykJ.$

The enthalpy of formation of NO is

A.
$$(2x - 2y)$$

B.x-y

C. 1/2(y - x)

D. 1/2(x - y)

Answer: C

Watch Video Solution

34.
$$\frac{1}{2}H_{2(g)} + \frac{1}{2}Cl_{2(g)} \rightarrow HCl_{(g)}, \Delta H^0 = -92.4$$
 kJ/mole, $HCl_{(g)} + nH_2O \rightarrow H^+_{(aq)} + Cl^-_{(aq)}, \Delta H^0 = -74.8$ kJ/mole ΔH^0f for $Cl^-_{(aq)}$ is

A. -17.6 kJ/mole

B. -167.2 kJ/mole

C. + 17.6 kJ/mole

D. -35.2 kJ/mole

Answer: B

35. The heat of atomisation of $PH_{3(g)}$ is 228 kCal mol^{-1} and that of

 $P_2H_{2(g)}$ is 355 kCal mol^{-1} . The energy of the P-P bond is (kn kCal)

A. 102

B. 51

C. 26

D. 204

Answer: B

Watch Video Solution

36. The enthalpy change for the following reaction is 368kJ. Calculate the average O-F bond energy. $OF_{2(q)} \rightarrow O_{(q)} + 2F_{(q)}$

A. 184 kJ/mol

- B. 368 kJ/mol
- C. 536 kJ/mol
- D. 736 kJ/mol

Answer: A

Watch Video Solution

PRACTICE SHEET (EXERCISE- II) (LEVEL- II (ADVANCED) STRAIGHT OBJECTIVE **TYPE QUESTIONS)**

- **1.** For the real gases reaction $2CO_{(q)} + O_{2(q)} \rightarrow 2CO_{2(q)}$, $\Delta H = -560kJ$.
- In a 10L rigid vessel at 500K, the initial pressure is 70 bar and after reaction it becomes 40 bar. The change in internal energy is:
 - A. -557kJ
 - B. -530kJ
 - C. 563kJ

D. none of these

Answer: B

Watch Video Solution

- **2.** A sample of CH_4 of 0.08g was subjected to combustion at 27 $^{\circ}C$ in a bomb calorimeter. The temperature of the calorimeter system was found to be raised by 0.25 $^{\circ}C$. If heat capacity of calorimeter is $18kJ/^{\circ}C$, ΔH for combustion of CH_4 at 27 $^{\circ}C$ is
 - A. -900 kJ/mole
 - B. -905 kJ/mole
 - C. -895 kJ/mole
 - D. -890 kJ/mole

Answer: B

3. Heat liberated in the neutralisation of 500 ml of 1N HCl and 500ml of 1N NH_4OH is -1.36 K.Cals. The heat of ionisation of NH_4OH is

A. 10.98 kCals

B. - 12.34 kCals

C. - 10.98 kCals

D. 12.34 kCals

Answer: A

Watch Video Solution

4. Based on the values of B.E. given, $\Delta_f H^0$ of $N_2 H_{4(g)}$ is : Given BE of :

N - N is 159 kJ mol^{-1} , H-H is 436 kJ mol^{-1} , N = -N is 941 kJ mol^{-1} , N - H is

398 kJ mol ⁻¹

A. 711*kJmol* ⁻¹

B. 62*kJmol* ⁻¹

 $C. -98k Imol^{-1}$

Answer: B

Watch Video Solution

PRACTICE SHEET (EXERCISE- II) (LEVEL- II (ADVANCED) MORE THAN ONCE **CORRECT ANSWER TYPE QUESTIONS)**

1. The value of
$$\Delta H$$
 - ΔU for the following reaction at 27 $^{\circ}C$ will be :

 $N_{2(q)} + 3H_{2(q)} \rightarrow 2NH_{3(q)}$

A.
$$8.314 \times 273 \times (-2)J$$

B.
$$8.314 \times 300 \times (-2)J$$

Answer: B::C

C. -600R

2. Which of the following reactions have same heat of reaction at constant pressure and at constant volume?

$$A. H_{2(g)} + Cl_{2(g)} \Leftrightarrow 2HCl_{(g)}$$

$$B. 2NO_{(g)} \Leftrightarrow N_{2(g)} + O_{2(g)}$$

$$C. Co_3O_{4(s)} + 4CO_{(g)} \Leftrightarrow 3Co_{(s)} + 4CO_{2(g)}$$

$$\mathsf{D}.\, N_{2(g)} + 3H_{2(g)} \Leftrightarrow 2NH_{3(g)}$$

Answer: A::B::C

Watch Video Solution

3. For the reaction $2H_{2(g)} + o_{2(g)} \rightarrow 2H_2O_{(g)}$, $\Delta H^\circ = -573.2kJ$. The heat of decomposition of water per mol is:

A. 286.6kJ

C. -28.66 k Cal

D. 68.56 kCal

Answer: A::D

Watch Video Solution

4. The amount of heat released, when 20 ml of 0.5 M NaOH is mixed with

100 mL of 0.1M HCl, is x k cal. The heat of neutralisation is

- A. 10xk Cal mole -1
- B. 100xk Cal mole $^{-1}$
- C. -100xk Cal mole -1
- D. -23.92xk Cal mole $^{-1}$

Answer: C::D

5. When 1.0g of oxalic acid $\left(H_2C_2O_4\right)$ is burned in a bomb calorimeter whose heat capacity is 8.75kJ/K, the temperature increases by 0.312K. The enthalpy of combustion of oxalic acid at $27\,^\circ C$

- A. -245.7 kJ/mol
- B. 249.4 kJ/mol
- C. -241.9 kJ/mol
- D. -57.87 k Cal mol -1

Answer: C::D

Watch Video Solution

6. Consider the following data:

$$\Delta_f H^2(N_2H_4, l) = 50kJ/mol, \Delta_f H^\circ(NH_3, g) = -46kJ/mol,$$

B.E.

$$(N - H) = 393kJ/mol$$
 and B. E. $(H - H) =$

also

$$\Delta_{\text{vap}}H(N_2H_4, l) = 18kJ/mol$$
. The N-N bond energy in N_2H_4 is

- A. 226 kJ/mol
- B. 154 kJ/mol
- C. 190 kJ/mol
- D. 45.45 k Cal/mole

Answer: C::D

Watch Video Solution

PRACTICE SHEET (EXERCISE- II) (LEVEL- II (ADVANCED) LINKED COMPREHENSION TYPE QUESTIONS)

1. Enthalpy of neutralization is defined as the enthalpy change when 1 mole of acid/base is completely neutralized by base/acid in dilute solution. For strong acid and strong base neutralization net chemical change is $H^+_{(aq)} + OH^-_{(aq)} \rightarrow H_2O_{(l)}, \Delta H^0_r \equiv -55.84 kJ/mol$ If enthalpy of neutralization of CH_3COOH by NaoH is -49.86 kJ/mol then

enthalpy of ionisation of CH_3COOH is

- A. 5.98 kJ/mol
- B. -5.98 kJ/mol
- C. 105.7 kJ/mol
- D. none of these

Answer: A

Watch Video Solution

2. Enthalpy of neutralization is defined as the enthalpy change when 1 mole of acid/base is completely neutralized by base/acid in dilute solution. For strong acid and strong base neutralization net chemical change is $H^+_{(aq)} + OH^-_{(aq)} \rightarrow H_2O_{(l)}, \Delta H^0_r \equiv -55.84 kJ/mol$

What is ΔH^0 for complete neutralisation of strong diacidic base

 $A(OH)_2$ by HNO_3 ?

- **A.** 55.84*kJ*
- B. 111.68*kJ*

C. 55.84 kJ/mol

D. none of these

Answer: B

Watch Video Solution

3. Enthalpy of neutralization is defined as the enthalpy change when 1 mole of acid/base is completely neutralized by base/acid in dilute solution. For strong acid and strong base neutralization net chemical change is $H^+_{(aq)} + OH^-_{(aq)} \rightarrow H_2O_{(l)}, \Delta H^0_r \equiv -55.84 kJ/mol$ Under the same conditions how many mL of 0.1M NaOH and 0.05 M H_2A

(strong diprotic acid) should be mixed for a total volume of 100mL to produce the highest rise in temperature:

A. 25: 75

B. 50:50

C. 75:25

D. 66.66: 33.33

Answer: B

Watch Video Solution

4. The bond dissociation energy depends upon the nature of the bond and nature of the molecule. If any molecule more than 1 bonds of similar nature are present then the bond energy reported is the average bond energy.

Determine C - C and C - H bond enthalpy (in kJ/mol). Given:

$$\Delta_f H^0(C_2 H_6, g) = -85kJ/mol, \Delta_f H^0(C_3 H_8, g) = -104kJ/mo \le \Delta_{sub} H^0(C, s) =$$
, B.E. (H-H)= 436 kJ/mol,

A. 414345

B. 345414

C. 287405.5

D. none of these

Answer: B

5. The bond dissociation energy depends upon the nature of the bond and nature of the molecule. If any molecule more than 1 bonds of similar nature are present then the bond energy reported is the average bond energy.

If enthalpy of hydrogenation of $C_6H_{6(l)}{\rm into}C_6H_{12(l)}$ is -205kJ and resonance energy of $C_6H_{6(l)}$ is -152kJ/mol then enthalpy of hydrogenation

is ? Answer

ΔH_{vap} of $C_{6}H_{6\,(\,l\,)},C_{6}H_{10\,(\,l\,)},C_{6}H_{12\,(\,l\,)}$ all are equal:

A. -535.5 kJ/mol

B. -238 kJ/mol

C. -357 kJ/mol

D. - 119 kJ/mol

Answer: D

PRACTICE SHEET (EXERCISE- II) (LEVEL- II (ADVANCED) MATRIX MATCHING TYPE **QUESTIONS**)

1. Match the following columns

Column-I

- A) $CO_{2(s)} \rightarrow CO_{2(st)}$
- B) $CaCO_{3(n)} \rightarrow CaO_{(n)} + CO_{2(n)}$
- C) $2H \bullet \rightarrow H_{2(a)}$ D) $P_{(while, solid)} \rightarrow P_{(red solid)}$

Column-H

- P) Phase transition
- O) Allotropic change
- R) AH is positive
- S) $\Delta H > \Delta E$ is positive
- T) ΔH < ΔE is negative</p>

Watch Video Solution

following 2. Match the columns Column-I (Probable Heat released)

A) NaOH + HCl → NaCl + H₂O

- B) NaOH + HCN → NaCN + H₂O
- C) NaOH + HF \rightarrow NaF + H,O
- D) $NH_4OH + H_2CO_1 \rightarrow NH_4HCO_1 + H_2O_2$

- Column-II
- P) 5.6 KCal
- Q) 17.2 KCal
- R) 13.6 KCal
- S) 10.2 KCal

PRACTICE SHEET (EXERCISE- II) (LEVEL- II (ADVANCED) INTEGER TYPE **QUESTIONS**)

1. For the reaction, $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$. Heat of reaction at constant volume exceeds the heat of reaction at constant pressure by the value of xRT. The value of x is

Watch Video Solution

2. Calculate the standard internal change in multiples of $-10^2 KJ$ for the reaction $OF_{2(g)} + H_2O_{(g)} \rightarrow O_{2(g)} + 2HF_{(g)}$ at 298K. The standard enthalpies formation of of $OF_{2(g)}$, $H_2O_{(g)}$, $HF_{(g)}$ are + 20, - 250 and - 270KJmole⁻¹

3. The enthalpy change when 50 mL of 0.01 M $Ca(OH)_2$ reacts with 25 mL of 0.01 M HCl is 5(x + 2) can Given that ΔH^0 neutralisation of a strong acid and a strong base in 140 kCal mol^{-1} . What is x?

Watch Video Solution

4. Heat of formation of 2 moles of $NH_3(g)$ is - 90kJl bond energies of H-H and N-H bonds are 435 kJ and $390kJmol^{-1}$ respectively. The value of the bond energy of $N \equiv N$ is $\left(1000 - \left(x^2 + x + 25\right)\right)$ kJ/mol What is x?

5. Heats of atmoisation of ozone and oxygen are 25 units and 30 units respectively. What is the heat of ozonisation of one mole of oxygen is the same units?

6. Compute the heat of formation of liquid methyl alcohol in kilojoules per mole, using the following data. Heat of vapourisation of liquid methyl alcohol= 38 kJ/mol. Heat of formation of gaseous atoms from the elements in their standard states, H= 218kJ/mol, C= 715 kJ/mol, O= 249 kJ/mol. Average bond energies, C-H = 415 kJ/mol, C-O = 365 kJ/mol, O-H= 463 kl/mol

Watch Video Solution

PRACTICE SHEET (EXERCISE- III) (LEVEL- I (MAIN) STRAIGHT OBJECTIVE TYPE **QUESTIONS**)

- **1.** The least random state of H_2O system is
 - A. Ice
 - B. Liquid water
 - C. Steam
 - D. Randominess is same in all

Answer: A

Watch Video Solution

2. For which of the process, ΔS is negative?

$$A. H_{2(g)} \rightarrow 2H_{(g)}$$

B.
$$N_{2(q)}(1atm) \to N_{2(q)}(8atm)$$

$$C.2SO_{3(g)} \rightarrow 2SO_{2(g)} + O_{2(g)}$$

$$D.C_{\text{(diamond)}} \rightarrow C_{\text{(graphite)}}$$

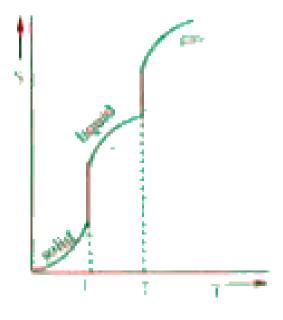
Answer: B

Watch Video Solution

3. When one mole of an ideal gas is compressed to half of its initial volume and simultaneously heated to twice its initial temperature, the change in entropy of gas (ΔS) is

B.
$$C_{v,m}$$
ln2

C. R In 2


D.
$$(C_{v,m} - R) \ln 2$$

Answer: D

Watch Video Solution

4. Here T_1 and T_2 are

A. M, P, B, P

B. B.P, B.P

C. B.P, M.P

D. M. P, M.P

Answer: A

Watch Video Solution

What is the melting point of 5. benzene if $\Delta H_{\text{fusion}} = 9.95 kJ/mol \text{ and } \Delta S_{\text{fusion}} = 35.7 J/K - mol?$

A. 278.7 ° *C*

C. 300K

B. 278.7K

D. 298K

Answer: B

6. At 0 $^{\circ}C$ ice and water are in equilibrium and $\Delta H = 6.0KJ$ then ΔS will

be

A.
$$22JK^{-1}mol^{-1}$$

B.
$$35JK^{-1}mol^{-1}$$

C.
$$48JK^{-1}mol^{-1}$$

D.
$$100JK^{-1}mol^{-1}$$

Answer: A

Watch Video Solution

7. ΔS_{surr} for $H_2 + 1/2O_2 \rightarrow H_2O$, $\Delta H - 280kJ$ at 400K is

A. 700J/g K

B. 700 kJ/mol/K

- C. 700 J/mol/K
- D. 0.7 J/mol/K

Answer: C

Watch Video Solution

- 8. The incorrect statement according to second law of themodynamics is
 - A. Heat cannot flow from colder body to a hotter body of its own
 - B. All spontaneous processes are themody-namically irreversible
 - C. Heat can be converted into work completely without causing some permanent change in the system (or) surroundings

D. Perpetual motion machine of second kind is not possible

Answer: C

9. In standard state the non spontaneous reaction among the following is A. Melting of ice B. Natural radioactivity C. Freezing of water D. Rusting of iron Answer: C **Watch Video Solution** 10. Some statements are given with regard to entropy. The incorrect statement(s) are (A) The absolute entropy of substances cannot be determined (B) In standard state entropy of elements is always positive (C) The entropy of universe always decreases (D) In a spontaneous process, for an isolated system the entropy of the

system generally increases

- A. A, B
- B. B,C
- C. A,C
- D. only C

Answer: C

Watch Video Solution

- 11. When a liquid evaporates, which is true about the signs of the enthalpy and entropy changes?
 - $\Delta H \Delta S$
 - $\Delta H \Delta S$
 - ΔH ΔS
 - $\Delta H \Delta S$ D.

Answer: B

12. Although the dissolution of ammonium chloride in water is an endothermic reaction, even then it is spontaneous because

A. ΔH is positive , ΔS is -ve

B. ΔH is + ve, ΔS is zero

C. ΔH is positive, $T\Delta S < \Delta H$

D. ΔH is +ve, ΔS is positive and $\Delta H < T\Delta S$

Answer: D

Watch Video Solution

13. For a certain reaction, ΔH^0 & ΔS^0 respectively are 400kJ & 200 J/mol/K. The process is non-spontaneous at

A. 2100K

B. 2010K

C. 1990K

D. 2020K

Answer: C

Watch Video Solution

14. Which of the following conditions regarding a chemical process ensures its spontaneity at all temperatures?

A. $\Delta H > 0$, $\Delta H < 0$

B. $\Delta H < 0$, $\Delta S > 0$

C. $\Delta H < 0$, $\Delta S < 0$

D. $\Delta H > 0$, $\Delta S < 0$

Answer: B

LIST-1 (Freezing of water)

LIST-II

III $\Delta G = +V_{\mathcal{C}}$

III) AG = -Ve

AG = O

- A) Water at ~109C
- B) Water at 0º C
- C) Water at +10°C
- 15. The correct match is

The correct match is

- A B C
- A. _{2 1 3}
 - A B C
- B. 3 1 2
- A B C
- c. 1 2 3
- A B C

Answer: B

Watch Video Solution

16. Which of the following expressions is correct?

A.
$$\Delta G^{\circ} = -nFE^{\circ}$$

B.
$$\Delta G^{\circ} = + nFE^{\circ}$$

$$C. \Delta G$$
° = $-2.303RT \ln FE_{\text{cell}}^{\circ}$

D.
$$\Delta G^{\circ} = -nF\log K_C$$

Answer: A

Watch Video Solution

17. Based on the third law of themodynamics, the entropy can be obtained using the equation.

A.
$$\Delta S = \frac{\Delta H}{T}$$

$$B. \int_{0}^{T} 0T. C_P^{-1} dT = S$$

$$\mathsf{C.}\,\Delta G = T\Delta S$$

$$D. \int_0^T C_P T^{-1} dT = S$$

Answer: D

PRACTICE SHEET (EXERCISE- III) (LEVEL- II (ADVANCED) (STRAIGHT OBEJCETIVE TYPE QUESTIONS)

1. Which has	maximum	entropy	change	of vapo	orisati	on?
--------------	---------	---------	--------	---------	---------	-----

A. water (I)

B. toluene(l)

C. diethyl ether (l)

D. acetone (I)

Answer: A

Watch Video Solution

2. Melting & boiling point of NaCl respectively are 1080 K & 1600K. ΔS for

stage -I & II in $NaCl_{(s)} \rightarrow \Delta H_{\text{fus}} = 30kJNaCl_{(l)} \rightarrow \Delta H_{\text{vap}} = 160kJ$ are

 $\Delta S(I)(KJ/mol/K)$ $\Delta S(II)(KJ/mol/K)$ 1/36 1/10 $\Delta S(I)(KJ/mol/K)$ $\Delta S(II)(KJ/mol/K)$ B. 36 100 $\Delta S(I)(KJ/mol/K)$ $\Delta S(II)(KJ/mol/K)$ c. _{1/36} 10 $\Delta S(I)(KJ/mol/K)$ $\Delta S(II)(KJ/mol/K)$ D. ₃₆ 1/10

Answer: A

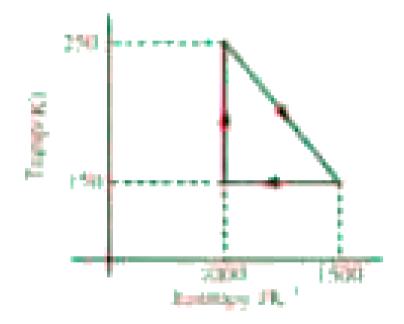
Watch Video Solution

3. Two mole of an ideal gas is expanded irreversibly and isothermally at $37\,^{\circ}C$ until its volume is doubled and 3.41 kJ heat is absorbed from

surroundings. ΔS_{total} (system + surroundings) is

- - B. 0.52 J/K

A. -0.52 J/K


- C. 22.52 J/K
- D. 0

Answer: B

Watch Video Solution

4. The efficiency of the reversible cycle drawn in the fig. will be

- A. 0.333
- B. 0.56
- C. 0.66
- D. 0.25

Answer: D

Watch Video Solution

- **5.** In the conversion of lime stone to lime, $CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$, the values of ΔH° and ΔS° are + 179.1 kJ mol^{-1} and 160.2 $JK^{-1}mol^{-1}$ respectively at 298K and 1 bar. Assuming, ΔH° and ΔS° do not change with temperature, temperature above which conversion of lime stone to lime will be spontaneous is
 - A. 1118K
 - B. 1008K
 - C. 1200K
 - D. 845K

Answer: A

6. In an irreversible process taking place at constant T and P and in which only pressure- volume work is being done, the change on Gibb's free energy (dG) and changing in entropy (dS), stisfy the criteria

A.
$$(dS)_{V,s} < 0$$
, $(dG)_{T,P} < 0$

B.
$$(dS)_{V,E} > 0(dG)_{T,P} < 0$$

$$C.(dS)_{V,E} = 0, (dG)_{T,P} = 0$$

D.
$$(dS)_{V,E} = 0$$
, $(dG)_{T,P} > 0$

Answer: B

49.7)

Watch Video Solution

7. The molar entropies of $HI_{(g)}$, $H_{(g)}$ and $I_{(g)}$ at 298K are 206.5, 114.6, and $180.7 Jmol^{-1}K^{-1}$ respectively. Using the ΔG ° given below, calculate the bond energy of HI.

$$HI_{(g)} \rightarrow H_{(g)} + I_{(g)}, \Delta G^{\circ} = 271.8kJ$$
 (Give your answer after divide with

- A. 282.4
- B. 298.3
- C. 290.1
- D. 315.4

Answer: B

- **8.** For the hypothetical reaction $A_{2(g)} + B_{2(g)} \Leftrightarrow 2AB_{(g)}\Delta_r G^\circ$ and $\Delta_r S^\circ$ are 20 kJ/mol and -20 JK $^{-1}mol^{-1}$ respectively at 200K. If $\Delta_r C_P$ is $20 J\! K^{-1} mol^{-1}$ then $\Delta_r\! H^{\,\circ}\,$ at 400K is
 - A. 20kJ/mol
 - B. 7.98kJ/mol
 - C. 28kJ/mol
 - D. none of these

Answer: A

Watch Video Solution

- **9.** For a perfectly crystalline solid $C_{p.m} = aT^3$, where a is constant. If $C_{p.m}$ is 0.42 J/K mol at 10K, molar entropy at 10K is
 - A. 0.42J/K -mol
 - B. 0.14 J/K -mol
 - C. 4.2 J/K-mol
 - D. zero

Answer: B

Watch Video Solution

PRACTICE SHEET (EXERCISE- III) (LEVEL- II (ADVANCED) (MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)

1. Which statements are correct for a process involving an ideal gas?

A.
$$(\Delta S)_{\text{Isothermal, sys}} = 2.303 nR \log \frac{V_f}{V_i}$$

B.
$$(\Delta S)_{\text{adiabatic, rev}} = 0$$

$$C. (\Delta S)_{Total, irr} > 0$$

D.
$$(\Delta S)_{\text{Total, adiabatic, rev}} = 0$$

Answer: A::B::C::D

- 2. Which of the following is correct?
 - A. Reversible adiabatic process is isoentropic
 - B. $\Delta S_{sys'}$ for irreversible adiabatic compression is greater than zero
 - C. $\Delta S_{\rm sys}$ for free expansion is zero
 - D. $\Delta S_{\mathrm{sys}'}$ for irreversible isothermal compression is greater than zero

Answer: A::B

Watch Video Solution

3. Necessary conditions for spontanity of a reaction _____

A.
$$(G)_{\text{products}} < (G)_{\text{reactants}}$$

$$B. (S)_{products} < (S)_{reactants}$$

C.
$$\left[\left(\Delta S \right)_{\text{reaction}} + \left(\Delta S \right)_{\text{surr}} \right] > 0$$

$$D. \left[-\frac{(\Delta H)_{\rm sys}}{T} + (\Delta S)_{\rm sys} \right] > 0$$

Answer: A::C::D

Watch Video Solution

4. Combustion of sucrose is used by aerobic organisms for providing energy for the life substaining process. If all the capturing from the

reaction is done through electrical process (non P-V work) then calculate maximum available energy which can be captured by combustion of 34.2 gm of sucrose Given:

 $\Delta H_{\text{sucrose}} = -6000 k J mol^{-1}, \Delta S_{\text{combustion}} = 180 J / K mol^{-1}$ body and temperature is 300 K.

A. 600kJ

B. 594.6 kCal

C. 144.83 k Cal

D. 605.4 kJ

Answer: C::D

Watch Video Solution

5. Driving force of a reaction is the

A. resultant of enthalpy and entropy change

B. resultant of enthalpy and internal energy change

- C. resultant of entropy and internal energy change

 D. term concerned with change in free energy
- Answer: A::D

- **6.** Signa of ΔG for the melting of ice is negative at
 - A. 265K
 - B. 270K
 - C. 277K
 - D. 274K

Answer: C::D

7. In an electrochemical cell $\Delta G = \Delta H$

A.
$$T \rightarrow 0$$

B.
$$T \to \infty$$

$$C. \left(\frac{dE_{\text{cell}}}{dT}\right)_P = 0$$

$D. dE_{\text{cell}} = 0$

Answer: A::C::D

8. If
$$\Delta G = \Delta H - T\Delta S$$
 and $\Delta G = \Delta H + T \left[\frac{d(\Delta G)}{dT} \right]_P$ then variation of emf of a cell E, with temperature T is given by:

A.
$$\frac{\Delta H}{nF}$$
B. $\frac{\Delta H - \Delta G}{nFT}$

C.
$$\frac{\Delta S}{nF}$$

D.
$$-\frac{\Delta S}{nE}$$

Answer: B::C

Watch Video Solution

change of the system will be

PRACTICE SHEET (EXERCISE- III) (LEVEL- II (ADVANCED) (LINKED COMPREHENSION TYPE QUESTIONS)

1. The thermodynamic property that measures the extent of molecular

disorder is called entropy. The direction of a spontaneous process for which the energy is constant is always the one that increases the molecular disorder. Entropy change of phase transformation can be calculated using Trouton's formula $\left(\Delta S = \frac{\Delta H}{T}\right)$. In the reversible adiabatic process, however, ΔS will be zero. The rise in temperature in isobaric and isochoric conditions is found to increase the randomness or entropy of the system. $\Delta S = 2.303 C \log\left(T_1/T_2\right)$, $\left(C = C_P \text{ or } C_V\right)$

A. zero

B. always positive

C. always negative

D. sometimes positive and sometimes negative

Answer: A

Watch Video Solution

2. The thermodynamic property that measures the extent of molecular disorder is called entropy. The direction of a spontaneous process for which the energy is constant is always the one that increases the molecular disorder. Entropy change of phase transformation can be calculated using Trouton's formula $\left(\Delta S = \frac{\Delta H}{T}\right)$. In the reversible adiabatic process, however, ΔS will be zero. The rise in temperature in isobaric and isochoric conditions is found to increase the randomness or entropy of the system. $\Delta S = 2.303 C \log \left(T_1/T_2\right)$, $\left(C = C_P \text{ or } C_V\right)$

If water in an insulated vessel at -10 $^{\circ}$ C, suddenly freezes, the entropy change of the system will be

A. + *ve*

B. - *ve*

C. zero

D. equal to that of surroundings

Answer: A

Watch Video Solution

3. The thermodynamic property that measures the extent of molecular disorder is called entropy. The direction of a spontaneous process for which the energy is constant is always the one that increases the molecular disorder. Entropy change of phase transformation can be calculated using Trouton's formula $\left(\Delta S = \frac{\Delta H}{T}\right)$. In the reversible adiabatic process, however, ΔS will be zero. The rise in temperature in

isobaric and isochoric conditions is found to increase the randomness or

entropy of the system. $\Delta S = 2.303 C \log \left(T_1 / T_2 \right)$, $\left(C = C_P \text{ or } C_V \right)$

The melting point of a solid is 300K and its latent heat of fusion is 600 cal mol^{-1} . The entropy change for the fusion of 1 mole of the soli (in cal K^{-1}) at the same temperature would be:

A. 200

B. 2

C. 0.2

D. 20

Answer: B

Watch Video Solution

4. Consider the following reaction:

$$CO_{(q)} + 2H_{2(q)} \Leftrightarrow CH_3OH_{(q)}$$

Given: $\Delta_r H^{\circ}\left(CH_3OOH, g\right) = -201k \frac{J}{m}ol, \Delta_r H^{\circ}\left(CO, g\right) = -114k \frac{J}{m}ol$

 $S^{\circ}(CH_3OOH, g) = 240 \frac{J}{\kappa} - mol, S^{\circ}(H_2, g) = 29JK^{-1}mol^{-1}$

 $S^{\circ}(CO, g) = 198 \frac{J}{m} ol - K, C^{\circ}(p, m) (H_2) = 28.8 \frac{J}{m} ol - K$

and $\ln\left(\frac{320}{300}\right) = 0.06$, all data at 300 K

 $\Delta_{r}S^{\circ}$ at 300 K for the reaction is :

 $C^{\circ} (p, m)(CO) = 29.4 \frac{J}{m} ol - K, C^{\circ} (p, m) (CH_3OH) = 44 \frac{J}{m} ol - K$

Answer: C::D

D. none of these

A. 152.6 J/K - mol

Watch Video Solution

 $CO_{(g)} + 2H_{2(g)} \Leftrightarrow CH_3OH_{(g)}$ Given: $\Delta_r H^{\circ}\left(CH_3OOH, g\right) = -201k \frac{J}{m}ol, \Delta_r H^{\circ}(CO, g) = -114k \frac{J}{m}ol$

 $S^{\circ}(CH_3OOH, g) = 240 \frac{J}{K} - mol, S^{\circ}(H_2, g) = 29JK^{-1}mol^{-1}$

 $S^{\circ}(CO, g) = 198 \frac{J}{m} ol - K, C^{\circ}(p, m) (H_2) = 28.8 \frac{J}{m} ol - K$

and $\ln\left(\frac{320}{300}\right) = 0.06$, all data at 300 K

 $\Delta_r H^{\circ}$ at 300 K for the reaction is :

A. -87 kJ/mol

D. - 288 kJ/mol

 $C^{\circ} (p, m)(CO) = 29.4 \frac{J}{m} ol - K, C^{\circ} (p, m) (CH_3OH) = 44 \frac{J}{m} ol - K$

Answer: A

6. Consider the following reaction :

$$CO_{(g)} + 2H_{2(g)} \Leftrightarrow CH_3OH_{(g)}$$

Given: $\Delta_r H^{\circ} \left(CH_3OH, g \right) = -201k \frac{J}{m}ol, \Delta_r H^{\circ} (CO, g) = -114k \frac{J}{m}ol$

and
$$\ln\left(\frac{320}{300}\right)$$
 = 0.06, all data at 300 K $\Delta_r S$ ° at 320 K is :

 $C^{\circ} (p, m)(CO) = 29.4 \frac{J}{m} ol - K, C^{\circ} (p, m) (CH_3OH) = 44 \frac{J}{m} ol - K$

 $S^{\circ}(CH_3OOH, g) = 240 \frac{J}{\kappa} - mol, S^{\circ}(H_2, g) = 29JK^{-1}mol^{-1}$

 $S^{\circ}(CO, g) = 198 \frac{J}{m}ol - K, C^{\circ}(p, m)(H_2) = 28.8 \frac{J}{m}ol - K$

A. 155.18 J/mol-K

B. 150.02 J/mol-K

C. 172 J/mol-K

D. none of these

Answer: D

Watch Video Solution

PRACTICE SHEET (EXERCISE- III) (LEVEL- II (ADVANCED) (MATRIX MATCHING **TYPE QUESTIONS)**

1.

Match

the

following

columns

Column-I

- A) $(\Delta G_{system})_{T,P}$
- B) Work done in reversible isothermal ideal gas expansion
- C) ΔG for reversible isothermal expansion of an ideal gas
- D) ΔS_{gas} for isothermal expansion of an ideal gas

Column-II

P)
$$nR In \left(\frac{V_2}{V_1}\right)$$

- Q) nRT in $\left(\frac{P_2}{P_1}\right)$
- S) $nR In \left(\frac{P_1}{P_2}\right)$

Watch Video Solution

2. Match

the

following

Column-II

columns

Column-I (One mole ideal gas)

A) $\left[\frac{\partial(\Delta H)}{\partial T}\right]$

B) $\left[\frac{\partial(\Delta E)}{\partial T}\right]$

C) $\left[\frac{\partial(\Delta G)}{\partial T}\right]_{e}$

D) $\left[\frac{\partial(\Delta G)}{\partial P}\right]_T$

P) ΔV

 $Q) - \Delta S$

R) ΔC_v

S) ΔC_p

PRACTICE SHEET (EXERCISE- III) (LEVEL- II (ADVANCED) (INTEGER TYPE QUESTIONS)

1. A quantity of 4.0 moles of an ideal gas at $20\,^{\circ}C$ expands isothermally against a constant pressure of 2.0 atm from 1.0 L to 10.0L. What is the entropy change of the system (in cals)?

2. At 27 ° C latent heat of fusion of a compound is $2.7 \times 10^3 Jmol^{-1}$.

Calculate the entropy change during fusion

Watch Video Solution

3. For a liquid, enthalpy of fusion is 1.435 kCal mol^{-1} and molar entropy change is 5.26 cal $mol^{-1}K^{-1}$. The freezing point of liquid in celcius will be

4. Calculate equilibrium constant (in multiples of 10^{-80}) when sodium reduces Aluminium oxide to aluminium at 298 K. ΔG ° _ (f) of $Na_2O_{3(s)}$ at 298K = -377KJmole $^{-1}$ and ΔG ° _ (f) of Al_2O_3 at 298K = -1582KJmole $^{-1}$)

5. For a liquid the vapour pressure is given by $\log_{10}P = \frac{-400}{T} + 10$ Vapour pressure of the liquid is 10^x mm Hg at 400K. The value of x will be _____

ADDITIONAL PRACTICE EXERCISE (LEVEL - I (MAIN))

1. Which among the following is not an exact differential?

A. Q (dQ= heat absorbed)

B. U(dU = change in internal energy)

C. S(dS = entropy change)

D. G(dG= Gibbs free energy change)

Answer: A

- **2.** A system consisting of one mole of an ideal diatomic gas absorbs 200J of heat and does 50J of work on surroundings. What is the change in temperature if vibrational modes of motion are inactive?
 - A. $\frac{150 Jmol^{-1}}{8.314 \times \frac{5}{2}}$
 - B. $\frac{150 Jmol^{-1}}{8.314 \times \frac{3}{2}}$
 - 8.314 × $\frac{1}{2}$ C. $\frac{150 Jmol^{-1}}{8.314 \times \frac{7}{2}}$ 150 Jmol⁻¹
 - D. $\frac{}{8.314 \times \frac{4}{3}}$

Watch Video Solution

3. A mono atomic ideal gas undergoes a process in which the ratio of P to V at any instant is constant and equal to 1. What is molar heat capacity of the gas.

- A. $\frac{4R}{2}$
- B. $\frac{3R}{2}$
- c. $\frac{5R}{2}$

D. 0

Answer: A

4. 1 mole each of CaC_2 , Mg_2C_3 reacts with excess water in separate open flasks work done by the gas during the dissolution shows the order:

A.
$$CaC_2 = Mg_2C_3 < Al_4C_3$$

B.
$$CaC_2 = Mg_2C_3 = Al_4C_3$$

$$C. Mg_2C_3 < CaC_{-2} < Al_{40C_3}$$

D.
$$Mg_2C_3 < Al_4C_3 < CaC_2$$

Answer: A

Watch Video Solution

5. The temperature of 5 moles of a gas is decreased by 2K at constant pressure of 1 atm. Indicate the correct statement

A. Work done by gas is = 5R

B. Work done on the gas is = 10R

C. Work done by the gas = 6R

D. Work done = 0

Answer: B

Watch Video Solution

- 6. When an ideal gas at a pressure P, temperature T and volume V is isothermally compressed to $\left(\frac{V}{n}\right)$, its pressure becomes P_{iso} and if the same process is carried out adiabatically and reversibly, its pressure
- becomes $P_{
 m adia}$. Which of the following is correct for $rac{P_{
 m iso}}{P_{
 m adia}}$?
 - A. 1
 - B. n
 - $C. n^{\gamma}$
 - D. $n^{1-\gamma}$

Answer: D

7. Which of the following statement is incorrect?

A. The entropy of the universe increases and tends towards the maximum value in irreversible process

B. All the natural spontaneous processes are irreversible in nature

C. For the isothermal expansion of an ideal gas, ΔH and ΔE are not equal

D. The heat of formation of an element in the standard state is zero

Answer: C

Watch Video Solution

8. A gas absorbs 100 calories of heat energy and is compressed from 10L to 5L by applying an external pressure of 2 atm. Change in internal energy in calories will be nearly.

A. 312 B. 342 C. 426 D. 562 **Answer: B** Watch Video Solution 9. Given below are some standard heats of reaction (at constant pressure) (A) Heat of formation of water = -68.3 kcal (B) Heat of combustion of acetylene = - 310.6 kcal (C) Heat of combustion of ethylene = - 337.2 kcal Calculating the heat of reaction for the hydrogenation of acetylene at constant pressure and at constant volume (at 25 ° C)

A. at constant pressure -41.104 kcal

- B. at constant volume = -41.7 kcal
- C. at constant pressure = -41.7 kcal
- D. at constant volume = -42.104 kcal

Answer: C

- 10. The enthalpy of neutralization of weak monoprotic acid, HA in 1M solution with a strong base is -55.95 KJ/mol if the unionised acid requires 1.4 KJ/mol heat for its complete ionization and enthalpy of neutralisation of the strong monobasic acid with a strong monoacidic base is = -57.3 KJ/mol. What will be % ionization of weak acid in molar solution is
 - **A.** 1.2 %
 - B. 0.0357
 - C. 0.0607
 - D. 0.1201

Answer: B

Watch Video Solution

11. The heat of combustion of hydrocarbon $C_x H_y$ is "a" calories and heat of formation of CO_2 and H_2O are "b" and 'c' calories respectively then the heat of formation of hydrocarbon C_8H is (in calories)

$$A. xa + yc - b$$

$$B. xb + yc - a$$

$$C.b + xc - xa$$

D.
$$xb + \frac{y}{2}c - a$$

Answer: D

12. The standard enthalpy of formation of hypothetical MgCl is $-125kJmol^{-1}$ and for $MgCl_2$ is -642 kJ mol^{-1} . What is the enthalpy of the disproportionation of MgCl ?

Answer: B

respectively

Watch Video Solution

13. Calculate the resonance energy of N_2O from the following data ΔH_f of N_2O = 82 kJ mol^{-1} . Bond energies of

 $N \equiv N, N = N, O = O$ and N = O bond are 946, 418 and 607 kJ mol^{-1}

B. $-170k Imol^{-1}$

C. $-82kJmol^{-1}$

D. $-258kJmol^{-1}$

Answer: A

Watch Video Solution

ADDITIONAL PRACTICE EXERCISE (LEVEL - II LECTURE SHEET (ADVANCED) STRAIGHT OBJECTIVE TYPE QUESTIONS)

1. When 3.0 mole of an ideal diatomic gas is heated and compressed simultaneously from 300K, 1.0 atm to 400K and 5.0atm, the change in entropy is (Use $C_P = \frac{7}{2}R$ for the gas)

A. $-20JK^{-}$

B. -5*JK*

 $C. - 15JK^{-}$

D. $-2.8JK^{-}$

Answer: C

Watch Video Solution

2. State $P_1, V_1, T_1A \rightarrow \text{State B}P_2, V_2, T_2$: If $P_1 = P_2$ then

A. ΔS universe = 0

B. $\Delta S_{\text{universe}} = 1$

C. ΔS universe > 0

D. ΔS universe < 0

Answer: A

3. During winters, moisture condenses in the form of dew and can be seen on plant leaves and grass. The entropy of the system in such cases decreases as liquids possess lesser disorder as compared to gases. With reference to the second law, which statement in correct, for the above process?

- A. The randomness of the universe decreases
- B. The randomness of the surroundings decreases
- C. Increase in randomness of surroundings equals the decrease in randomness of system
- D. The increase in randomness of the surroundings is greater as compared to the decrease in randomness of the system.

Answer: D

4. Assuming ΔH^0 and ΔS^0 do not change with temperature the boiling point of liquid "A" (the thermodynamics data given below) is

Thermodynamics	A (liq)	A (gas)
ΔH ⁰ (kJ/mol)	-130	-100
$S^0(JK^{-1}mol^{-1})$	100	200

- A. 300K
- B. 13K
- C. 150K
- D. 50K

Answer: A

Watch Video Solution

- **5.** For the reaction $X_2O_{4(l)} \rightarrow 2XO_{2(g)}$, $\Delta U = 2.1$ kcal, $\Delta S = 20$ cal K^{-1} at
 - A. 2.7 kcal

300K, Hence ΔG is

- B. -2.7 kcal
- C. 9.3 kcal
- D. -9.3 kcal

Answer: B

- **6.** The correct signs of ΔS for the following four processes respectively are
- (i) Devitrification of glass (ii) Desalination of sea water (iii) N_2 (g, 10 atm)
- $\rightarrow N_2(g, 2 \text{ atm})$ (iv) C (s, graphite) \rightarrow C (s, daimond)
 - A.-, -, +, -
 - B.+, -, +, -
 - C.+, -, -, -
 - D.-, -, -, -

Answer: A

Watch Video Solution

7. Work (W) is the path function. Which of the following order is incorrect?

A.
$$W_{\text{adiabatic}} > W_{\text{Isothermal}}$$

B. $W_{\text{reversible}} > W_{\text{ireversible}}$

C. $W_{\text{isobaric}} > W_{\text{Isochoric}}$

D. for a cyclic process W = area of cycle

Answer: A

Watch Video Solution

8. Standar entropies of x_2 , y_2 and xy_3 are 60,40 and $50JK^{-1}mol^{-1}$ respectively for the reaction to be at equilibrium, the temperature should

 $\frac{1}{2}x_2 + \frac{3}{2}y_2 \Leftrightarrow xy_3 \Delta H = -30kJ$

A. 750K

he

B. 1000K

D. 500K

C. 1250K

Answer: A

ADDITIONAL PRACTICE EXERCISE (LEVEL - II LECTURE SHEET (ADVANCED) MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)

- - A. Adiabatic expansion

1. Temperature of an ideal gas increases in:

B. adiabatic compression

C. Isothermal expansion

D. isobaric expansion

Answer: B::D

Watch Video Solution

2. As a rubber band is stretched, it gets warmer, when released, it gets cooler. The correct sign of thermodynamic parameters for stretching of rubber band is

A.
$$\Delta H = -ve$$

B.
$$\Delta H = + ve$$

$$C. \Delta S = -ve$$

D.
$$\Delta S = + ve$$

Answer: A::C

3. A system undergoes two cyclic process 1 and 2. Process 1 is reversible and process 2 is irreversible. The correct statement relating to the two processes is

A. ΔS (for process 1) = 0, while ΔS (for process 2) $\neq 0$

B. q_{cyclic} = 0 for process 1 and $q_{\mathrm{cyclic}} \neq$ 0 for process 2

C. More heat can be converted to work in process 1 than in process 2

D. More work can be converted to heat in process 1 than in process 2

Answer: C::D

Watch Video Solution

4. A certain gas is expanded from (1L, 10atm) to (4L, 5atm) against a constant external pressure of 1 atm. If the initial temperature of gas is 300K and heat capacity for the process is $50J^{\circ}C^{-1}$ (use 1L atm = 100J), then

A.
$$|W| = 0.3kJ$$

B.
$$|q| = 15kJ$$

$$C. \Delta U = 14.7kJ$$

D.
$$\Delta H = 15.7kJ$$

Answer: A::B::C::D

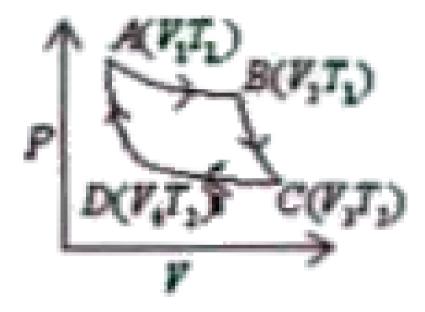
Watch Video Solution

5. The standard enthalpies of formation of CO_2 gas and $HCOOH_{(l)}$ are -393.7 kJ mol^{-1} and $-409.2kJmol^{-1}$ respectively. Which of the following are correct?

A.
$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}, \Delta H = -393.7 kJ mol^{-1}$$

B.
$$CO_{2(g)} + H_{2(g)} \rightarrow HCOOh_{(l)}, \Delta H = -15.5kJmol^{-1}$$

$$C.H_2O_{(l)} + CO_{(q)} \rightarrow HCOOH_{(l)}, \Delta H = -409.2kJmol^{-1}$$


D.
$$C_{(s)} + H_{2(g)} + O_{2(g)} \rightarrow H_2CO_{2(l)}, \Delta H = -409.2 kJ mol^{-1}$$

Answer: A::B::D

Watch Video Solution

6. For this process (overall change) which is correct

B.
$$q = + ve$$
, $W = - ve$

C.
$$q = -ve$$
, $W_{\text{on the system}} = +ve$

D.
$$\Delta S_{\mathrm{sys}} = 0$$
, $\Delta U_{\mathrm{sys}} = 0$, $\Delta H_{\mathrm{sys}} = 0$

Answer: B::D

Watch Video Solution

7. P and Q are two arbitrarily chosen intensive variables then

- A. (P + Q) is extensive property
- B. $\frac{P}{O}$ is an intensive variable
- C. PQ is an intensive variable
- D. $\frac{dP}{dO}$ = intensive variable

Answer: B::C::D

Watch Video Solution

ADDITIONAL PRACTICE EXERCISE (LEVEL - II LECTURE SHEET (ADVANCED) LINKED COMPREHENSION TYPE QUESTIONS)

1. A flask of 1L having $NH_3(g)$ at 2.0atm and 200K is connected with another flask of vol 800ml having HCl(g) at 8atm & 200K through tube of negligible volume. The two gases reacts to form $NH_4Cl(s)$ with evolution of 43 KJ/mol heat. If heat capacity of at constant volume is 20J/K/mol and neglecting heat capacity of flask and solid, volume of solid formed and its pressure (R = 0.08).

The final pressure in the flask is

A. 5.375KJ

B. 4.375KJ

C. 6.8KJ

D. 6.375J

Answer: A

2. A flask of 1L having $NH_3(g)$ at 2.0atm and 200K is connected with another flask of vol 800ml having HCl(g) at 8atm & 200K through tube of negligible volume. The two gases reacts to form $NH_4Cl(s)$ with evolution of 43 KJ/mol heat. If heat capacity of at constant volume is 20J/K/mol and neglecting heat capacity of flask and solid, volume of solid formed and its pressure (R = 0.08).

The final pressure in the flask is

A. 14.39 atm

B. 1.49 atm

C. 16.39 atm

D. 15. 39 atm

Answer: A

following 1. Match the columns

Column-L

- A) $I_{2(s)} \rightarrow I_{2(g)}$
- B) $2\text{NaNO}_{3(s)} \rightarrow 2\text{NaNO}_{2(s)} + O_{2(g)}$ C) $2CH_3 \cdot \rightarrow C_2H_{6(a)}$
- D) C(graphite, solid) → C(diamond, solid)

- Column-II
- P) AS is positive
- Q) AH is negative
- R) AS is negative
- S) Phase transition

T) Allotropic change

Column-II

Watch Video Solution

following 2. Match the columns

Column-L

A) Irreversible adiabatic compression of an ideal gas P) AS_{pottert} > 0

- $Q) \Delta S_{\text{evelop}} = 0$ B) Reversible adiabatic expansion of an ideal gas
- R) $\Delta S_{approunding} = 0$ C) Adiabatic free expansion of an ideal gas
- D) Irreversible isothermal expansion of an ideal gas S) $\Delta S_{\text{surrounding}} < 0$

ADDITIONAL PRACTICE EXERCISE (LEVEL - II LECTURE SHEET (ADVANCED) **INTEGER TYPE QUESTIONS)**

1. How many of the following processes have +ve sign for entropy change?

(i) $Cl_{2(a)} \Leftrightarrow 2Cl_{(a)}$

(ii) S_8 (rhombic) $\Leftrightarrow 4S_{2(g)}$

(iii) $3O_{2(g)} \Leftrightarrow 2O_{3(g)}$

(iv) 60C (graphite) $\Leftrightarrow C_{60(s)}$

(v) $Ag_{(aq)}^+ + Br_{(aq)}^- \Leftrightarrow AgBr_{(s)}^- + H_2O$

(vi) $H_2O_{(l)} \Leftrightarrow H_2O_{(s)}$

(vii) $2NH_{3(g)} \Leftrightarrow N_{2(g)} + 3H_{2(g)}$

(viii) $CuSO_{4(g)} + 5H_2O_{(l)} \Leftrightarrow CuSO_4.5H_2O_{(s)}$

 $\text{(ix) } Ba(OH)_2.10H_2O_{(s)} + 2NH_{40Cl_{(s)}} \Leftrightarrow BaCl_{2(s)} + 2NH_{3(g)} + 12H_2O_{(l)}$

2. When 1 mole of an ideal monatomic gas is compressed adiabatically the intenal energy change involved is 24 cals. The temperature rise is

3. The enthalpies of neutralization of a weak acid HA and a weak acid HB by NaOH are -6900 cal/equivalent at -2900 cal/equivalent, respectively. When one equivalent of NaOH is added to a solution containing one equivalent of HA and one equivalent of HB, the enthalpy change was -3900 cal. The ratio in which the base distributed between HB and HA is x/y then x + y is

4. For isothermal expansion of an ideal gas into vacuum, among the following how many are zero, Pext, g, ΔT , ΔU , ΔH , ΔS , ΔG , $\Delta S_{\rm surr}$, $\Delta S_{\rm total}$

ADDITIONAL PRACTICE EXERCISE (PRACTICS SHEET (ADVANCED) STRAIGHT OBJECTIVE TYPE QUESTIONS)

1. Pick out the correct statement from among the four:

A. When a liquid boils, work is done on the system

B. In case of Boiling of a liquid $\Delta H = \Delta U$

C. When a liquid boils at its boiling temperature, $Q_P = \Delta H$

D. For the process of boiling of a liquid Q = 0

Answer: C

- **2.** The value of a cylinder containing initially 10L of an ideal gas at 25 atm and $25 \,^{\circ} C$ is opened to the atmosphere, where the pressure is 760 torr and the temperature is $25 \,^{\circ} C$. Assuming that the process is isothermal the work in L-atm in the process is:
 - A. 240 L atm
 - B. -240 L atm
 - C. +250 L atm
 - D. -250 L atm

Watch Video Solution

3. An ideal gas is allowed to expand both reversibly and irreversibly in an isolated system. If T_1 is initial temperature and T_f is the final temperature, which of the following statement is correct

A.
$$\left(T_f\right)_{irr} > \left(T_f\right)_{rev}$$

B. $T_f > T_1$ for reversible process but $T_f = T_1$ for irreversible process

$$C. \left(T_f\right)_{\text{rev}} = \left(T_f\right)_{\text{irr}}$$

D. $\left(T_f\right) = T_1$ for reversible and irreversible process

Answer: A

4. A vessel contains 100 litres of a liquid x. Heat is suppllied to the liquid in such a fashion that, Heat given = change in enthalpy. The volume of the liquid increases by 2 lites. If the external pressure is one atm and 202.6 Joules of heat were supplied then,

A.
$$\Delta U = 0$$
, $\Delta H = 0$

B.
$$\Delta U = +202.6J$$
, $\Delta H = +202.6J$

C.
$$\Delta U = -202.6J$$
, $\Delta H = -202.6J$

D.
$$\Delta U = 0$$
, $\Delta H = +202.6J$

Answer: D

Watch Video Solution

5. If $\Delta G = -177Kcal$ for (1) $2Fe(s) + \frac{3}{2}O_2(g) \rightarrow Fe_2O_3(s)$ and

$$\Delta G = -19Kcal \text{ for (2) } 4Fe_2O_3(s) + Fe(s) \rightarrow 3Fe_3O_4(s)$$

What is the Gibbs free energy of formation of Fe_3O_4 ?

D. - 229.6
$$\frac{\text{kcal}}{\text{mol}}$$

A. $+229.6\frac{}{\text{mol}}$

B. -242.3 $\frac{\text{kcal}}{\text{mol}}$

C. - 727 $\frac{\text{kcal}}{\text{mol}}$

Answer: B

Watch Video Solution

kcal

6.
$$C_2H_{6(g)} + 3.5O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(g)}$$

 $\Delta S_{\text{vap}}(H_2O, l) = x_1 \text{ cal}K^{-1} \text{ (boiling point is } T_1\text{)}$

$$\Delta S_{\text{vap}}(H_2O, l) = x_1 \text{ cal} K^{-1} \text{ (boiling point is } T_1)$$

$$\Delta H_f(H_2O, l) = x_2, \Delta H_f(CO_2) = x_3, \Delta H_f(C_2H_6) = x_4 \text{ Hence } \Delta H \text{ for the}$$

reaction is

A.
$$2x_3 + 3x_2 - x_4$$

B.
$$2x_3 + 3x_2 - x_4 + 3x_1T_1$$

C. $2x_3 + 3x_2 - x_4 - 3x_1T_1$

D.
$$x_1 T_1 + X_2 + X_3 - x_4$$

Answer: B

- 7. Select the correct set of statement/s:
- I. Work done by the surrounding in case of infinite stage expansion is more than single stage expansion
- II. Irreversible work is always greater than reversible work.
- III. On an ideal gas in case of single stage expansion and compression system as well as surrounding are restored back to their original states

 IV. If gas is in thermodynamic equilibrium is taken from A to state B, by four successive single stage expansions. Then we can plot 4 points on the P-V indicator diagram.

A. II

B. I, II, III, IV

C. I, IV

D. I, II, IV

Answer: C

Watch Video Solution

8. Reactions involving gold have been of particular interest to alchemists.

Consider the following reactions,

$$Au(OH)_3 + 4HCl^3/_4$$
® $HAuCl_4 + 3H_2O, DH = -28kcalAu(OH)_3 + 4HBr^3/_4$ ® $HAuCl_4 + 3H_2O, DH = -28kcalAu(OH)_3 + 4HBr^3/_4$ ® $HAuCl_4 + 3H_2O, DH = -28kcalAu(OH)_3 + 4HBr^3/_4$ ® $HAuCl_4 + 3H_2O, DH = -28kcalAu(OH)_3 + 4HBr^3/_4$ ® $HAuCl_4 + 3H_2O, DH = -28kcalAu(OH)_3 + 4HBr^3/_4$ ® $HAuCl_4 + 3H_2O, DH = -28kcalAu(OH)_3 + 4HBr^3/_4$ ® $HAuCl_4 + 3H_2O, DH = -28kcalAu(OH)_3 + 4HBr^3/_4$ ® $HAuCl_4 + 3H_2O, DH = -28kcalAu(OH)_3 + 4HBr^3/_4$ ® $HAuCl_4 + 3H_2O, DH = -28kcalAu(OH)_3 + 4HBr^3/_4$

DH = -36.8kcal

In an experiment there was an absorption of 0.44 kcal when one mole of $HAuBr_4$ was mixed with 4 moles of HCl. Then the fraction of $HAuBr_4$ converted into $HAuCl_4$ (percentage conversion)

- A. 0.05
- B. 0.06
- C. 0.07
- D. 0.08

Watch Video Solution

9. Which of the following statement(s) is/are incorrect:

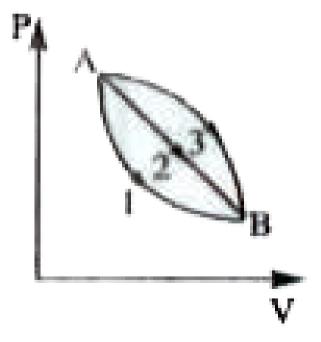
Statement (a): Reversible isothermal compression of an ideal gas represents the limiting minimum value of the workdone (lwl) by the surrounding on the system.

Statement (b): In an irreversible process, the cyclic integral of work is not zero.

Statement (c): For thermodynamic changes in adiabatic process

$$T\left(\frac{C_{p.m}}{R}\right)$$
. $P = \text{constant}$

Statement (d) : $\Delta S_{\mathrm{system}}$ is zero for reversible adiabatic expansion of an ideal gas.


- A. Statement c
- B. Statement a, b, c
- C. Statement a, b, d

Answer: A

Watch Video Solution

10. A given mass of gas expands from the state A to the state B by three paths 1,2 and 3 as shown in the figure. If w_1 , w_2 and w_3 respectively be the work done by the gas along three paths then:

A.
$$w_1 > w_2 > w_3$$

B.
$$w_1 < w_2 < w_3$$

C.
$$w_1 = w_2 = w_3$$

D.
$$w_2 < w_3 < w_1$$

Answer: B

Watch Video Solution

11. Determine which of the following reactions at constant pressure represent systems that do work on the surrounding environment $I.Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s) II.NH_4Cl(s) \rightarrow NH_3(g) + HCl(g)$

III.
$$2NH_3(g) \rightarrow N_2(g) + 3H_2(g)$$

A. I

B. III

C. II and III

D. I and II

Answer: C

Watch Video Solution

12. A rigid and insulated tank of $3m^3$ volume is divided into two compartments. One second compartment of volume of $2m^3$ contains an ideal gas at 0.8314 Mpa and 400K and while the second compartment of volume $1m^3$ contains the same gas at 8.314 MPa and 500K. If the partition between the two compartments isruptured, the final temperature of the gas is:

- A. 420K
- B. 450K
- C. 480K
- D. none of these

Answer: C

13. 0.5 mole each of two ideal gases $A\left(C_{v.m} = \frac{5}{2}R\right)$ and $B\left(C_{v.m} = 3R\right)$ are taken in a container and expanded reversibly and adiabtically, during this process temperature of gaseous mixture decreases from 350K and 250K. Find DH (in cal/mol) for the process

- A. 100R
- B. 137.5R
- **C.** -375*R*
- D. none of these

Answer: C

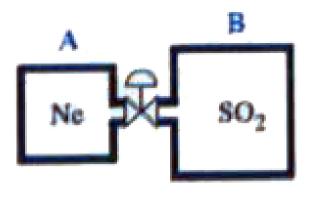
Watch Video Solution

14. The enthalpy of tetramerization on X in gas phase $\left(4X(g) \otimes X_4(g)\right)$ is - 100 kJ/mol at 300K. The enthalpy of vaporisation for liquid X and X_4 are respectively 30kJ/mol and 72 kJ/mol respectively. DS for

tetramerization of X in liquid phase is -125 J/K mol at 300K. What is the

DG at 300K for tetramerization of X in liquid phase?

- A. -52 kJ/mol
- B. -89.5 kJ/mol
- C. 14.5 kJ/mol
- D. none of these


Answer: C

Watch Video Solution

15. Two rigid adiabatic vessels A and B which initially, contain two gases at different temperature are connected by pipe line with value of negligible volume. The vessel 'A' contain 2 moles Ne gas $\left(C_{p.m} = \frac{5}{2}R\right)$ at 300K, vessel 'B' contain 3 moles of SO_2 gas $\left(C_{p.m} = 4R\right)$ at 400K. The volume of A & B vessel is 4 and 6 litre respectively. The final total pressure (in atm) when value is opened and 12 Kcal heat supplied through it to vessels.

[Use: R= 2 cal/mol, K and R= 0.08L. atm/mol K as per desire]

- A. 3.5 atm
- B. 7 atm
- C. 35 atm
- D. 70 atm

Answer: C

16. From the following data at $25 \degree C$

Reaction
$$\Delta_r H^{\circ} kJ/mol$$

$$\frac{1}{2}H_2(g) + \frac{1}{2}O_2(g) \rightarrow OH(g)$$
 42

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O_g$$
 -242

$$H_2(g) \rightarrow 2H(g)$$
 436

$$O_2(g) \rightarrow 2O(g)$$
 495

Which of the following statement(s) is/are correct:

Statement (a):
$$\Delta_r H^{\circ}$$
 for the reaction $H_2O(g) \rightarrow 2H(g) + O(g)$

Statement (b):
$$\Delta_r H^{\circ}$$
 for the reaction $OH(g) \rightarrow H(g) + O(g)$ is

Answer: D

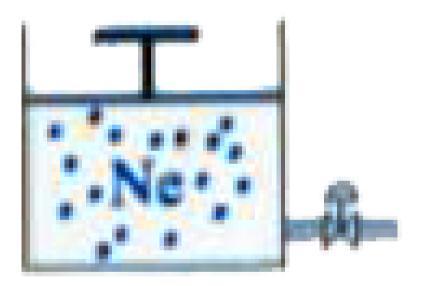
17. A sample of an ideal gas with initial pressure 'P' and volume 'V' is taken through an isothermal process during which entropy change is found to be DS. The work done by the gas is

A.
$$\frac{PV\Delta S}{nR}$$

B. $nR\Delta S$

C. PV

D. $\frac{P\Delta S}{nRV}$


Answer: A

Watch Video Solution

ADDITIONAL PRACTICE EXERCISE (PRACTICS SHEET (ADVANCED) MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)

1. A piston cylinder device initially contains $0.2m^3$ neon (assume ideal) at 200kPa inside at $T_1\,^\circ C$. A valve is now opened and neon is allowed to escape until the volume reduces to half the initial volume. At the same time heat transfer with outside at $T_2\,^\circ C$ ensures a constant temperature inside. Select correct statement(s) for given process

A. ΔU must be zero

B. ΔU can not be zero

C. q may be +ve

D. q may be -ve

Answer: B::C

Watch Video Solution

- 2. Which of the following statement(s) is/are correct?
 - A. the system of constant entropy and constant volume will attain the equilibrium in a state of minimum energy
 - B. the entropy of the universe is on the increase
 - C. the process would be spontaneous when $\left(\Delta S_{E,V}\right) < 0$, $\left(\Delta E\right)_{S,V} > 0$
 - D. The process would be spontaneous when $(\Delta S)_{E,V} > 0$, $(\Delta E)_{S,V} < 0$

Answer: A::B::D

Watch Video Solution

3. Which of the following statements are correct?

A. For the reaction $CaCO_3$ (calcite) $\rightarrow CaCO_3$ (aragonite) given:

 $\Delta_f G_{298}^{\,\circ}$ (calcite) = -1128.8 kJ/mol, $\Delta_f G_{298}^{\,\circ}$ (aragonite) = -1127.75 kJ/mol,

then calcite form is more stable at standard conditions

B. For the reaction (1) $C_{\text{(diamond)}} + 2H_{2(q)} \rightarrow CH_{4(q)}, \Delta H_1$

(2) $C_{\text{(graphite)}} + 4H_{(g)} \rightarrow CH_{4(g)}, \Delta H_2$. Then more heat is evolved in reaction (b)

C. $\Delta_f H^0(I_2, g) = \Delta_{\text{sub}} H^0(I_2, s)$ at 25 ° C

D. For the exothermic reaction $2Ag_{(s)} + 1/2O_{2(g)} \rightarrow 2Ag_2O_{(s)}$ at

298K. $\Delta H < \Delta U$

Answer: A::B::C::D

Watch Video Solution

4. The normal boiling point of a liquid 'A' is 350K. $\Delta H_{
m van}$ at normal boiling point is 35 kJ/mole. Pick out the correct statement(s). (Assume ΔH_{van} to be independent of pressure)

A. $\Delta S_{
m vaporisation} > 100 J/K$ mole at 350K and 0.5 atm

B. $\Delta S_{
m vaporisation} < 100 J/K$ mole at 350K and 0.5 atm

C. $\Delta S_{
m vaporisation} < 100 J/K$ mole at 350K and 2 atm

D. $\Delta S_{\text{vaporisation}} = 100 J/K$ mole at 350K and 2 atm

Answer: A::C

Watch Video Solution

5. Choose the correct statements:

A. Temperature, enthalpy and entropy are state functions

B. For both reversible and irreversible isothermal expansion of an ideal gas, change in internal energy and enthalpy is zero

C. For a reaction in which $\Delta n_a = 0$, entropy change is not always zero

D. The entropy change associated with reversible isothermal

expansion of an ideal gas is equal to 2.303 R $\log_{10} \frac{P_1}{P_2}$

Answer: A::B::C::D

Watch Video Solution

ADDITIONAL PRACTICE EXERCISE (PRACTICS SHEET (ADVANCED) LINKED COMPREHENSION TYPE OUESTIONS)

1. Liquid water freezes at 273K under external pressure of 1 atm. The process is at equilibrium $H_2O(l) \Leftrightarrow H_2O(s)$ at 273 K & 1 atm. However it was required to calculate the thermodynamic parameters of the fusion process occuring at same pressure & different temperature. Using the following data, answer the question that follow. $d_{\rm ice}=0.9~{\rm gm/cc}$, $d_{H_2O(l)}=1~{\rm gm/c}$, $C_P[H_2O(s)]=36.4JK^{-1}mol^{-1}$

 $C_P[H_2O(l)] = 75.3JK^{-1}mol^{-1}, \Delta H_{\text{fusion}} = 6008.2Jmol^{-1}$

The value of " $\Delta H_{\rm fusion}$ " at 263K & 1 atm will be

A. +6008.2 J mole $^{-1}$

B. 5619.2*J*mole -1

C. -5619.2*J*mole -1

D. 6619.2*J*mole ⁻¹

Answer: B

Watch Video Solution

2. Liquid water freezes at 273K under external pressure of 1 atm. The process is at equilibrium $H_2O(l) \Leftrightarrow H_2O(s)$ at 273 K & 1 atm. However it was required to calculate the thermodynamic parameters of the fusion process occuring at same pressure & different temperature. Using the following data, answer the question that follow. $d_{\rm ice}=0.9~{\rm gm/cc}$, $d_{H_2O(l)}=1~{\rm gm/c}$, $C_P[H_2O(s)]=36.4JK^{-1}mol^{-1}$ $C_P[H_2O(l)]=75.3JK^{-1}mol^{-1}$, $\Delta H_{\rm fusion}=6008.2Jmol^{-1}$

" ΔS_{fusion} " at 263 K & 1 atm will be

B.
$$22.84JK^{-1}mol^{-1}$$

D. $20.557KJ^{-1}mol^{-1}$

Answer: C

Watch Video Solution

3. 9.0g m ice at $0 \, ^{\circ} C$ is mixed with 36gm of water at $50 \, ^{\circ} C$ in a thermally insulated container, using the following data, answer the question that

follow: $C_{P\left(H_2O\right)}=4.18Jg^{-1}K^{-1}$, $\Delta H_{\rm fusion}$ (ice) = $335Jg^{-1}$ Final tempeature of water is

A. 304.43K

B. 296.97 K C. 303.93K

D. 287K

Answer: B

4. 9.0g m ice at 0 $^{\circ}$ C is mixed with 36gm of water at 50 $^{\circ}$ C in a thermally insulated container, using the following data, answer the question that follow: $C_{P}(H_{2}O) = 4.18Jg^{-1}K^{-1}$, $\Delta H_{\rm fusion}$ (ice) = $335Jg^{-1}$

 $\Delta S_{\rm ice}$ is

B.
$$3.16JK^{-1}$$

C.
$$14.2JK^{-1}$$

D.
$$7.84JK^{-1}$$

Answer: C

Watch Video Solution

5. 9.0g m ice at $0 \, ^{\circ} C$ is mixed with 36gm of water at $50 \, ^{\circ} C$ in a thermally insulated container, using the following data, answer the question that

follow: $C_{P(H_2O)} = 4.18Jg^{-1}K^{-1}$, $\Delta H_{\rm fusion}$ (ice) = $335Jg^{-1}$ $\Delta S_{\rm water}$ is

A. $-12.64JK^{-1}$

C. - 5.42*JK* ^{- 1}

D. 12.64*JK* ⁻¹

Answer: A

Watch Video Solution

MATCHING TYPE QUESTIONS)

ADDITIONAL PRACTICE EXERCISE (PRACTICS SHEET (ADVANCED) MATRIX

1. Match

the

columns

Column-I

$$A) \frac{\Delta H_2 - \Delta H_1}{T_2 - T_1} = \Delta C_p$$

P) Trouton equation

Column-H

B)
$$\frac{\Delta U_2 - \Delta U_L}{T_2 - T_1} \approx \Delta C_v$$

Q)Effect of temperature on the heat of reaction

following

$$C) \frac{\Delta H_v}{T_{b.p.}} = \Delta S_v$$

R) Kirchoff's equation

D)
$$\lim_{T\to 0} S \to 0$$

S) Third law of thermodynamics

Watch Video Solution

ADDITIONAL PRACTICE EXERCISE (PRACTICS SHEET (ADVANCED) INTEGER TYPE QUESTIONS)

1. Calculate the pH at which the following conversion (reacton) will be at

equilibrium in basic medium $I_{2(s)} \Leftrightarrow I_{(aq)}^- + IO_{3(aq)}^-$. When the

equilibrium concentrations at 300 K are
$$\left[I^{-}\right]$$
 = 0.10 and $\left[IO_{3}^{-}\right]$ = 0.10 M

Given that $\Delta G_f^0 \left(I^- aq \right) = -50$ kJ/mole,

$$\Delta G_f^0(IO_3^-, aq) = -123.5kJ/\text{mole}, \Delta G_f^0(H_2O, l) = -233$$
 kJ/mole,

 $\Delta G_f^0(OH^-, aq) = -150$ kJ/mole, Ideal gas constant $= R = \frac{25}{3} J \text{mole}^{-1} K^{-1}$, log e = 2.3,

- **2.** The enthalpy for the following reaction (at $25\,^{\circ}$ C are given below):
- (i) $\frac{1}{2}H_{2(q)} + \frac{1}{2}O_{2(q)} \rightarrow OH_{(q)} = 10.06 \text{ Kcal}$
- (ii) $H_{2(g)} \rightarrow 2H_{(g)}$ 104.18 Kcal
- (iii) $O_{2(g)} \to 2O_{(g)}$ 118.32 Kcal

Calculate the O-H bond energy in the hydroxyl radical (give your answer in terms of 10^5 cal)

3. Consider the following cyclic process carried out in two steps on a gas Step 1 : 45J of heat is added to the gas, and 10J of expansion work is performed

Step 2: 60J of heat is removed from the gas as the gas is compressed back

to the initial state If the work for the gas compression in step 2 is 19x J, then the value of x is **Watch Video Solution PROBLEMS** 1. A closed steel Mask contains hot tea. What type of system is this? **Watch Video Solution** 2. Does the temperature remain constant in an adiabatic process? **Watch Video Solution** 3. 10 grams of steam has higher internal energy than 10 grams of ice. Comment. **Watch Video Solution**

4. A chamber contains $77gofCO_2$. The chamber was divided into three compartments X, Y and Z as shown below. Suggest the relation between the internal energies of the gas in the three compartments X, Y and Z. $X11gCO_2$ $y22gCO_2$ $Z44gCO_2$

5. In a process, a system loses 125 J of heat when 400 J of work was done on the system. Calculate the change in internal energy.

6. A system absorbs 10kJ of heat at constant volume and its temperature rises from $27^{0}C$ to $37^{0}C$. The DE of reaction is

7. From the observations given below, suggest the relation between X, Y and 7

Experiment	Heat supplied	Work done	ΔΕ
1	100J Supplied to the system	200J done by the system	X Joules
II	200J Supplied to the system	200J done on the system	Y Joules
III	400J lost to the system	100J done by the system	Z Joules

8. What are the values of w and ΔE , when a system absorbs 250J of heat by expanding from 1 lit to 10 lit against 0.5 atm pressure and at constant temperature.

Watch Video Solution

9. $C_{\text{(graphite)}} + H_2O_{(g)} \rightarrow CO_{(g)} + H_{2(g)}$,

 $\Delta H = +131.4kJ$. (Assume reaction occures at STP) How much energy is

absorbed when one litre of hydrogen gas is formed at STP?

10. $N_{2(g)} + O_{2(g)} + 180.6kJ \rightarrow 2NO_{(g)}$, calculate (a) heat of reaction, (b) heat of formation of nitric oxide and (c) heat required to form one litre of nitric oxide at 25 ° C.

11. ΔH^0 for a reaction F_2 + $2HCl \rightarrow 2HF + Cl_2$ is given as -352.8kJ. ΔH_f^0 for HF is -268.3kJmol⁻¹, then ΔH_f^0 of HCl would be

12.
$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)}, \Delta H = -286.2KJ$$

 $H_2O_{(l)} \rightarrow H^+_{(aq)} + OH^-_{(aq)}, \Delta H = +57.3KJ$

Enthalpy of ionization OH^- in aqueons solution is

13. Calculate the value of $(\Delta H$ - $\Delta E)$ in calories for the combustion of CH_4 at 27 $^{\circ}$ C.

14. 19.5 g of benzene on burning in the free supply of oxygen liberated 126 kJ of energy at constant pressure. Calculate the enthalpy of combustion of benzene. Write the thermochemical equation.

15. 4.184g of benzoic acid was burnt in bomb calorimeter. The rise in the temperature is 10° . The heat capacity of calorimeter and its contents is $2.644kcalK^{-1}$. Calculate the heat of combustion of benzoic acid.

16. $H_2SO_4(aq) + 2NaOH_{(aq)} \rightarrow Na_2SO_4(aq) + 2H_2O_{(l)}$. Suggest the hest of this reaction.

17. $HCN_{(aq)} + NaOH_{(aq)} \rightarrow NaCN_{(aq)} + H_2O_{(l)}$, DetlaH = -12.13kJ.

Calculate heat of ionisation of HCN.

18. In the reaction between strong acid and strong base, 1.8 g of water is formed. The heat evolved is used to raise the temperature of one kg of water at $25 \,^{\circ}$ C. What is the final temperature of water?

19. mole of same solute is dissolved in 200 moles of water 18.58 kJ of heat is absorbed. Calculate the enthalpy of dilution.

View Text Solution

- **20.** The bond enthalpies of D-Dand O-O and D-O are respectively, +440, +498 and $+491.5kJmol^{-1}$. Calculate ΔH for the reaction $D_{2(g)}+\frac{1}{2}O_{2(g)}\to D_2O_{(l)}$
 - View Text Solution

21. ΔH for the formation of XY is $-200kJmol^{-1}$. The bond enthalpies of X_2, Y_2 , and XY are in the ratio 1:0.5:1. Then determine the bond enthalpies.

22. Heats of combustion of graphite carbon and carbon monoxide are respectively $-393.5kJmol^{-1}$ and $-283kJmol^{-1}$. Calculate the heat of formation of carbon monoxide.

View Text Solution

23. The heat of transition of S_{α} into S_{β} is +2.5 kJ. The heat of combustion of monoclinic sulphur is $-300kJmol^{-1}$. Calculate heat of combustion of rhombic sulphur (S_{α}) .

Watch Video Solution

24. Heats of combustion of benzene, carbon and hydrogen are -782, -94, -68kcalmol⁻¹ respectively. Calculate heat of formation of benzene.

25. The heat of formation of crystalline sodium chloride is $-410kJmol^{-1}$.

The heat of sublimation of sodium metal is $180.8kJmol^{-1}$. The heat of dissociation of chlorine gas into atoms is $242.7kJmol^{-1}$. The ionisation energy of Na and electron affinity of Cl are 493.7kJ and -368.2kJ respectively. Calculate the lattice energy of NaCl.

Watch Video Solution

26. The heats of formation of $CO_{2(g)}$, $H_2O_{(l)}$ and $CH_{4(g)}$ are respectively $-394kJmol^{-1}$, $-286kJmol^{-1}$ and $-76kJmol^{-1}$. Calculate the heat of combustion of methane.

27. The standard molar heat for formation of ethane, carbondioxide and water are respectively, -21.1,-94.1 and -68.3 Kacal mol^{-1} . What is the standard molar heat of combustion of ethane ?

28. Latent heat of fusion of ice is $6kJmol^{-1}$. Calculate the entropy change in the fusion of ice.

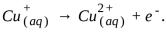
29. The entropy change for vaporisation of a liquid is $109.3JK^{-1}mol^{-1}$. The molar heat of vaporisation of that liquid is $40.77kJmol^{-1}$. Calculate the boiling point of that liquid.

30. Based on entropy Change predict a spontaneous reaction among the following.

$$(A): (NH_4)_2 CO_3(s) \rightarrow 2NH_3(g) + CO_2(g) + H_2O(l) \text{ and } (B): NH_3(g) + H_2S(g)$$

31. Calculate $DetlaG^{\circ}$ for the following reaction, $Zn_{(s)} + Cu_{(aq)}^{2+} \rightarrow Zn_{(aq)}^{2+} + Cu_{(s)}^{2+}$. ΔG_f° of $Zn_{(aq)}^{2+}$ and $Cu_{(aq)}^{+2}$ is-147.2 kJ

mol^(-1) and 65kJmol^(-1)`.


32. The equilibrium constant of a reaction is 73. Calculate standard free energy change.

33. The reaction, $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)}$, is spontaneous. The $\Delta S^{\circ} = -163.1 J mol^{-1} K^{-1}$. The absolute entropies of $H_{2(g)}$ and $O_{2(g)}$ are $130.6 J K^{-1} mol^{-1}$ and $205 J K^{-1} mol^{-1}$ respectively. Calculate the absolute entropy of water.

34. The standard free energy of $Cu_{(aq)}^+$ is $50kJmol^{-1}$ and that of $Cu_{(aq)}^{2+}$ is $66kJ. mol^{-1}$. Calculate the change in free energy for the reaction,

35. $Zn_{(s)} + Fe_{aq}^{2+} \Leftrightarrow Zn_{aq}^{2+} + Fe_{(s)}$. The vale of K_c for this reaction is `10^(23). Calculate the standard free energy change.

36. 1 g of graphite is burnt in a bomb calorimeter in excess of O_2 at 298 K and 1 atm. Pressure according to the equations.

$$C_{\text{graphite}} + O_{2(g)} \rightarrow CO_{2(g)}$$

During the reaction the temperature rises from 298 K to 200K. Heat capacity of the bomb calorimeter is $20.7KJK^{-1}$. What is the enthalpy change for the above reaction at 298 K 1 atm?

37. What are the sign of the entropy change (+ or -) in the following:

I: A liquid crystallises into a solid

II: Temperature of a crystalline solid is raised from OK to 115K

III:
$$2NaHCO_{3(g)} \rightarrow Na_2CO_{3(g)} + CO_{2(g)} + H_2O_{(g)}$$

$$\mathsf{IV}: H_{2(g)} \to 2H_{(g)}$$

38. Kp for the reaction $\frac{3}{2}O_{2(g)} \leftarrow O_{3(g)}$ at 25 ° C is 2.47×10^{-29} . Then

 ΔG ° for the conversion is

39. A swimmer coming out from a pool is covered with a film of water weighing about 18g. How much heat must be supplied to evaporate this water at 298 K? Calculate the internal energy of vaporisation at $100 \, ^{\circ}$ C.

 ΔH_{vap}° for water at $373K = 40.66kJmol^{-1}$

40. Find out the value of equilibrium constant for the following reaction at 298 K.

`2NH_(3(g)) + CO_(2(g)) standard Gibbs energy change, ΔG ° at the given temperature is -13.6kJmol ⁻¹.

SUBJECTIVE EXERCISE- 1 (LONG ANSWER QUESTIONS)

1. What are the types of systems? Explain give one example each?

2. State the first law of thermodynamics.

SUBJECTIVE EXERCISE- 1 (SHORT ANSWER QUESTIONS)

1. What are intensive and	extensive properties?
---------------------------	-----------------------

- **2.** Discuss on internal energy and enthalpy?
 - Watch Video Solution

- **3.** Define heat capacity and molar heat capacity. How are C_p and C_{ν} related?
 - Watch Video Solution

4. What is a thermochemical equation ? Write its significance.

5. What does one mean by exothermic and endothermic reactions? Give examples.

6. An ideal gas expands from $500cm^3$ to $700cm^3$ against 1 atm pressure, by absorbing 2J of energy. Calculate change in internal energy of the ideal gas.

7. How are ΔH and ΔE are related for a gaseous equilibrium reaction ? What is $(\Delta H - \Delta E)$ for $CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$?

8. Give the mathematical formulation of first law of thermodynamics.

9. In a process 701 J of heat is absorbed by a system and 394 J of work is done by the system. What is the change in internal energy for the process?

10. For an isolated system , $\Delta U = 0$ what will be ΔS ?

11. At 400K, 5 moles of an ideal gas expands isothermally and reversibly from $10dm^3$ to $20dm^3$. Calculate the work done by the gas.

12. 0.14kg of nitrogen at 300K is expanded isothermally and reversibly until its volume becomes doubled. Calculate the work done by the gas.

13. 0.096kg of oxygen is compressed iso thermally and reversibly from 10^5N . M^{-2} to 2×10^5N . M^2 at 300 K. Calculate the work done during the impression process.

SUBJECTIVE EXERCISE- 1 (VERY SHORT ANSWER QUESTIONS)

1. Explain "system" and "surroundings".

2. Name three intensive properties.
Watch Video Solution
3. What is heat capacity? Explain.
Watch Video Solution
4. What is a thermochemical equation ? Write its significance.
Watch Video Solution
SUBJECTIVE EXERCISE- 2 (LONG ANSWER QUESTIONS)
1. What is heat of a reaction? Discuss the factors on which it is dependent.
Watch Video Solution

2. What is heat of combustion ? How is it determined using bomb
calorimeter ?
Watch Video Solution
3. State and explain Hess law. Write its important applications
Watch Video Solution
4. By using Born-Haber cycle to calculate the crystal lattice energy of NaCl,
discuss the heats, involved in all the changes.
Watch Video Solution
SUBJECTIVE EXERCISE- 2 (SHORT ANSWER QUESTIONS)
1. Define heat of formation. Write suitable examples.

Watch	Video	Solution	
Water	VIGCO	Solution	

2. Define heat of neutralisation. Write the basic equation. Why the heat liberated by the neutralisation of a weak acid is less than $57.3kJmol^{-1}$?

3. What are C_p and C_v ?

4. Define Heat of solution. Give an example.

5. When 2.4g of carbon reacted with X g of oxygen to form CO and CO_2 , 50.4kJ of heat was released and no reactant is left over.

Standard heats of formation of carbon monoxide and carbondioxide are

-110.5kJmol⁻¹ and -393.5kJmol⁻¹ respectively. Calculate X.

6. Heats of atomisation of chlorine and hydrogen are $243kJmol^{-1}$ and $435kJmol^{-1}$ respectively. Heat of formation of HCl is $-92kJmol^{-1}$. Calculate the bond energy of HCL.

7. The bond energy of $H_{2(g)}$ is 436kJ/mole. The bond enthalpy of $N_{2(g)}$ is 941.3 kJ/mole. What is the bond enthalpy of N - H if NH_3 formation energy is -46.0 kJ/mole ?

8. Calculate the number of kl of heat necessary to rise the temperature of 60.0 g of aluminum from $35 \,^{\circ} C \rightarrow 55 \,^{\circ} C$. Molar heat capacity of aluminum is 24 $\mid mol^{-1}K^{-1}$.

Watch Video Solution

9. The reaction of cyanamide (s), with dioxygen was carried out in a bomb calorimeter and ΔU was found to be -742.7 kJ mol^{-1} at 298 K. Calculate the enthalpy change for the reaction at 298 K.

$$NH_2CN_{(g)} + \frac{3}{2}O_2(g) \to N_{2(g)} + CO_{2(g)} + H_2O_l$$

10. The molar heat capacity at constant volume of a system is 12.41J. mol^{-1} . In an adiabatic expansion the temperature of one mole of that gas falls from 298K to 288K. Calculate the work done by the gas.

11. Enthalpy of ammonia and water are $-46.19KJ. \, mol^{-1}$ and $-285.9KJ. \, mol^{-1}$. Calculate AH for the reaction.

$$4NH_3(g) + 3O_2(g) \rightarrow 2N_2(g) + 6H_2O(l).$$

12. At constant pressure, the heat of combustion of carbon monoxide at $17^{0}C$ is -284.5 kJ. Calculate its heat of combustion at constant volume

13. Calculate the difference between ΔE and ΔH values for the combustion reaction of ethylene at 300K

14. The heats of combustion of hydrogen and cyclohexene are $-241kJmol^{-1}$ and $-3800kJmol^{-1}$. The heat of hydrogenation of cyclohexene

is $-121kJmol^{-1}$. Calculate the heat of combustion of cyclohexane.

15. Heat of formation of water and heats of combustion of ethylene and acetylene are respectively 286, - 1410 and - 1299kJmol⁻¹, Calculate the heat of the reaction,

$$C_2H_{2(g)} + H_{2(g)} \rightarrow C_2H_{4(g)}.$$

16. At 298K heats of formation of $H_2O_{(l)}$, $CO_{2(g)}$, $HCl_{(g)}$ and $CCl_{4(l)}$ are respectively -241.8, -393.7, -92.5 and -106.7 $kJmol^{-1}$. Calculate ΔH for the following reaction

Watch Video Salution

 $CCl_{4(1)} + 2H_2O_{(q)} \rightarrow CO_{2(q)} + 4HCl_{(q)}$

SUBJECTIVE EXERCISE- 2 (VERY SHORT ANSWER QUESTIONS)

1. Heat of neutralisation of $CH_3COOH_{(aa)}$ with $NaOH_{(aa)}$ is - 55.2kJ. What is heat of ionisation of CH_3COOH ?

Watch Video Solution

2. Heats of ionisation of acetic acid and ammonium hydroxide are xkJmol⁻¹ and ykJmol⁻¹. Heat of neutralisation of HCl and NaOH is zkJmol⁻¹. Calculate the heat when acetic acid is neutralised with ammonium hydroxide. $\left(z - (x + y)kJmol^{-1}\right)$

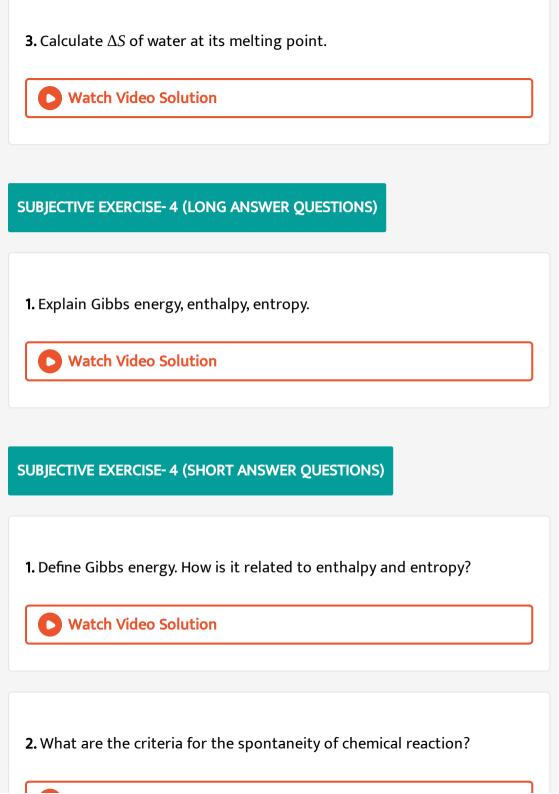
Watch Video Solution

3.500mL of IM HCl and 500mL of 1M NaOH are mixed in Dewar flask. Then temperature is T_1 . In another rise in experiment

1000mL1MHCl and 1000mLof1MNaOHare mixed in Dewar flask. Then rise in temperature is T_2 . What is the relation between T_1 and T_2 ? **Watch Video Solution SUBJECTIVE EXERCISE- 3 (SHORT ANSWER QUESTIONS)** 1. Discuss the following: (a) entropy and (b) entropy change. **Watch Video Solution**

3. Explain whether a reaction occurs on its own, by considering the entropy change of the reaction.

4. The absolute entropies of $H_{2(g)}$, $O_{2(g)}$ and $H_2O_{(l)}$ are respectively 130.6, 205.1 and 69.9JK - mol^{-1} . Calculate the value of ΔS for the formation of one mole liquid water.


SUBJECTIVE EXERCISE- 3 (VERY SHORT ANSWER QUESTIONS)

1. Give the order of entropies of solid, liquid and gas.

2. Give the units of entropy and entropy change.

3. State the third law of thermodynamics.

4. At 300K, heat of dissociation of lime stone is $+180kJmol^{-1}$. Entropies of $CaCO_3$, CaO and Co_2 are respectively 93, 39 and $213Jmol^{-1}K^{-1}$.

Calculate $\Delta S_{\mathrm{total}}$

5. $4Fe(s) + 3O_{2(g)} \rightarrow 2Fe_2O_3(g)$. The value of ΔS is $-550JK^{-1}$ and the value of DH is -1650kJ at 298 K. Does the process is spontaneous or not?

6. For the equilibrium , $2NOCl(g) \Leftrightarrow 2NO(g) + Cl_2(g)$ the value of the equilibrium constant, K_c is 3.75×10^{-6} at 1069K. Calculate the K_p for the reaction at this temperature?

Watch Video Solution

7. For the reaction at 298 K.

$$2A + B \rightarrow C$$

$$\Delta H = 400kJmol^{-1}$$
 and $\Delta S = 0.2kJK^{-1}mol^{-1}$.

At what temperature will the reaction becomes spontaneous considering

$$\Delta H$$
 and ΔS to be constant over the temperature range?

Watch Video Solution

8. The e.m.f. of the cell reaction

 $Zn_{(s)} + Cu_{(aq)}^{+2} \rightarrow Zn_{(aq)}^{+2} + Cu_{(s)}$ is 1.1 V. Calculate the free energy of the cell reaction.

Watch Widoo Salutio

9. For the reaction,

$$2A(g) + B(g) \rightarrow 2D(g)$$

 $\Delta U^{\theta} = -10.5kJ \text{ and } \Delta S^{\theta} = -44.1JK^{-1}$

Calculate ΔG^{θ} for the reaction, and predict whether the reaction can occur spontaneously or not.

Watch Video Solution

10. The equilibrium constant for a reaction is 10. What will be the value of

 $R = 8.314JK^{-1}mol^{-1}, T = 300K.$

 ΔG ?

Watch Video Solution

11. Calculate the entropy change in surroundings when 1.00 mole of $H_2O_{(I)}$ is formed under standard conditions $\Delta_i H^{\theta} = -286 k J mol^{-1}$.

Watch Video Solution

12. At 60 ° C dinitrogen tetroxide is fifty percent dissociated. Calculate the standard free energy change at this temperature and at one atmosphere.

 $H_2 + Cl_2 \rightarrow 2HCl, \Delta H_1, N_2 + 3H_2 \rightarrow 2NH_3, \Delta H_2 \text{ and } NH_3 + 3Cl_2 \rightarrow NCl_3 + 3H_3$

13.

Watch Video Solution

14. At 427 ° C, for a given change the values of ΔG and ΔH are

-11, $500 Jmol^{-1}$ and -11, $300 Jmol^{-1}$ respectively. Calculate the value of ΔS

. Then calculate the heat of formation of nitrogen trichloride.

15. The reaction $A+B\Leftrightarrow C$ has the value of ΔH and value of ΔS respectively -12.52kJ and $313Jmol^{-1}K^{-1}$. At What temperature the reaction attains equilibrium state.

Watch Video Solution

SUBJECTIVE EXERCISE- 4 (VERY SHORT ANSWER QUESTIONS)

1. Give Gibbs Equation.

Watch Video Solution

2. Give Debye equation.

Watch Video Solution

3. Define Nernst heat theorem.
Watch Video Solution
4. Define free energy.
Watch Video Solution
5. Suggest the spontaneity for the thermal decomposition of lime stone and discuss.
Watch Video Solution
OBJECTIVE EXERCISE - 1 (THERMODYNAMIC TERMS, FIRST LAW)
1. Which of the following come under the view of thermodynamics?

- A. Predicting the feasibility of chemical change
- B. Predicting the extent of completion of the chemical change
- C. Rate at which chemical change occurs at particular set of
- D. Effect of temperature on the rate of reaction

Answer: A

- 2. An isolated system is that in which:
 - A. There is no exchange of energy with the surroundings
 - B. There is exchange of mass and energy with the surroundings
 - C. There is no exchange of mass and energy with the surroundings
 - D. There is exchange of mass with the sourroundings

Answer: C

3. A well stoppered thermos flask contains some ice cubes. This is an example of

A. Closed system

B. Open system

C. Isolated system

D. Non-thermodynamic system

Answer: C

Watch Video Solution

4. A system which can exchange energy with the surrounding but not matter is called

A. A heterogeneous system

B. An open system C. A closed system D. An isolated system **Answer: C**

- 5. An intensive property of theromdynamics means a property which depends
 - A. On the amount of the substance only
 - B. On the nature of the substance only
 - C. Both on the amount as well as nature of the substance
 - D. Neither on the amount nor on the nature

Answer: B

Watch Video Solution

6. The intensive property among these quantities is
A. Mass
B. Density
C. Enthalpy
D. Volume
Answer: B
Watch Video Solution
Watch Video Solution
7. Which is an extensive property of the system?
7. Which is an extensive property of the system?
7. Which is an extensive property of the system? A. Volume

Answer: A

Watch Video Solution

- **8.** In which of the following sets, all the properties belong to same category (all extensive or all intensive)
 - A. Mass, volume, specific heat
 - B. Temperature, pressure, volume
 - C. Heat capacity, density, entropy
 - D. Enthalpy, internal energy, volume

Answer: D

Watch Video Solution

9. Which of the following statements is correct?

- A. Only internal energy is a state function but not work
- B. Only work is a state function but not internal energy
- C. Both internal energy and work are state functions
- D. Neither internal energy nor work is a state function

Answer: A

Watch Video Solution

- 10. Which of the following statement is false?
 - A. Work is a state function
 - B. Temperature is a state function
 - C. Change of state is completely defined when initial and final states
 - are specified
 - D. Work appears at the boundary of the system

Answer: A

11. A process in which no heat change takes place is called

A. An isothermal process

B. An adiabatic process

C. An isobaric process

D. An isochoric process

Answer: B

Watch Video Solution

12. A gaseous system changes from state

 $A(P_1, V_1, T_1)$ to $B(P_2, V_2, T_2)$, B to $C(P_3, V_3, T_3)$ and finally from C to

A. The whole process may be called

A. Reversible process

B. Cyclic process C. Isobaric process D. Spontaneous process **Answer: B Watch Video Solution** 13. A gas expands isothermally and reversibly. The work done by the gas is A. Zero B. Maximum C. Minimum D. Not known **Answer: B Watch Video Solution**

14. In an adiabatic expansion of ideal gas:

A. Increase in temperature

B. q = 0

C. W = 0

D. $\Delta E = 0$

Answer: B

Watch Video Solution

15. Which among the following gives the expression for work done by ideal gas ?

A. - $P\Delta V$

B. $-nRT \ln \frac{V_2}{V_1}$

C. Both 1 and 2

D. Neither 1 nor 2

Answer: C

Watch Video Solution

16. What is correct about isothermal expansion of the ideal gas?

A.
$$W_{rev} = W_{irr}$$

$$B. W_{rev} + W_{irr} = 0$$

C.
$$W_{rev} > W_{irr}$$

D.
$$q_{rev} = q_{irr}$$

Answer: C

Watch Video Solution

17. In thermodynamics, a process is called reversible when

A. Surroundings and system change into each other

B. There is no boundary between system and surroundings

C. Surroundings are always in equilibrium with system

D. System changes into surroundings spontaneously

Answer: C

18. In an adiabatic expansion of ideal gas:

 $A. \Delta E = W$

B. ΔE is maximum

 $C. \Delta E = 0$

D. dq is maximum

Answer: A

Watch Video Solution

19. A heat engine absorbs heat q_1 from a source at temperature T_1 and heat q_2 from a source at temperature T_2 . Work done is found to be $J(q_1+q_2)$. This is in accordance with

- A. Violates 1st law of thermodynamics
- B. Violates 1st law of thermodynamics if Q_1 is negative
- C. Violates 1st law of thermodynamics if Q_2 is negative
- D. Does not violate first law of thermodynamics

Answer: D

Watch Video Solution

20. Two moles of an ideal gas is expanded isothermally and reversibly from 1 litre to 10 litre at 300 K. The internal energy change (in kJ) for the process (R = 8.3J)

A. 11.4 KJ B. - 11.4*KJ* C. 0*KJ* D. - 4.8 KJ**Answer: C Watch Video Solution 21.** During adiabatic expansion of an ideal gas, 100J work is done, ΔE of system is A. Zero B. 100J C. 200J D. - 100J

Answer: D

22. On which of the following factors does internal energy depend upon

A. Mass of the system

B. Temperature of the system

C. Nature of the system

D. All the above

Answer: D

23. For a substance more internal energy is observed in [same quantity]

A. Solid state

B. Liquid state

C. Gaseous state

D. All have same
Answer: C
Watch Video Solution
24. The total heat content of a system at constant pressure is
A. Enthalpy
B. Interanl energy
C. Entropy
D. Free energy
Answer: A
Watch Video Solution

25. Enthalpy "H" can be given as

A.
$$H = E - PV$$

B. $H = E + PV$

C. H = E + P + V

D.H = E - TS

Answer: B

Watch Video Solution

- 26. The enthalpy is maximum for
 - A. 10 gms of water
 - B. 10 gms of ice
 - C. 10 gms of steam
 - D. Same for all

Answer: C

27. The expression $[\Delta E/\Delta T]_V$ represent

A. Heat capacity at constant volume

B. Heat capacity at constant pressure

C. Enthalpy change

D. Eantropy change

Answer: A

Watch Video Solution

28. The heat of reaction at constant volume and temperature is represented by

A. ΔE

B. Δ*H*

 $\mathsf{C}.\,\Delta P$

Answer: A

Watch Video Solution

29. Which of the following relationships is correct for a reaction involving both reactants and products both in either solid or liquid state?

A.
$$\Delta H > \Delta E$$

$$\mathsf{B.}\,\Delta H = \Delta E$$

$$C. \Delta H < \Delta E$$

D.
$$\Delta H - \Delta E = \infty$$

Answer: B

 $BaCl_{2(aq)} + K_2SO_{4(aq)} \rightarrow BaSO_{4(s)} \downarrow + 2KCl_{(aq)}$ A. RT B. 2RT

30. The different between ΔH and ΔE for the reaction

D. Zero

C. (1/2)RT

Answer: D

31. For which one of the following systems DE < DH

A.
$$2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$$

$$B. N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$$

$$C. 2NH_{3(g)} \rightarrow N_{2(g)} + 3H_{2(g)}$$

 $D.H_{2(q)} + I_{2(q)} \rightarrow 2HI_{(q)}$

Answer: C

32. When a reaction is conducted in an open vessel, the heat of reaction is represented as

- Α. ΔΗ
- $B. \Delta E$
- $\mathsf{C}.P\Delta V$
- D. ΔnRT

Answer: A

Watch Video Solution

33. Which of the following holds good to the laws of thermodynamics for the reaction ?

$$A. \Delta H = \Delta E + RT$$

B.
$$\Delta H = \Delta E - RT$$

$$C. \Delta H = \Delta E + 2RT$$

 $C_2H_{4(q)} + 3O_{2(q)} \rightarrow 2CO_{2(q)} + 2H_2O_{(l)}$

D.
$$\Delta H = \Delta E - 2RT$$

Answer: D

Watch Video Solution

34. For which of the following reaction
$$\Delta H = \Delta E + 2RT$$

A.
$$2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$$

$$B. NH_4HS_{(s)} \rightarrow NH_{3(g)} + H_2S_{(g)}$$

$$C. N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$$

$$\mathsf{D.}\, PCl_{5(g)} \to PCl_{3(g)} + Cl_{2(g)}$$

Answer: B

35. For $N_2 + 3H_2 \rightarrow 2NH_3$, enthalpy and internal energy changes respectively are, $\Delta H \ \& \ \Delta U$ then

$$A. \Delta H = 0$$

B.
$$\Delta H \Delta U$$

$$\mathsf{C}.\ \Delta H < \Delta U$$

D.
$$\Delta H > \Delta U$$

Answer: C

Watch Video Solution

36. According to IUPAC conventions, which one of the following is/are correct?

A. The heat absorbed by a system is taken as positive

B. If a system is accompained by decrease in energy, $\Delta E {\rm is}$ negative

C. The work done by the system is taken as negative

D. All the above three statements are correct

Answer: D

Watch Video Solution

37. During expansion of a gas into vaccum $(P_{\text{ext}} = 0)$, Work done is zero if the process is

(A) Reversible (B) Irreversible (C) Isothermal

A. A, B & C are true

B. A, B & C are false

C. A & C are true

D. B & C are false

Answer: A

38. Give the mathematical formulation of first law of thermodynamics.

A.
$$C_v = aT^3$$

$$B. \Delta S_{\text{total}} = \Delta S_{\text{sys}} + \Delta S_{\text{sur}}$$

C.
$$q = \Delta U + W$$

D.
$$\Delta S_{sys} = \frac{qrev}{T}$$

Answer: C

Watch Video Solution

39. A system absorbs 'xJ' heat and does "yJ" work. Its ΔE is +Ve when

$$C. y = 2x$$

$$D. x = y$$

Answer: B

Watch Video Solution

40. In an adiabatic expansion of ideal gas:

A.
$$W = -\Delta E$$

$$B. W = \Delta E$$

$$C. \Delta E = 0$$

D.
$$W = 0$$

Answer: A

Watch Video Solution

41. During isothermal expansion of an ideal gas, its internal energy

- A. Decreases
- B. Increases
- C. May increase or decrease
- D. Remain unchanged

Answer: D

Watch Video Solution

- 42. For the gaseous reaction involving the complete combustion of isobutane
 - A. $\Delta H = \Delta E$
 - B. $\Delta H > \Delta E$
 - $C. \Delta H = \Delta E = 0$
 - D. $\Delta H < \Delta E$

Answer: D

43. Which of the one following	g is not a state function ?
--------------------------------	-----------------------------

A. Internal energy

B. Work

C. Entropy

D. Free energy

Answer: B

Watch Video Solution

44. Which of one following is applicable is applicable for an adiabatic expansion of an ideal gas?

$$A. \Delta E = 0$$

B.
$$\Delta W = \Delta E$$

 $C. \Delta W = -\Delta E$

D. $\Delta W = 0$

Answer: B::C

Watch Video Solution

45. At $27 \,^{\circ} C$, one mole of an ideal gas ocmpressed isothermally and reversibly from a pressure of 2 atm to 1.0 atm, Choose the correct option from the following

A. Change in internal energy is positive

B. Heat is negative

C. Work done is -965, 84cal

D. All are incorrect

Answer: B

OBJECTIVE EXERCISE - 1 (EXOTHERMIC AND ENDOTHERMIC REACTIONS)

1. Which of the following reaction do you think will result in the absorption of heat?

A. Carbon burning in air

B. Iron reacting with sulphur to form iron sulphide

C. Formation of water gas from steam and coke

D. Formation of producer gas

Answer: C

Watch Video Solution

2. The formation of water from $H_{2(g)}$ and $O_{2(g)}$ is an exothermic reaction because

A. $H_{2(q)}$ and $O_{2(q)}$ have a higher chemical energy than water

- $\mathrm{B.}H_{2(g)}$ and $O_{2(g)}$ have a lower chemical energy than water
- $\mathrm{C.}\,H_{2\,(g)}\,$ and $\,O_{2\,(g)}\,$ have a higher temperature than water
- D. Energy considerations does not arise

Answer: A

Watch Video Solution

- 3. When a solid melts there is
 - A. An increase in enthalpy
 - B. A decrease in enthalpy
 - C. No change in enthaply
 - D. A decrease in internal energy

Answer: A

4. Assertion(A): The enthalpies of elements in their standard states are taken as zero

Reason (R): It is impossible to determine the absolute enthalpy of any substance

A. Both A and R are true R is the correct explanation.

B. Both A and R are true R is not the correct explanation.

C. A is true but R is false

D. A is false but R is true

Answer: B

Watch Video Solution

5. (A): The heat absorbed during isothermal expansion of an ideal gas against vacuum is zero.

(R): The volume occupied by the molecules is zero.

A. Both A and R are true R is the correct explanation.

B. Both A and R are true R is not the correct explanation.

C. A is true but R is false

D. A is false but R is true

Answer: C

Watch Video Solution

6. In exothermic reaction

$$A. H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)}, \Delta H = -184.6KJ$$

B.
$$N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}, \Delta H = +180.8KJ$$

$$C. C_{\text{(graphite)}} + H_2O_{(g)} \rightarrow CO_2 + H_{2(g)} - 131.4KJ$$

D.
$$C_{\text{(graphite)}} + 2S_{(g)} + 91.9KJ \rightarrow CS_{2(l)}$$

Answer: A

7. Which are of the following is an exothermic reaction?

A.
$$N_{2(g)} + O_{2(g)} + 180.8k. J \rightarrow 2NO_{(g)}$$

B.
$$N_{2(g)} + 3H_{2(g)} - 92k$$
. $J \rightarrow 2NH_{3(g)}$

$$C.C_{\text{(graphite)}} + H_2O_{(g)} \rightarrow CO_{(g)} + H_{2(g)} - 131.3KJ$$

D.
$$C_{\text{(graphite)}} + 2S_{(g)} \rightarrow CS_{2(l)} - 91.9k. J$$

Answer: B

Watch Video Solution

8. Which of the following is an endothemic reaction?

$$\mathsf{A.}\,N_{2(g)} + 3H_{2(g)} - 92KJ \,\to\, 2NH_{3(g)}$$

B.
$$N_{2(g)} + O_{2(g)} + 180.8KJ \rightarrow 2NO_{(g)}$$

$$\mathsf{C.}\,H_{2(g)} + Cl_{2(g)} \,\rightarrow\, 2HCl_{(g)}, \Delta H = \,-\,184.6kJ$$

D.
$$C_{\text{(graphite)}} + 2H_{2(s)} \rightarrow CH_{4(g)} + 74.8k. J.$$

Answer: B

Watch Video Solution

OBJECTIVE EXERCISE - 1 (HEAT OF FORMATION)

- 1. (A): Enthalpy of graphite is lower than that of diamond.
- (R): Entropy of graphite is greater than that of diamond.
 - A. Both A and R are true R is the correct explanation.
 - B. Both A and R are true R is not the correct explanation.
 - C. A is true but R is false
 - D. A is false but R is true

Answer: B

2. Which of the following reactions represents
$$\Delta H_f^{\circ}$$

$$A. C_{\text{(diamond)}} + O_{2(g)} \rightarrow CO_{2(g)}$$

B.
$$\frac{1}{2}H_{2(g)} + \frac{1}{2}F_{2(g)} \to HF_{(g)}$$

$$C. N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$$

$$D.CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)}$$

Answer: B

3. Which of the following equation represents standard heat of formation of ethanol?

A.
$$CH_3CHO_{(l)} + \frac{1}{2}H_{2(g)} \xrightarrow{Ni} C_2H_5OH_{(l)}$$

B.
$$2C_{\text{(graphite)}} + 3H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow C_2H_5OH_{(g)}$$

$$C.2C_{\text{(diamond)}} + 3H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow C_2H_5OH_{(g)}$$

D.
$$2C_{\text{(graphite)}} + 3H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow C_2H_5OH_{(l)}$$

Answer: D

Watch Video Solution

4. The reaction which shows standard heat of formation of water correctly is

A.
$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)}, \Delta H = -68.3kcal$$

B.
$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(s)}, \Delta H = -68.3kcal$$

$$C.H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(g)}, \Delta H = -68.3kcal$$

D.
$$2H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow 2H_2O_{(l)}, \Delta H = -136.6kcal$$

Answer: A

Watch Video Solution

5. The enthalpy of the reaction

$$H_{2(g)} + O_{2(g)} \rightarrow H_2O_{(g)}$$
 is ΔH_1 and that of $H_{2(g)} + O_{2(g)} \rightarrow H_2O_{(l)}$ is

$$\Delta H_2$$
. Then

A.
$$\Delta H_1 \leq DetlaH_2$$

$$B. \Delta H_1 + \Delta H_2 = 0$$

$$\mathsf{C.}\,\Delta H_1 > \Delta H_2$$

D.
$$\Delta H_1 = \Delta H_2$$

Answer: A

- 6. The enthalpies of elements under the following conditions are assumed to be
 - A. Zero at 298 K and 1 atm
 - B. Unit at 298 K and 1 atm
 - C. Zero at 273 K and 1 atm
 - D. Unity at 273 K and 1 atm

Answer: A

Watch Video Solution

- 7. For which of the following elements, the standard enthalpy is not zero?
 - A. C (Diamond)
 - B. C (Graphite)
 - C. Liquid mercury
 - D. Rhombic sulphur

Answer: A

Watch Video Solution

8. The enthalpy of elements in their standard states are taken as zero.

Hence the enthalpy of formation of a compound is

A. always negative

B. always positive

C. positive (or) negative

D. equal to zero

Answer: C

Watch Video Solution

- 9. Identify the reaction in which the heat liberated corresponds to the heat of formation $\left(\Delta H_f\right)$:
 - A. $C_{\text{(diamond)}} + O_{2(g)} \rightarrow CO_{2(g)} + \text{heat}$
 - B. $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)} + \text{heat}$
 - $C.C_{\text{(diamond)}} + O_{2(g)} \rightarrow CII_{4(g)} + \text{heat}$
 - $D.S_{\text{(rhombic)}} + O_{2(g)} \rightarrow SO_{2(g)} + \text{heat}$

Answer: D

10. The heat change for the following reaction $C_{(s)} + 2S_{(s)} \rightarrow CS_{2(l)}$ is known as

A. Heat of formation of CS_2

B. Heat of fusion of CS_2

C. Heat of vapourisation of CS_2

D. Heat of transition of Carbon

Answer: A

Watch Video Solution

11. In which of the following reactions heat liberated is known as standard heat of formation of CO_2 ?

$$\mathsf{A.}\ 2CO_{(g)} + O_{2(g)} \ \rightarrow \ 2CO_{2(g)}, \Delta H = \ -135.6kcals$$

B. $C_{\text{(diamond)}} + O_{2(g)} \rightarrow CO_{2(g)}$, $\Delta H = -94.5 kcals$

C. $C_{\text{(graphite)}} + O_{2(g)} \rightarrow CO_{2(g)}, \Delta H = -94.05kcals$

 $\mathsf{D.} \ CH_{4(g)} + 2O_{2(g)} \ \to \ 2CO_{2(g)} + 2H_2O_{(l)}, \Delta H = \ -2128kcals.$

Answer: C

- 12. The chemical process involved in the combustion reactions is
 - A. Oxidation
 - B. Reduction
 - C. Redox reaction
 - D. Disproportionation reaction

Answer: C

13. Which of the following is not a combustion reaction

$$A. CO + \frac{1}{2}O_2 \rightarrow CO_2$$

$$B. C + O_2 \rightarrow CO_2$$

$$C.C + \frac{1}{2}O_2 \rightarrow CO$$

$$D. CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Answer: C

Watch Video Solution

14. $C_{\text{graphite}} + O_{2(g)}$: $\Delta H = -393.5 kJ$. ΔH of the above reaction cannot be

A. Heat of formation of CO_2

B. Heat of combustion of C

C. Heat of reaction

D. Heat of transition

Answer: D

Watch Video Solution

OBJECTIVE EXERCISE - 1 (HEAT OF NEUTRILIZATION)

- **1.** (A): The enthalpy of neutralisation of a strong acid by a strong base is a constant.
- (R): The net reaction that takes place is the same.
 - A. Both A and R are true R is the correct explanation.
 - B. Both A and R are true R is not the correct explanation.
 - C. A is true but R is false
 - D. A is false but R is true

Answer: A

2. For the following reaction $H_{(aq)}^+ + OH_{(aq)}^- \rightarrow H_2O_{(l)}$, $\Delta H = -Q$, where ΔH represents

A. Heat of formation

B. Heat of combustion

C. Heat of neutrilisation

D. Heat of dilution

Answer: C

Watch Video Solution

3. Enthalpy of neutralisation of all strong acids and strong bases has the same value because

A. Neutralisation leads to the formation of a salt and water

B. Strong acid and bases are ionic substances

C. Acids always furnish H^+ ions and bases always furnish OH^- ions

D. The net chemical change involes the combination of 1 mol of H^+ ions and 1 mol OH^- ions to form water.

Answer: D

- **4.** The heat of neutralisation is maximum when
 - A. Sodium hydroxide is neutralised by acetic acid
 - B. Ammonium hydroxide is neutralised by acetic acid
 - C. Ammonium hydroxide is neutralised by hydrochloric acid
 - D. Sodium hydroxide is neutralised by hydrochloric acid. Other heats

of reactions

Answer: D

OBJECTIVE EXERCISE - 1 (OTHER HEATS OF REACTIONS)

1. The standard enthalpy of formation $\left(\Delta H^0\right)$ at 298K for methane, $CH_{4(g)}$ is 74.8 $kJmol^1$. The additional information required to determine the average energy for C-H bond formation would be

A. The dissociation energy of hydrogen molecule, \boldsymbol{H}_2

B. The dissociation energy of \boldsymbol{H}_2 and enthalpy of sublimation of carbon

C. Latent heat of vaporisation of methane.

D. The first four ionisation energies of carbon and electron gain enthalpy of hydrogen

Answer: B

2. For the transition $C_{\text{(diamonid)}} \rightarrow C_{\text{(graphite)}}$, $\Delta H = -1.5 \text{KJ}$. It follows that

A. Graphite is stabler than diamond

B. Diamond is stabler than graphite

C. Graphite is endothermic substance

D. Diamond is exothermic substance

Answer: A

- **3.** Which of the following is not correct?
- A. Dissolution of NH_2Cl in excess of water is an endothermic process
 - B. Neutralisation process is always exothermic
 - C. The absolute value of enthalpy (H) can be determined
 - experimentally

D. The heat of reaction at constant volume is denoted by ΔE

Answer: C

Watch Video Solution

- **4.** (A): The Mass, volume and pressure are extensive properties.
- (R): Extensive properties depend upon the amount of the substance.
 - A. Both A and R are true and R is the correct explanation
 - B. Both A and R are true but R is not the correct explanation of A
 - C. A is true but R iş false
 - D. A is false but R is true

Answer: A

5. $MgSO_{4(s)} + H_2O \rightarrow MgSO_{4(aq)}$, $\Delta H = -84K$. Cals, ΔH of the reaction is known as

A. Heat of dilution

B. Heat of solution

C. Heat of fusion

D. Heat of transition

Answer: B

- 6. Dissolution of which of the following in water is endothermic?
 - A. NaOH
 - B. Na_2CO_3
 - $C. MgSO_{\Lambda}$
 - D. NH₄Cl

Answer: D

Watch Video Solution

- **7.** The enthalpy change for the process $C_{\text{(graphite)}} \rightarrow C(g)$, $\Delta H = +xKJ$ represents enthalpy of
 - A. Fusion
 - B. Sublimation
 - C. Combustion
 - D. Vapourisation

Answer: B

Watch Video Solution

OBJECTIVE EXERCISE - 1 (HESS LAW)

- **1.** Hess.s law is based on
 - A. Law of conservation of mass
 - B. Gibb.s equation
 - C. First law of thermodynamics
 - D. Kirchoff.s equation

Answer: C

- **2.** In which of the following equations ΔH^0 reaction equal to ΔH_f^0 for the product?
- $A. 2CO_{2(g)} + O_{2(g)} \rightarrow 2CO_{2(g)}$
 - $B.N_{2(g)} + O_{3(g)} \rightarrow N_2O_{3(g)}$
 - $C. CH_{4(g)} + 2Cl_{2(g)} \rightarrow CH_2Cl_2(l) + 2HCl_{(g)}$
 - $D. Xe_{(g)} + 2F_{2(g)} \rightarrow XeF_{4(g)}$

Answer: D

Watch Video Solution

3. Hess's law states that

A. The standard enthalpy of an overall reaction is the sum of the enthalpy chages in individual reactions.

B. enthalpy of formation of compoud is same as the enthalpy of decomposition of the compound into constituent elements, but with opposite sign

C. at constant temperature the pressure of a gas in inversely proportional to its volume.

D. the mass of a gas dissolved per lit of a solvent is proportional to the pressure of the gas in equilibrium with the solution.

Answer: A

4. Heat of reaction (ΔH) is given by

A. ΔH = Activation energy of forward reaction - Activation energy of backward reaction

B. ΔH = Sum of bond energy of reactants - Sum of bond energy of products

C. ΔH = Sum of enthalpy of products - Sum of enthalpy of reactants

D. All the above

Answer: D

Watch Video Solution

5. The factor which does not influence that heat of the reaction is

A. Pressure

- B. Temperature
- C. Physical state of substance
- D. Number of steps involved in the reaction

Answer: D

Watch Video Solution

OBJECTIVE EXERCISE - 1 (ENTORPY AND GIBBS ENERGY)

- **1.** 1^{st} law does not tell about
 - A. Law of conservation of energy
 - B. Workdone whether +ve (or) ve
 - C. Feasibility of a process
 - D. ΔE at constent T

Answer: C

2. For change in entropy, units are

A. mol/lit

B. $mol. lit^{-1}sec^{-1}$

C. *J.* $mol^{-1}K^{-1}$

D. s^{-1}

Answer: C

3. In standard state the non spontaneous reaction among the following is

A. Melting of ice

B. Natural radioactivity

C. Freezing of water

D. Rusting of iron

Answer: C

Watch Video Solution

- 4. The incorrect statement according to second law of themodynamics is
 - A. Heat cannot flow from colder body to a hotter body of its own
 - B. All spontaneous processes are themo dynamically irreversible
 - C. Heat can be converted into work completely without casusing some
 - D. Perpetual motion machine of second kind is not possible

permanent change in the system (or) surroundings

Answer: C

- 5. Incorrect statement related to an irreversible process is
 - A. Entropy of the universe goes on increasing
 - B. Gibbs energy of the system goes on decreasing
 - C. Total energy of the universe goes on decreasing
 - D. Total energy of the universe remains constant

Answer: C

- 6. False statement regarding second law of thermodynamics is
 - A. It is impossible to construct a machine working in cycles which transforms heat from a lower temperature region to higher temperature region without intervention of any external agency.
 - B. Heat cannot flow from a colder body to a hotter body on its own

C. Any spontaneous process taking place in isolated system, $\Delta S < O$

D. All spontaneous processes are thermo dynamically irreversible and entropy of the system increases in all spontaneous processes.

Answer: C

7. Entropy of a system depends upon

A. Volume

B. Temperature

C. Pressure

D. All

Answer: D

8. One of the following reactions involves in decrease of entropy
A. Sublimation of dry ice
B. Crystallisation of salt from brine (aq)
C. Burning of rocket fuel
D. Decomposition of gaseous $N_2{\cal O}_4$
Answer: B
Watch Video Solution
9. The least random state of H_2O system is
A. Ice

B. Liquid water

D. Same in all.

C. Steam

Answer: A

Watch Video Solution

- **10.** For the reaction $I_{2(g)} \Leftrightarrow I_{2(s)}, \Delta H = -ve$. Then choose the correct statement from the following
- (A) The process is spontaneous at all temperature
- (B) The process is accompained by an increase in entropy
- (C) The process is accompained by a decrease in entropy
- (D) The process is accompained by a decrease in enthalpy
 - A. a, b and c
 - B. b and d
 - C. c and d
 - D. a, c and d

Answer: C

11. Which of the following process has negative value of ΔS ?

- A. Dissolution of sugar in water
- B. Stretching of rubber band
- C. Decomposition of lime stone
- D. Evaporation of water

Answer: B

Watch Video Solution

12. For a spontaneous process, in a reaction

A.
$$\Delta S_{\text{total}} = \left(\Delta S_{\text{system}} + \Delta S_{\text{surroundings}}\right) < 0$$

B.
$$\Delta S_{\text{total}} = \left(\Delta S_{\text{system}} + \Delta S_{\text{surroundings}}\right) = 0$$

C.
$$\Delta S_{\text{total}} = \left(\Delta S_{\text{system}} + \Delta S_{\text{surroundings}}\right) > 0$$

D.
$$\Delta S_{\rm sys} > \text{only}$$

Answer: C

Watch Video Solution

- **13.** Some statements are given with regard to entropy. The incorrect statement(s) are
- (A) The absolute entropy of substances cannot be determined
- (B) In standard state entropy of elements is always positive
- (C) The entropy of universe always decreases
- (D) In a spontaneous process, for an isolated system the entropy of the system generally increases
 - A. A, B
 - B. B, C
 - C. A,C
 - D. Only C

Answer: C

14. For an irreversible process, the value of $\left[\Delta S_{(\text{system})} + \Delta S_{(\text{surroundings})}\right]$ is

A.
$$> 0$$

D.
$$2\Delta S_{(surr)}$$

Answer: A

Watch Video Solution

15. A process is spontaneous at all temperatures when

A.
$$\Delta H = -ve$$
, $\Delta S = -ve$

B.
$$\Delta H = + ve$$
, $\Delta S = - ve$

$$C. \Delta H = -ve, \Delta S = +ve$$

D. $\Delta H = + ve$, $\Delta S = + ve$

Answer: C

Watch Video Solution

- **16.** $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(l)}$, $\Delta H = -ve$ and $\Delta G = -ve$. Then the reaction is
 - A. Spontaneous and instantaneous
 - B. Spontaneous and endothermic
 - $\hbox{C. Spontaneous and slow}\\$
 - D. Non spontaneous and slow

Answer: C

17. $H^+_{(aq)} + OH^-_{(aq)} \rightarrow H_2O_{(l)}$, $\Delta H = -ve$ and $\Delta G = -ve$ then the reaction is

A. Spontaneous and instantaneous

B. Spontaneous and endothermic

C. Spontaneous and slow

D. Non spontaneous and slow

Answer: A

Watch Video Solution

18. Among the following what is necessary condition for spontanity of a process?

A. DetlaS > 0

B. $\Delta E < 0$

 $\mathsf{C}.\,\Delta H < 0$

Answer: D

Watch Video Solution

19. Which of the following is the condition for a non spontaneous reaction at high temperature but spontaneous at low temperature?

$$\Delta H \Delta S$$

$$\Delta H \Delta S$$

$$\Delta H \Delta S$$

Answer: A

20. Based on the third law of themodynamics, the entropy can be obtained using the equation.

A.
$$\Delta S = \frac{\Delta H}{T}$$

$$B. \int_0^T T. C_P^{-1} dT = S$$

$$\mathsf{C.}\,\Delta G = T\Delta S$$

D.
$$\int_0^T C_P T^{-1}$$

Answer: D

Watch Video Solution

21. A chemical reaction cannot occur at all if its

- A. ΔH is (+)ve and ΔS is (-)ve
 - B. ΔH is (-)ve and ΔS is (+)ve
 - C. ΔH and ΔS are (+)ve but $\Delta H < T\Delta S$
 - D. ΔH and ΔS are (-)ve but DeltaH gt TDeltaS`

Answer: A

Watch Video Solution

22. An equilibrium reaction $X + Y \Leftrightarrow W + Z$, $\Delta H = + ve$ is spontaneous in the forward direction. Then corresponding sign of ΔG and ΔS should be respectively

$$C. + ve, + ve$$

Answer: B

A. ΔH is positive and ΔS is negative

B. Both ΔH and ΔS are negative

C. Both ΔH and ΔS are positive

D. ΔH is negative whereas ΔS is positive

Answer: C

Watch Video Solution

24. For which of the process, ΔS is negative?

$$A. H_{2(g)} \rightarrow 2H_{(g)}$$

 $B. N_{2(g)}(1atm) \rightarrow N_{2(g)}(8atm)$

$$C.2SO_{3(g)} \rightarrow 2SO_{2(g)} + O_{2(g)}$$

D. $C_{\text{(diamond)}} \rightarrow C_{\text{(graphite)}}$

Answer: B

25. The process of evaporation of a liquid is accompanised by

(A) Increase in enthalpy (B) Increase in entropy (C) Decrease in Gibbs energy

The correct statement(s) is/are

- A. Only a and c
- B. Only b and c
- C. Only a and b
- D. All

Answer: D

Watch Video Solution

26. The favourable conditions for a spontaneous reaction are

A. $T\Delta S > \Delta H$, $\Delta H = + ve$, $\Delta S = + ve$

B.
$$T\Delta S > \Delta H$$
, $\Delta H = + ve$, $\Delta S = -ve$

C.
$$T\Delta S = \Delta H$$
, $\Delta H = + ve$, $\Delta S = -ve$

D.
$$T\Delta S = \Delta H$$
, $\Delta H = + ve$, $\Delta S = + ve$

Answer: A

Watch Video Solution

27. A reaction has both DH and DS negative. The rate of reaction

- A. Increases with increase of temperature
- B. Increases with decrease of temperature
- C. Remains unaffected by change of temperature
- D. Cannot be predicted for change in temperature

Answer: A

28. At 27 ° C the reaction,

$$C_6H_{6(l)} + \frac{15}{2}O_{2(g)} \rightarrow 6CO_{2(g)} + 3H_2O((l))$$
 proceeds spontaneously because the magnitude of

A.
$$\Delta H = T\Delta S$$

B.
$$\Delta H > T\Delta S$$

C.
$$\Delta H < T \Delta S$$

D.
$$\Delta H > 0$$
 and $T\Delta S < 0$

Answer: B

Watch Video Solution

29. Although the dissolution of ammonium chloride in water is an endothermic reaction, even then it is spontaneous because

A. ΔH is positive, ΔS is negative

B. ΔH is positive, as is zero

C. ΔH is positive, $T\Delta S < \Delta H$

D. ΔH is positive, ΔS is positive and $\Delta H < T\Delta S$

Answer: D

Watch Video Solution

30. For the precipitation reaction of Ag^+ ions with NaCl, which of the following statements is correct?

A. ΔH for the reaction is zero

B. ΔG for the reaction is zero

C. ΔG for the reaction is negative

D. $\Delta G = \Delta H$

Answer: C

31. Which one of the following has ΔS^0 greater than zero?

$$\mathsf{A.} \, \mathit{CaO}_{(s)} + \mathit{CO}_{2(g)} < \Rightarrow \mathit{CaCO}_{3(s)}$$

$$B. NaCl_{(aq)} < \Rightarrow NaCl_{(s)}$$

$$C. NaNO_{3(s)} < \Rightarrow Na_{(aq)}^+ + NO_{3(aq)}^-$$

$$D.N_{2(g)} + 3H_{2(g)} < \Rightarrow 2NH_{3(g)}$$

Answer: C

Watch Video Solution

32. What of the following relationship is correct?

A.
$$\Delta G^{\circ} = -RT \ln K$$

B.
$$K = e^{-\Delta G^{\circ}/RT}$$

C.
$$K = 10^{-\Delta G^{\circ}/2.303RT}$$

D. All are correct

Answer: D

Watch Video Solution

33. For a reaction R_1 , $\Delta G = xKJmol^{-1}$. For a reaction R_2 , $\Delta G = yKJmol^{-1}$.

Reaction ${\cal R}_1$ is non-spontaneous but along with ${\cal R}_2$ it is spontaneous. This means that

A. x is -ve, y is +ve but in magnitude x gt y

B. x is +ve, y is -ve but in magnitude y gt x

C. Both x and y are -ve but not equal

D. Both x and y are +ve but not equal.

Answer: B

- A) Hp > HR 1) Exothermic
- **34.** B) $P\Delta V$ 2) Total heat content
 - C) E + PV 3) ΔH is positive
 - D) HR > Hp 4) Zero at constant volume

The correct match is

- A B C D
- A. 3 4 2 1
- A B C D
- B. 2 3 1 4
- A B C D
- C. 1 3 4 2
- A B C D
 D. 1 3 4 2

Answer: A

Watch Video Solution

List - I (Freezing of water) List - II

- A) Water at 10 ° C I) $\Delta G = 0$
 - B) Water at $0 \degree C$ II) $\Delta G + Ve$
 - C) Water at $+10 \degree C$ III) $\Delta G Ve$

The correct match is

- A B CA B CB. III I II A B C11 111 A B CD. III II I
- Answer: A

- 36. (A): The entropy of the universe is continuously increasing.
- (R): All naturally occurring processes are accompanied by increase in entropy.
 - A. Both A and R are true and R is the correct explanation
 - B. Both A and R are true but R is not the correct explanation of A
 - C. A is true but R is false
 - D. A is false but R is true

Answer: A

Watch Video Solution

37. (A): For a process to be spontaneous, the change in free energy must be negative. (R): The change in entropy for a process must always be positive if it is spontaneous.

A. Both A and R are true and R is the correct explanation

B. Both A and R are true but R is not the correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: C

38. (A): Entropy of a perfect crystalline substance at absolute zero is zero

(R): At absolute zero translation kinetic energy of a system is zero.

A. Both A and R are true and R is thecorrect explanation

B. Both A and R are true but R is not the correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: A

Watch Video Solution

39. Which one ofthe following is correct for a spontaneous reaction at any temperature ?

A.
$$\Delta H = -ve$$
, $\Delta S = +ve$, $\Delta G = -ve$

B.
$$\Delta H = -ve$$
, $\Delta S = -ve$, $\Delta G = -ve$

C.
$$\Delta H = + ve$$
, $\Delta S = + ve$, $\Delta G = - ve$

D. $\Delta H = -ve$, $\Delta S = +ve$, $\Delta G = +ve$

Answer: A

Watch Video Solution

- **40.** The correct statement regarding entropy is
 - A. At absolute zero temperature, entropy of a perfectly crystalline solid is zero.
 - B. At absolute zero temperature, the entropy of a perfectly crystalline substance is +Ve.
 - C. At absolute zero temperature, the entropy of all crystalline substances is zero.
 - D. At 0 $^{\circ}$ C, the entropy of a perfect crystalline solid is zero.

Answer: A

41. The correct thermodynamic conditions for the spontaneous reaction at all temperatures is

A.
$$\Delta H < 0$$
 and $\Delta S = 0$

B.
$$\Delta H > 0$$
 and $\Delta S < 0$

C.
$$\Delta H < 0$$
 and $\Delta S > 0$

D.
$$\Delta H < 0$$
 and $\Delta S < 0$

Answer: C

Watch Video Solution

42. The value of $\Delta_f G^{\Theta}$ for formation of Cr_2O_3 is – 540 kJ mol⁻¹ and that of

 Al_2O_3 is – 827 kJ mol⁻¹ . Is the reduction of Cr_2O_3 possible with Al?

A. Reduction of Cr_2O_3 by Al will take place

B. Oxidation of Cr_2O_3 by Al will take place

C. Neither oxidation nor reduction take place

D. Reaction is not feasible

Answer: A

Watch Video Solution

OBJECTIVE EXERCISE - 2 (FIRST LAW OF THERMODYNAMICS)

1. A system absorbs 600J of energy and does work equivalent to 400J J of energy. The internal energy changes

A. 1000J

B. 200J

C. 600J

D. 300J

Answer: B

2. During a process work equivalent to 400J is done on a system, which
gives out of 125J of energy. The change in internal energy is

A. 525J

B. 375J

C. 275J

D. 200J

Answer: C

Watch Video Solution

3. One litre-atmosphere is appromixmately equal to

A. 19.2 KJ

B. 101 J

C. 8.31 J

D. 831 J

Answer: B

Watch Video Solution

- **4.** One mole of an ideal gas at 300K is expanded isothermally reversibly from an initial volume of 1 litre to 10 litres. The ΔE for this process is (R =
- 2 cal $mol^{-1}K^{-1}$)

A. 163.7 cal

B. Zero

C. 1381.1 cal

D. 9 lit atm

Answer: B

5. An ideal gas occuping a volume of $2dm^3$ and a pressure of 5 bar undergoes isothermal and irreversible expansion against external pressure of 1 bar. The final volume of the system and work involved in the process is

A. $10dm^3$, 1000J

B. $8dm^3$, - 800J

C. $10dm^3$, - 800J

D. $10m^3$, - 1000J

Answer: C

Watch Video Solution

6. A system absorbs 10kJ of heat at constant volume and its temperature rises from $27^{0}C$ to $37^{0}C$. The DE of reaction is

A. 100 KJ

C.0

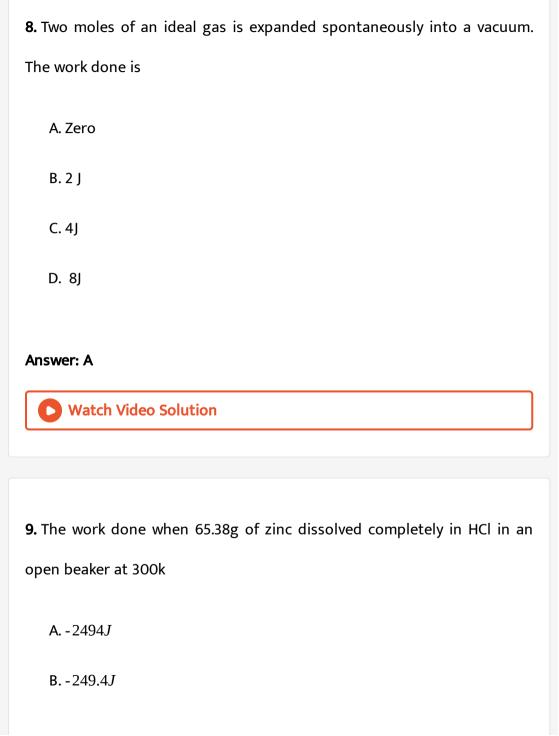
D. 1 KJ

Answer: B

Watch Video Solution

7. An ideal gas expands in volume from $10^{-3}m^3$ to $10^{-2}m^3$ at 300 K against a constant pressure of $10^5 Nm^{-2}$. The work done is

A. -900*J*

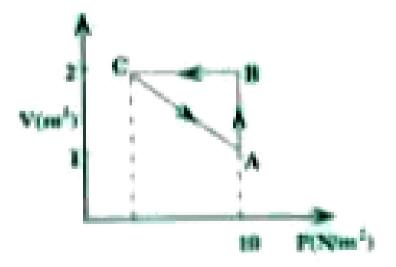

B. 900KJ

C. 270KJ

D. -900KJ

Answer: A

C. 1*J*


D. -24.94*J*

Answer: A

Watch Video Solution

10. An ideal gas is taken through the cycle $A \to B \to C \to A$, as shown in the figure. If the net heat supplied to the gas in the cycle is 5 J, what is the work done by the gas in the process $C \to A$

- B. 10*J*
- C. 15*J*
- D. 20*J*

Answer: A

Watch Video Solution

OBJECTIVE EXERCISE - 2 (E,H , HEAT CAPACITIES)

constant external pressure of 1.5 atm from a volume of 8.0L to 2.0L. The change in internal energy for the gas in Joules is (1L - atm = 101.32 J))

1. A gas absorbs 100 J of heat and is simultaneously compressed by a

- A. 1011.9
- B. -909.9
- C. +909.9
- D. 1011.9

Answer: D

Watch Video Solution

2. The molar heat capacity of water at constant pressure, C, is $75JK^{-1}mol^{-1}$. When 1.0KJ of heat is supplied to 100g of water which is free to expand, the increase in temperature of water is:

- A. 1.2K
- B. 2.4K
- C. 4.8K
- D. 6.6K

Answer: B

Watch Video Solution

3. For an ideal gas, $\left(\frac{\partial E}{\partial V}\right)_T$ is

- A. zero
- B. + *Ve*
- C. Ve
 - D. ΔH

Answer: A

Watch Video Solution

4. For a gas having molar mass M, specific heat at constant pressure can be given as:

A.
$$\frac{\gamma R}{M(\gamma - 1)}$$

B. $\frac{\gamma}{RM}$

 $\mathsf{C.}\;\frac{M}{R(\gamma-1)}$

D. $\frac{\gamma RM}{\gamma + 1}$

Answer: A

5.	Molar	heat	capacity	of	water	in	equilibrium	with	ice	at	constant
pr	essure	is:									

A. Zero

B. Infinity

C. 40.45*KJK*⁻¹*mol*⁻¹

D. $5.48JK^{-1}mol^{-1}$

Answer: B

Watch Video Solution

6. Change in enthalpy when $11.2dm^3$ of He at NTP is heated in a cylinder to $100\,^{\circ}\,C$ is

A. 623.5J

- B. 1039J
- C. 1227J
 - D. 520J

Answer: B

Watch Video Solution

liquid is vapourised at the same temperature

- 7. Latent heat of vapourisation of a liquid at 500k and 1atm pressure is
- 10K. Cal/mole. What is the change in internal energy when 3 moles of the
 - A. 27K.Cal
 - B. 7K.Cal
 - C. 33K. Cal
 - D. 25K.Cal

Answer: A

OBJECTIVE EXERCISE - 2 (HEAT OF FORMATION AND COMBUSTION)

1. Given that $\frac{1}{2}S_{8(s)} + 6O_{2(g)} \rightarrow 4SO_{3(g)}$, $\Delta H^0 = -1590kJ$. The standard enthalpy of formation of SO_3 is

B. -397.5*KJmol* ⁻¹

C. -3.975*KJmol* ⁻¹

D. +397.5*KJmol*⁻¹

Answer: B

Watch Video Solution

2. The amount of heat evolved on combustion of 10 grams of benzoic acid is 10 K.Cals. The heat of combustion of benzoic acid is

- A. 122K. Cals
- B. 112K. Cals
- C. 132K. Cals
 - D. -92K. Cals

Answer: A

Watch Video Solution

the combustion heat liberated is ____ kCal

3. Heat of combustion of C_2H_4 is -337 kCal. If 5.6 lit O_2 is used at STP, in

- A. 28.08
- B. 14.04
- C. 42.06
- D. 56.16

Answer: A

4. Human body requires 2370 K. Cal of energy daily. The heat of combustion of glucose is -790 K.cal/mole. The amount of glucose required for daily consumption is

A. 650g

B. 540g

C. 327g

D. 490.5g

Answer: B

Watch Video Solution

5. The heats of combustion of ethane, ethene and acetylene are -341.1 kcal, -330 kcal and -310.9 kCal mol^{-1} respectively. The best fuel among them is

- A. Ethane
- B. Fthene
- C. Acetylene
- D. All are equal

Answer: C

Watch Video Solution

6. The heat of combustion of benzene at 27 °C found by bomb calorimeter i.e., for reaction the $C_6H_{6-}((l)) + 7\frac{1}{2}O_{2(g)} + 6CO_{2(g)} + 3H_2O_{(l)}$ is -780K. Calmol⁻¹. The

heat evolved on burning 39g of benzene in an open vessel will be

- A. 390 K.Cal
 - B. 780.9 K.Cal
 - C. 390.45 K.Cal
 - D. 780 K.Cal

Answer: C

Watch Video Solution

7. N_2 + $3H_2 \rightarrow 2NH_3$, $\Delta H = -46K$. Cals. From the above reaction, heat of formation of ammonia is

- A. 46 K.Cals
- B. -46 K.Cals
- C. -23 K.Cals
- D. 23 K.Cals

Answer: C

Watch Video Solution

8. If the bond energies of H-H, Br-Br and HBr are 433, 192 and $364kJmol^{-1}$ respectively, then ΔH ° for the reaction :

$$H_{2(g)} + Br_{2(g)} \rightarrow 2HBr_{(g)}$$
 is

A.
$$-261kJ$$

Answer: D

9. Give that
$$C_s + O_{2_g} \to CO_{2_{(g)}}$$
, $\Delta H^0 = -xkJ$
 $2CO_{(g)} + O_{2_{(g)}} \to 2CO_{2_{(g)}}$, $\Delta H^0 = -ykJ$.

A.
$$\frac{y - 2x}{3}$$

B.
$$\frac{y - 2x}{2}$$

c.
$$\frac{2x - y}{2}$$

D.
$$\frac{x - y}{2}$$

Answer: B

Watch Video Solution

10. Given $N_2(g)+3H_2(g)\to 2NH_3(g), \Delta_rH^\theta=-92.4kJmol^{-1}$ What is the standard enthalpy of formation of NH_3 gas ?

- **A.** -92
- B. + 46
- C. + 92
- D. -46

Answer: D

Watch Video Solution

OBJECTIVE EXERCISE - 2 (HEAT OF NEUTRILIZATION)

1. Heat of neutralisation for the reaction

 $NaOH + HCl \rightarrow NaCl + H_2O$ is - 57.1kJmole⁻¹. The heat relased when

0.25 moles of NaOH is treated with 0.25 moles of HCl is

A. 22.5 K.J/mole

B. 57.1 K.J/mole

C. 14.3 K.J/mole

D. 28.6 K.J/mole

Answer: C

2. Given that the data for neutralization of a weak acid (HA) and strong acid with a strong base is:

 $HA + OH^{-} \Rightarrow A^{-} + H_{2}O: \Delta H = -41.80kJ, H^{+} + OH^{-} \Rightarrow H_{2}O, \Delta H = -55.90kJ$

The enthalpy of dissociation of weak acid would be

- A. -97.20*KJ*
- B. +97.70KJ
- C. 14.10*KJ*
- D. 14.10*KJ*

Answer: D

- **3.** The heats of neutralisation of HCl with NH_4OH and that of NaOH with CH_3COOH are repectively -51.4 and -50.6 $KJeq^{-1}$. The heat of neutralisation of acetic acid with NH_4OH will be
 - A. -44.6*KJeq* ⁻¹
 - B. 50.6*KJeq* 1
 - $C. 51.4 KJeq^{-1}$
 - D. -57.4*KJeq* -1

Answer: A

Watch Video Solution

4. Heat liberated in the neutralisation of 500 ml of 1N HCl and 500ml of

1N NH_4OH is -1.36 K.Cals. The heat of ionisation of NH_4OH is

A. 10.98 K.Cals

B. -12.34 K.Cals

C. - 10.98 K.Cals

D. 12.34 K.Cals

Answer: A

Watch Video Solution

5. In which of the following combinatins of HCL and NaOH, the heat energy liberated is maximum

- A. 10ml of 0.1M HCl+40 ml of 0.1 M NaOH
- B. 30ml of 0.1M HCl+20 ml of 0.1 M NaOH
- C. 25ml of 0.1 M HCl+25 ml of 0.1 M NaOH
- D. 35ml of 0.1M HCl+15 ml of 0.1 M NaOH

Answer: C

- **6.** Under the same conditions how many mL of 1M KOH and 0.5M H_2SO_4 solutions, respectively when mixed for a total volume of 100mL produce the highest rise in temperature
 - **A.** 67:33
 - B. 33:67
 - C. 40:60
 - D. 50:50

Answer: D

Watch Video Solution

7. Statement -I: Heat of neutralization of HCl and NaOH is same as that of

Statement-II : HCl, H_2SO_4 and NaOH are all strong electrolyte.

A. 57.32*KJ*

 H_2SO_4 with NaOH.

B. > 57.32KJ

C. < 57.32KJ

D. None of these

Answer: B

8. When 1 litre of IM HCl is mixed with 1 litre of 1M NaOH, the rise in temperature was found to be T_1 . In another experiment 1 litre of 0.5 M NaOH is mixed with 1 lit. of 0.5 M HCl. The rise in temperature was found to be T_2 . Then

A.
$$T_1 = T_2$$

B.
$$T_1 < T_2$$

C.
$$T_1 = 2T_2$$

Answer: C

Watch Video Solution

9. $H_2SO_{4(aq)} + 2KOH_{(aq)} \rightarrow K_2SO_{4(aq)} + 2H_2O_{(l)}$, ΔH for the above reaction is

B. + 57.3KJ

C. -27.4K. Cal

D. - 137*KJ*

Answer: C

Watch Video Solution

10. For the reaction $2H_2O_{(l)} \rightarrow H_3O_{(aq)}^+ + OH_{(aq)}^-$, the value of ΔH is

A. 114.6*KJ*

B. - 114.6KJ

C. 57.3KJ

D. -57.3*KJ*

Answer: C

11. Equal volumes of equi molar HCl and H_2SO_4 are separately neutralised by dilute NaOH solution, then heats liberated and x kCal and y kCal respectively. Which of the following is true.

$$A. x = y$$

$$B. x = y/2$$

$$C. x = 2y$$

D.
$$x = y/3$$

Answer: B

Watch Video Solution

12. When $50cm^3$ of 0.2N H_2SO_4 is mixed with $50cm^3$ of 1N KOH, the heat

liberated is

A. 11.45 KJ

B. 57.3 KJ

C. 573 KJ

D. 573 J

Answer: D

Watch Video Solution

OBJECTIVE EXERCISE - 2 ($\Delta H, \Delta E$ AND OTHER HEATS)

1. Work done during the combustion of one mole of CH_4 in bomb calorimeter is

A. zero

B. - 101*J*

C. -24.2J

D. -1J

Answer: A

2. A sample of CH_4 of 0.08g was subjected to combustion at 27 $^{\circ}C$ in a bomb calorimeter. The temperature of the calorimeter system was found to be raised by 0.25 $^{\circ}C$. If heat capacity of calorimeter is $18kJ/^{\circ}C$, ΔH for combustion of CH_4 at 27 $^{\circ}C$ is

- A. -900*KJ*/mole
- B. -905*KJ*/mole
- C. -895*KJ*/mole
- D. -890*KJ*/mole

Answer: B

Watch Video Solution

3. For the reaction of one mole zinc dust with one mole sulphuric acid in a bomb calorimeter, ΔU and w correspond to

A.
$$\Delta U < 0, w = 0$$

B.
$$\Delta U = 0$$
, w = 0

$$C. \Delta U > 0, w = 0$$

D.
$$\Delta U > 0, w > 0$$

Answer: A

- **4.** 100ml of water at $20 \,^{\circ} C$ and 100ml of water at $40 \,^{\circ} C$ are mixed in calorimeter until constant temperature reached. Now temperature of the mixture is $28 \,^{\circ} C$. Water equivalent of calorimeter is
 - A. 50J
 - B. 104.5J
 - C. -24.2*J*
 - D. 209J

Answer: D

Watch Video Solution

5. Heat of combustion of benzoic acid $\left(C_6H_5COOH\right)$ at constant volume at 25 ° C is -3233KJ/mole. When 0.5g of benzoic acid is burnt in bomb calorimeter, the temperature of calorimeter increased by 0.53 ° C. Now in the same bomb calorimeter 1g of C_2H_6 burnt then temperature increased by 2.04 ° C. ΔH for combustion of C_2H_6 is

- A. 1530KJ/mole
- B. 1536.2KJ/mole
- C. 1522.8KJ/mole
- D. +1536.2*KJ*/mole.

Answer: B

6. The dissociation energy of CH_4 is 400K. $Calmol^{-1}$ and that of ethane is 670K. $Calmol^{-1}$. The C-C bond energy is:

- A. 270K.Cal
- B. 70K. Cal
- C. 200K.Cal
- D. 240K. Cal

Answer: B

- **7.** The heat of atomisation of $PH_{3(g)}$ is 228 kCal mol^{-1} and that of
- $P_2H_{2(g)}$ is 355 kCal mol^{-1} . The energy of the P-P bond is (kn kCal)
 - A. 102
 - B. 51
 - C. 26

Answer: B

Watch Video Solution

8.
$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)}, \Delta H = -286.2KJ$$

$$H_2O_{(l)} \to H_{(aq)}^+ + OH_{(aq)}^-, \Delta H = +57.3KJ$$

Enthalpy of ionization OH^- in aqueons solution is

D. zero

Answer: A

9. Among the following ions, for which one standard enthalpy of ionisation is zero

A.
$$OH_{(aq)}$$

B.
$$CI_{(aq)}$$

$$\mathsf{C}.H_{(aq)}^{\mathsf{-}}$$

$$\mathsf{D}.H_{(aq)}^+$$

Answer: D

10.
$$\frac{1}{2}H_{2(g)} + \frac{1}{2}Cl_{2(g)} \rightarrow HCl_{(g)}, \Delta H^0 = -92.4$$
 kJ/mole, $HCl_{(g)} + nH_2O \rightarrow H^+_{(aq)} + Cl^-_{(aq)}, \Delta H^0 = -74.8$ kJ/mole ΔH^0f for $Cl^-_{(aq)}$ is

D. -35.2*KJ*/mole

Answer: B

Watch Video Solution

11. If the standard molar enthalpy of formation of $CaO_{(s)}$, $CO_{2(s)}$ and $CaCO_{3(s)}$ is -635, -393 and -1207kJmol⁻¹ respectively, the $\Delta_r H^{\odot}$ in $kJmol^{-1}$ for the reaction

 $CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$ is

B. 965

C. 2235

D. + 179

Answer: D

12. Calculate ΔH in Joules for

$$C_{\text{(graphite)}} \rightarrow C_{\text{(Diamond)}}$$

by using the following data

$$C_{\text{(graphiter)}} + O_{2(g)} \rightarrow CO_{2(g)}, \Delta H^{\circ} = -393.5KJ$$

$$C_{\text{(Diamond)}} + O_{2(g)} \rightarrow CO_{2(g)}, \Delta H^{\circ} = -395.4KJ$$

B.
$$-788.9 \times 10^3$$

D.
$$788 \times 10^3$$

Answer: A

13. Given ΔH_r° for $CO_2(g)$, CO_g and $H_2O(g)$ are -393.5, -110.5 and -241.8

 $extit{KJmol}^{-1}$ respectively. The $\Delta H_r^\circ \left(\in extit{KJmol}^{-1}
ight]$ for the reaction

$$CO_2(g) + H_2(g) \rightarrow CO_g + H_2O(g)$$
 is

- **A.** 524.1
- B. 262.5
- D. 41.2

C. 41.7

Answer: D

OBJECTIVE EXERCISE - 2 (HESS LAW)

1. The standard enthalpies of formation of $H_2O_{2(l)}$ and $H_2O_{(l)}$ are -187.8kJmole⁻¹ and -285.8kJmole⁻¹ respectively. The ΔH^0 for the

decomposition of one mole of $H_2O_{2(l)}$ to $H_2O_{(l)}$ and $O_{2(q)}$ is

B. -98.0*K*. *J*. mole ⁻¹

C. +473.6K. J. mole $^{-1}$

D. + 187.8K. J. mole $^{-1}$

Answer: B

Watch Video Solution

enthalpy of formation of NO is

2. $N_{2(g)} + 2O_{2(g)} \rightarrow 2NO_2 + xkJ$, $2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)} + ykJ$. The

A. (2X - 2Y)

C. 1/2 (Y-X)

B. X - Y

D. 1/2 (X - Y)

Answer: C

3. If
$$S + O_2 \rightarrow SO_2$$
, $\Delta H = -398.2kJ$

$$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3, \Delta H = -98.7kJ, SO_3 + H_2O \rightarrow H_2SO_4, \Delta H = -130.2kJ$$

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O, \Delta H = -227.3kJ$$

The enthalpy of formation of sulphuric acid at 298K will be

Answer: A

A. (2x - y)

B. (2x + y)

C. (y-2x)

D. $\frac{2x}{y}$

Answer: C

5.

Watch Video Solution

The heat of formation of $CS_{2(1)}$ is

 $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}, \Delta H = -395kJ, S_{(g)} + O_{2(g)} \rightarrow SO_{2(g)}, \Delta H = -295kJ$

 $CS_{2(l)} + 3O_{2(g)} \rightarrow CO_{2(g)} + 2SO_{2(g)}, \Delta H = -1110kJ$

Given

 $S_{(s)} + \frac{3}{2}O_{2(g)} \rightarrow SO_{3(g)} + 2xK. cal$

 $SO_{2(q)} + \frac{1}{2}O_{2(q)} \rightarrow SO_{3(q)} + yK. Cal.$

Which would be the enthalpy of formation SO_2 ?

B. 31.25*KJmol* ⁻¹

C. 62.5KJmol⁻¹

D. 250KJmol - 1

Answer: A

Watch Video Solution

- **6.** 1) $C_{\text{Graphite}} + O_{2(g)} \rightarrow CO_{2(g)}, \Delta H = -94K. Cals$
- 2) $C_{\text{Diamond}} + O_{2(g)} \rightarrow CO_{2(g)}, \Delta H = -94.5K. Cals$

From the above data the heat of transition of $C_{
m diamond}
ightarrow C_{
m Graphite}$

- A. -50Cal
- B. 100Cal
- C. -500Cal
- D. 100Cal

Answer: C

Watch Video Solution

7. ΔH of combustion of yellow P and red P are `- 11 K.J and -9.78 KJ respectively DeltaH of transition of yellow P to Red P is

A. -20.78*KJ*

B. -1.22K. J

C. + 1, 22KJ

D. +20.78KJ

Answer: B

Watch Video Solution

8. How much energy is released when 6 mole of octane is burnt in air? Given ΔH_f^0 for $CO_{2(g)}$, $H_2O_{(g)}$ and $C_8H_{18(l)}$ respectively are

A. -32.6*MJ*

Answer: A

Watch Video Solution

Given

9. $C + 2S \rightarrow CS_2$, $\Delta Hf^0 = +117.0 KJmol^{-1}$, $C + O_2 \rightarrow CO_2$, $\Delta Hf^0 = -393.0 KJmol^{-1}$

. The heat of combustion of CS_2 + $3O_2 \rightarrow CO_2$ + $2SO_2$ is

B. - 1104KJmol - 1

D. $+807 K J mol^{-1}$

Answer: B

Watch Video Solution

10. The standard heat of formation of sodium ions in aqueous solution

from the following data:

Heat of formation of NaOH(aq) at 25 ° C = -470.7KJ:

Heat of formation of OH^{-1} at 25 ° C = -228.8 KJ is :

A. -251.9*KJ*

B. 241.9*KJ*

C. -241.9KJ

D. 300*KJmol* ⁻¹

Answer: C

11. The lattice energy of solid NaCl is 180K. Call per mol. The dissolution of the solid in water in the form of ions is endothermic to the extent of 1K, Cal per mol. If the solvation energies of Na^+ and Cl^- ions are in ratio 6:5, what is the enthalpy of hydration of sodium ion?

A. -85.6K. Cal/mol

B. -97.5*K*. *Cal/mol*

C. 82.6K. Cal/mol

D. + 100*K*. *Cal/mol*

Answer: B

Watch Video Solution

12. Heat of formation of CO and CO_2 are -26.4, -94.0 kcal/mole respectively. What is the heat of combustion of CO in kcals?

A. + 26.4

B. 120.6

C. -67.6

D. 135.2

Answer: C

Watch Video Solution

13. $Cl_{(g)} + e^- \rightarrow Cl_{(g)}$, $E_A = -348kJ/\text{mole}$ at 0 K. then ΔH for same

process at 300K (in kJ) [R=8J/mol/K] [Hint : $\Delta H = EA - \frac{5}{2}RT$].

A. + 354

B. + 348

C. -354

D. Zero

Answer: C

14. For the reaction:

$$2H_{2(a)} + O_{2(a)} \rightarrow 2H_2O_{(a)}, \Delta H = -571kJ$$

bond energy of (H-H) = 435 kJ, of (O = O) = 498kJ , then the average bond energy of O-H bond using the above data

- A. 484kJ
- B. -84kJ
- C. 271kJ
- D. -271*kJ*

Answer: A

Watch Video Solution

15. If values of ΔH_f° of $ICl_{(g)}$, $Cl_{(g)}$ and $I_{(g)}$ are respectively 17.57, 121.34, $106.96 Jmol^{-1}$. The value of I - Cl (bond energy) in $Jmol^{-1}$ is:

B. 10.73

C. 35.15

D. 106.96

Answer: B

Watch Video Solution

16. The enthalpy changes for the following processes are listed below:

$$Cl_{2(q)} \rightarrow 2Cl_{(q)}, \Delta H = 242.3kJmol^{-1}$$

$$I_{2(q)} \rightarrow r2I_{(q)}, \Delta H = 151.0 k J mol^{-1}$$

$$ICl_{(g)} \rightarrow I_{(g)} + Cl_{(g)}, \Delta H = 211.3kJmol^{-1}$$

$$I_{2(s)} \rightarrow I_{2(q)}, \Delta H = 62.76 k J mol^{-1}$$

Given that the standard states for iodine and chlorine are $I_{2(s)}$ and

 $Cl_{2(g)}$, the standard enthalpy of formation for ICT is:

B. - 16.8kJmol - 1

 $C_{*} + 16.8 k Jmol^{-1}$

D. $+244.8kJmol^{-1}$

Answer: C

Watch Video Solution

enthalpies of HCl, NaOH ,NaCl and H_2O 17. The are -120, -82, -148 and -68 kCals. Respectively. ΔH of the following

reaction is $HCl + NaOH \rightarrow NaCl + H_2O$

A. -28.7K. Cals

B. - 18K. Cals

C. -57.3K. Cals

D. - 14K. Cals

Answer: D

18. ΔH^0 for a reaction F_2 + $2HCl \rightarrow 2HF + Cl_2$ is given as -352.8kJ. ΔH_f^0 for HF is -268.3kJmol $^{-1}$, then ΔH_f^0 of HCl would be

A.
$$-22kJmol^{-1}$$

B. 880kJmol⁻¹

C. -91.9kJmol -1

 $D. - 183.8 k Jmol^{-1}$

Answer: C

Watch Video Solution

19. What is theheat of formation of C_6H_6 , given that the heats of combustion of benzene, carbon and hydrogen are 782, 94 and 68K. Cal respectively

- A. +14K. Cal
- B. 14K. Cal
- C. +28K. Cal
- D. -28K. Cal

Answer: A

Watch Video Solution

- 20. The heats of combustion of carbon hydrogen and acetylene are -394kJ, -286kJ and -1301kJ respectively. Calculate heat of formation of

 C_2H_2

- A. 621*KJ*
- B. 454*KJ*
- C. -227K. J
- D. 227KJ

Answer: D

Watch Video Solution

21. The enthalpies of combustion of carbon and carbon monoxide are $-390 KJmol^{-1}$ and $-278 KJmol^{-1}$ respectively. The enthalpy of formation of carbon monoxide is

- A. 668*KJmol* 1
- B. 112*KJmol* ⁻¹
- C. 112KJmol 1
- D. -668*KJmol* -1

Answer: C

22. Calculate the heat of formation of KOH from the following data

$$K_{(s)} + H_2O + aq \rightarrow KOH_{(aq)} + \frac{1}{2}H_{2(g)}, \Delta H = -48.4K. Cal$$

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)}, \Delta H = -68.44K. Cal$$

$$KOH_{(s)} + aq \rightarrow KOH_{aq}, \Delta H = -14.01K. Cal$$

Answer: C

Watch Video Solution

OBJECTIVE EXERCISE - 2 (ENTROPY AND GIBBS ENERGY)

1. ΔS_{surr} for $H_2 + 1/2O_2 \rightarrow H_2O$, $\Delta H - 280kJ$ at 400K is

Answer: C

Watch Video Solution

2. $\Delta S_{\text{says}} \text{for } 4Fe_{(s)} + 3O_2 \rightarrow 2Fe_2O_{3(s)}$ is -550J/k/mol at 298K. If enthalpy change for same process is -1600kJ/mol, DS_{total} (in J/mol/K) is

A.
$$\left[\frac{1600}{298} \times 10^3 \right] + 550 > 0$$

B.
$$\left[\frac{1600}{298} \times 10^3 \right] - 550 > 0$$

C. 550 -
$$\left[\frac{1600}{298}\right] < 0$$

D.
$$\left[\frac{1600 + 550}{298} \right] > 0$$

Answer: B

Watch Video Solution

3. For a certain reaction, $\Delta H^0 ~\&~ \Delta S^0$ respectively are 400kJ & 200 J/mol/K.

The process is non-spontaneous at

- A. 2100 K
- B. 2010 K
- C. 1990 K
- D. 2020 K

Answer: C

Watch Video Solution

4. For which one of the following reactions , the entropy changes is positive ?

kJ
$$mol^{-1}$$
and $\Delta S = 50.0 \ JK^{-1}mol^{-1}$

5. The temperature of K at which
$$\Delta G$$
 =0 for a given reaction with ΔH = -20.5

Answer: B

A. -410

C. 410

D. -2.44

Answer: B

$D.H_2O(l) \rightarrow H_2O(g)$

Watch Video Solution

 $\mathsf{A.}\, H_2(g) + \frac{1}{2} O_2(g) \,\,\to\, H_2O(l)$

B. $Na^+(g) + Cl^-(g) \rightarrow NaCl(S)$

 $C. NaCl(1) \rightarrow NaCl(S)$

6. Enthalpy of vapourisation for water is 186.5 KJ mole⁻¹. The entropy change during vapourisation is KJmole⁻¹

D. 2.0

Answer: A

Watch Video Solution

7.
$$S_{H_{2(g)}}^{0} = 130.6JK^{-1}mol^{-1}, S_{H_{2}O_{(l)}}^{0} = 69.9JK^{-1}mol^{-1}, S_{O_{2(g)}}^{0} = 205JK^{-1},$$

Then the absolute entropy change of $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)}$ is

A.
$$-163.2 Jmol^{-1} K^{-1}$$

B. $+163.2 Jmol^{-1}K^{-1}$

C. $-303 Jmol^{-1}K^{-1}$

D. $+303 Jmol^{-1}K^{-1}$

Answer: A

Watch Video Solution

8. At 0 ° C ice and water are in equilibrium and $\Delta H = 6.0 KJ$ then ΔS will be

A. $22JK^{-1}mol^{-1}$

B. $35JK^{-1}mol^{-1}$

C. $48JK^{-1}mol^{-1}$

D. $100JK^{-1}mol^{-1}$

Answer: A

9. Melting & boiling point of NaCl respectively are 1080 K & 1600K. ΔS for

stage -I & II in
$$NaCl_{(s)} \rightarrow \Delta H_{\rm fus} = 30kJNaCl_{(l)} \rightarrow \Delta H_{\rm vap} = 160kJ$$
 are

- A. $\frac{\Delta S(I)}{1/36(KJ/mol/K)}$ $\frac{\Delta S(II)}{1/10(KJ/mol/K)}$
- $\Delta S(I)$ $\Delta S(II)$
- B. 36(KJ/mol/K) 100(KJ/mol/K)
- C. $\frac{\Delta S(I)}{1/36(KJ/mol/K)}$ $\frac{\Delta S(II)}{10(KJ/mol/K)}$
- $\Delta S(I)$ $\Delta S(II)$ D. 36(KJ/mol/K) 1/10(KJ/mol/K)

Answer: A

Watch Video Solution

10. One mole of ice is converted into water at 273 K. The entropies of $H_2O_{(s)}$ and $H_2O_{(l)}$ are 38.20 and $60.01 Jmol^{-1}K^{-1}$ respectively. The enthalpy change for the conversion is

A. 59.54*Jmol* - 1

B. 5954*Jmol* ⁻¹

C. 595.4*Jmol* ⁻¹

D. 320.6*Jmol* ⁻¹

Answer: B

Watch Video Solution

11. ΔS for vapousization of 900 g water (in KJ//K) is $\left[\Delta H_{vap} = 40 KJ/mol\right]$

A. (900×40)

B. $\frac{50 \times 40}{373}$

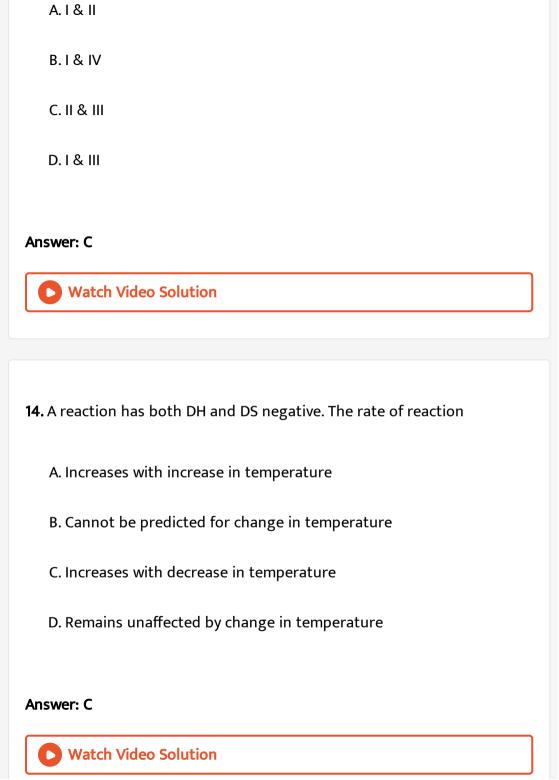
c. $\frac{900 \times 40}{373}$

D. $\frac{18 \times 40}{373}$

Answer: B

12. Calculate ΔG ° for the following cell reaction

- A. -305kJ/mol
- B. -301kJ/mol
- C.305kJ/mol
- D. 301kJ/mol


Answer: B

View Text Solution

- 13. Identify the correct statements among the following
- I) At equilibrium, change in entropy for a process, *DetlaS* = 0
 - II) Temperature is an extensive property
- III)For a cyclic process $\Delta U \neq 0$

IV)During free expansion of a gas under reversible or irreversible condition $\Delta W=0$

15. Which of the following is true for spontaneous adsorption of ${\cal H}_2$ gas without dissociation on solid surface

- A. Process is exothermic and $\Delta S < 0$
- B. Process is endothermic and $\Delta S > 0$
- C. Process is exothermic and $\Delta S > 0$
- D. Process is endothermic and $\Delta S < 0$

Answer: A

Watch Video Solution

PRACTICE EXERCISE

1. A system has internal energy equal to E_1 , 450J of heat is taken out of it and 600 J of work is done on it. The final energy of the system will be

A.
$$(E_1 + 150)$$

B. $(E_1 + 1050)$

C. $(E_1 - 150)$

D. None of these

Answer: A

Watch Video Solution

- **2.** A gas absorbs 400 J of heat and expands by $2 \times 10^{-3} m^3$ against a constant pressure of $1 \times 10^5 Nm^{-2}$. The change in internal energy is (1 L
 - A. Zero

B. 200

atm = 100 J

C. -600J

D. -200J

Answer: B

Watch Video Solution

3. A gas can expand from 100 ml to 250 ml under a constant pressure of 2 atm. The work done by the gas is

A. 30.38 Joule

B. 25 Joule

C. 5 k/Joule

D. 16 Joule

Answer: A

Watch Video Solution

4. If the internal energy of $22gCO_2$ at 273K is .U", internal energy of which of the following is "4U" at same T ?

- A. 5.5CO₂
- B. 88*gCO*₂
- C. 1molCO₂
- D. 33.6litCO₂

Answer: B

Watch Video Solution

5. $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(l)}$

 $\Delta H = -200K.~cal$, now ΔE Cal, now ΔE for the same process at 300 K (in K.Cal)

- A. 199.8
- B. 198.9
- C. 190.8
- D. 198.8

Answer: D

Watch Video Solution

- **6.** A system is provided with 50 J of heat and the work done on the system is 10J .What is the change in internal energy of the system in joules ?
 - A. 60
 - B. 40
 - C. 50
 - D. 10

Answer: A

Watch Video Solution

7. $S_{(8)}$ + 8 O_2 → 8 SO_2 , $\Delta H = -QKJ$, then ΔE

B. - Q

$$C. \frac{-Q}{8}$$

$$D. \frac{+Q}{8}$$

Answer: C

Watch Video Solution

A. +44K. Cal

8. H_2 + $Cl_2 \rightarrow 2HCl$ + 44 K.Cal. Heat of formation of HCl is

B. -44K. Cal

C. +22K. Cal

D. -22K. Cal

Answer: D

9. Wg of benzoic acid is completely burnt in bomb calorimeter in excess of O_2 so that KJ heat is released at 298K. Internal energy change for combustion of 1 mole benzoic acid (MW = M) will be (in KJ)

B.
$$\frac{-(QW)}{M}$$

$$C. \frac{-(QM)}{W}$$

$$D. + Q$$

Answer: C

Watch Video Solution

10. Heat of combustion of carbon is -96 k, cals. When some quantity of carbon is burnt in oxygen, 48 k.cals of heat is liberated. What is the volume (in lits) of O_2 at STP reacted with this carbon

A. 48 B. 22.4 C. 11.2 D. 1 **Answer: C** Watch Video Solution 11. One mole of methanol, when burnt in oxygen, gives out 723KJmol⁻¹ heat. If one mole of oxygen is used, what will be the amount of heat evolved? A. 723 KJ B. 964 KJ C. 482 KJ D. 241KJ

Answer: C

Watch Video Solution

- 12. The heat of combustion of benzene at $27\,^{\circ}C$ and at constant volume is -3245 KJ. Then the heat of combustion of benzene at the same temperature and at constant pressure
 - A. -3241.26*KJ*
 - B. 3252.48*KJ*
 - C. -3248.74*KJ*
 - D. 3248.74*KJ*

Answer: C

13. Heat of neutralisation of H_2SO_4 with NaOH is - x KJ. Then the heat of ionisation of water is

$$A. -x > KJ$$

B. xKJ

C. > xKJ

D. $< \chi KJ$

Answer: B

Watch Video Solution

14. For the reaction at 298 K,

$$2A + B \rightarrow C$$

 $\Delta H = 400 k J mol^{-1}$ and $\Delta S = 0.2 k J K^{-1} mol^{-1}$.

At what temperature will the reaction becomes spontaneous considering

 ΔH and ΔS to be constant over the temperature range?

- A. +27.4*K*. *Cal*
- B. 27.4K. Cal
- C. 13.7*K*. *Cals*
- D. +13.7*K*. *Cal*

Answer: C

Watch Video Solution

15. The heat of neutralisation of strong base and strong acid is - 57.0 KJ.

The heat released when 0.5 mole of HNO_3 solution is added to 0.20 moles of NaOH solution is

- A. 57.0 KJ
 - B. 11.40 KJ
 - C. 28.5 KJ
 - D. 34.9 KJ

Answer: B

Watch Video Solution

16. When IM H_2SO_3 is completely neutralised by sodium hydroxide, the heat liberated is 114.64 KJ. Enthalpy of neutralisation in KJ is?

- A. +114.64
- B. -114.64
- **C.** -57.32
- D. + 57.32

Answer: C

Watch Video Solution

17. The amount of heat released, when 20 ml of 0.5 M NaOH is mixed with 100 mL of 0.1M HCl, is x kJ. The heat of neutralisation is

A. -100xB. -50xC. + 100xD. +50x**Answer: A Watch Video Solution 18.** $-100cm^3$ of 0.1 M HCl and $100cm^2$ of 0.1.M NaOH solutions are mixed in a calorimeter. If the heat liberated is "Q" K.Cal, the heat of neutralization (ΔH) (in K.Cal) of $HCl_{(aq)}$ and $NaOH_{(aq)}$ is A. 10Q B. - 100Q C. -50Q D. -10Q

Answer: B

Watch Video Solution

19. For the reaction

$$H^+ + OH^- + H_2O$$
, $\Delta H = -13.7K$. cal

For $H_3O^+ + OH^- \rightarrow 2H_2O$, ΔH will be

A.
$$Q_1 + Q_2$$

B.
$$Q_1 - Q_2$$

$$C. Q_2 - Q_1$$

$$D. - \left(Q_1 + Q_2\right)$$

Answer: C

20. $BOH_{(aq)} + H_{(aq)}^{+} \rightarrow B_{(aq)}^{+} + H_{2}O, \Delta H = -48KJ.$ Heat of ionisation of the weak base is

A. 9.3KJ

B. -9.3KJ

C. 48KJ

D. -5KJ

Answer: A

Watch Video Solution

21. The heat of ionisation of weak acid and a weak base are .x. and .y. k.cals.

Then the heat of neutralisation of that weak acid and weak base is

A. 13.7

....K.cal.

B. - 13.7 + (x - y)

$$C. - 13.7 + (x + y)$$

D.
$$-13.7 - (x - y)$$

Answer: C

Watch Video Solution

22. If the heats of formation of Al_2O_3 and Fe_2O_3 are -400 K.Cal and -190

K.Cal respectively, the heat of the following reaction is

$$2Al + Fe_2O_3 \rightarrow 2Fe + Al_2O_3$$

B. 590*K*. *Cal*

C. -590*K*. *Cal*

D. -210*K. Cal*

Answer: D

23. When 1 litre of IM HCl is mixed with 1 litre of 1M NaOH, the rise in temperature was found to be T_1 . In another experiment 1 litre of 0.5 M NaOH is mixed with 1 lit. of 0.5 M HCl. The rise in temperature was found to be T_2 . Then

A.
$$T_1 > T_2$$

B.
$$T_1 = 2T_2$$

C.
$$T_1 = T_2$$

D.
$$T_2 = 2T_1$$

Answer: D

Watch Video Solution

24. Standard molar enthalpy is lowest for

A. Diamond carbon

- B. Graphite carbon
- C. Water vapour
- D. Liquid water

Answer: D

Watch Video Solution

25. Lattice dissociation energy and hydration energy of sodium chloride are respectively 788kJmol⁻¹ and 784kJmol⁻¹. Then enthalpy of solution of sodium chloride in water is

- $A. + 4kJmol^{-1}$
- B. $+1572kJmol^{-1}$
- C. $4kJmol^{-1}$
- D. 1572kJmol 1

Answer: A

26. Example of endothermic product is

- A. Carbon dioxide
- B. Hydrogen fluoride
- C. Nitric oxide
- D. Sulphur dioxide

Answer: C

Watch Video Solution

27. If
$$(I)C + O_2 \rightarrow CO_2, Q_1$$

$$(II)C + 1/2O_2 \rightarrow CO, Q_2$$

$$(III)CO + 1/2O_2 \rightarrow CO_2, Q_3$$

The heats of reaction Q_1 and Q_2 are -12, -10respectively. Then Q_3 is

B. 2

D. - 16

Answer: A

Watch Video Solution

28. The enthalpy of formation of $N_2O_{(g)}$ and $NO_{(g)}$ are 82.0KJ and $90KJmol^{-1}$ respectively. The enthalpy of the reaction

$$2N_2O_{(g)} + O_{2(g)} \rightarrow 4NO_{(g)}$$
 is

A. 80KJ

B. 88.0KJ

C. -16.0KJ

D. 196.0K

Answer: D

Watch Video Solution

29. The heats of formation of CO_2 , H_2O and C_2H_4 are -94.05, -68.2 and 12.6 K.Cals/ mole, respectively. The heat of combustion of ethylene is

- A. 337 K.Cal
- B. 212.8 K.Cal
- C. -372 K.Cal
- D. -337 K.Cal

Answer: D

30. Given that $C + O_2 \rightarrow CO_2$, $\Delta H^{\circ} = -xkJ$

$$2CO + O_2 \rightarrow 2CO_2, \Delta H^{\circ} = -ykJ$$

The enthalpy of formation of carbon monoxide will be

A.
$$\frac{2x - y}{2}$$

B.
$$\frac{y - 2x}{2}$$

D.
$$y = 2x$$

Answer: B

Watch Video Solution

31. The enthalpy of formation of ammonia is $-46.0 KJmol^{-1}$. The enthalpy change for the reaction $2NH_3 \rightarrow N_2 + 3H_2$ is

C. -23KJ

D. -92*KJ*

Answer: B

Watch Video Solution

32. Which of the following bond has highest enthalpy

A. $N \equiv N$

B. $C \equiv N$

 $C. C \equiv C$

 $D. C \equiv O$

Answer: D

33.
$$2C_{(s)} + \frac{1}{2}O_{2(gg) \to CO_{2(g)}}, \Delta H = -787KJ$$

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)}, \Delta H = -286KJ$$

 $C_2H_{2(q)} + 2\frac{1}{2}O_{2(q)} \rightarrow 2CO_{2(q)} + H_2O_{(l)}, \Delta H = -1301KJ.$

Heat of formation of acetylene in KJ is

Answer: D

34.

Watch Video Solution

of combustion of C_2H_4 , H_2 and C_2H_6 Heats are -1409K. J, -285K. J and -1558KJ. Heat of hydrogenation of ethylene is

B. -240KJ

C. 136KJ

D. 227KJ

Answer: A

Watch Video Solution

35. The enthalpy of combustion of cyclohexane cyclohexene and H_2 are respectively -3920, -3800 and -241KJmol -1. The heat of hydrogenation of cyclohexene in KJmol⁻¹ is

A. - 121

B. + 121

C. -242

D. + 242

Answer: A

36. Given that

$$CH_3CHO + \frac{5}{2}O_2 \rightarrow 2CO_2 + 2H_2O, \Delta H = -1168KJ/\text{mole}$$

$$CH_3COOH + 2O_2 \rightarrow 2CO_2 + 2H_2O, \Delta H = -876KJ/\text{mole}$$

 ΔH for the reaction

$$CH_3CHO + \frac{1}{2}O_2 \rightarrow CH_2COOH \text{ in } KJ/mol \text{ is}$$

Answer: A

37. The enthalpy of vapourisation of a liquid is $30KJmol^{-1}$ and entropy of vapourisation is $75Jmol^{-1}k^{-1}$. The boiling point of the liquid at 1atm pressure is.

- A. 250 K
- B. 400 K
- C. 450 K
- D. 600 K

Answer: B

- **38.** $H_{2(g)} \rightarrow 2H_{(g)}$, $\Delta H = 400KJ$, then ΔS_{system} at 2000 K is
 - A. 0.2KJ/mol/K
 - $\mathsf{B.-}0.2KJ/mol/K$
 - C. 200KJ/g/K

D. -400*KJ*/*mol*/*K*

Answer: A

Watch Video Solution

- **39.** Show that $A \cup B = A \cap B$ implies A = B
 - A. $[-2.303 \times 2 \times 300]$ *KJ*
 - B. $\left[2.303 \times 2 \times 10^{-3} \times 300 \right] KJ$
 - C. [$2.303 \times 2 \times 300$]*Cal*
 - D. $[2.303 \times 2 \times 10^{-3} \times 300]$ *K. Cal*

Answer: C

Standard molar entropies of $Mg_{(s)}, C_{(s)}, MgO_{(s)} & CO_{(g)}$ 40. respectively are $S_1, S_2, S_3, \&S_4J/K/mol$. Then $\Delta S_{\rm sys}$ for

$$MgO_{(s)} + C_{(s)} \rightarrow Mg_{(s)} + CO_{(g)}$$

A.
$$S_1 + S_2 + S_3 + S_4$$

B.
$$(S_1 + S_4) - (S_2 + S_3)$$

C.
$$(S_2 + S_3) - (S_1 + S_4)$$

D. $(S_4 - S_3)$

Answer: B

Watch Video Solution

- - A. +3112J, non -spontaneous

41. ΔH and ΔS for certain reaction are -10KJ and -44 $\frac{J}{K}$, ΔG ° is

- B. -3112J, spontaneous
- C. +31.12J, non spontaneous

D. -31.12*J*, spontaneous

Answer: A

Watch Video Solution

42. S ° of N_2 , H_2 and NH_3 respectively are 190, 130 & 111 J/K/mol, then

 $\Delta S_{\rm sys}$ for formation of $8.5 g {\rm NH_3}$ is [in J/K]

- **A.** 179
- B. 358
- **C.** + 179
- D. -89.5

Answer: D

43. Kp for the reaction $\frac{3}{2}O_{2(g)} \leftarrow O_{3(g)}$ at 25 ° C is 2.47×10^{-29} . Then

 ΔG ° for the conversion is

A. 163*kJmol* ⁻¹

B. 264*kJmol* ⁻¹

C. 376kJmol ⁻¹

D. 488*kJmol* ^{- 1}

Answer: A

44.
$$Zn_{(s)} + Cu_{(aq)}^{+2} \rightarrow Cu_{(s)} + Zn_{(aq)}^{+2}$$
,

$$\Delta G = -XKJ, Cu_{(s)} + 2Ag_{(aq)}^{+} \rightarrow 2Ag_{(s)} + Cu_{(aq)}^{+2},$$

$$\Delta G = -YKJ$$
, then

$$\Delta G$$
 for $Zn_{(s)} + 2Ag_{(aq)}^+ \rightarrow 2Ag_{(s)} + Zn_{(aq)}^{+2}$ will be (in KJ)

A.
$$-(X + Y)$$

- B.(Y-X)
- C. 2(X Y)
 - D.(X Y)

Answer: B

Watch Video Solution

- 45. For a process change in enthalpy is 36 kJ.mol and change in entropy is
- 120 J mole ${}^{-1}K^{-1}$. The temperature at which the sywstem attains
- A. 50 ° C

eequibrium is

- B. 47 ° C
- **C.** 27 ° *C*
- D. 12 ° C

Answer: C

46. For which of the following cases
$$\Delta S = \frac{\Delta H}{T}$$

- A. A process for which $\Delta C_p = 0$ but $\Delta C_v = 0$
- B. An adiabatic process
- C. An isobaric or isothermal process
- D. An isothermal reversible transition process

Answer: D

Watch Video Solution

47. Calculate work done when 1 mole of an ideal gas is expanded reversibly from 20 L to 40 L at a constant temperature of 300 K.

A. 7.78*KJ*

B. - 1.73*KJ*

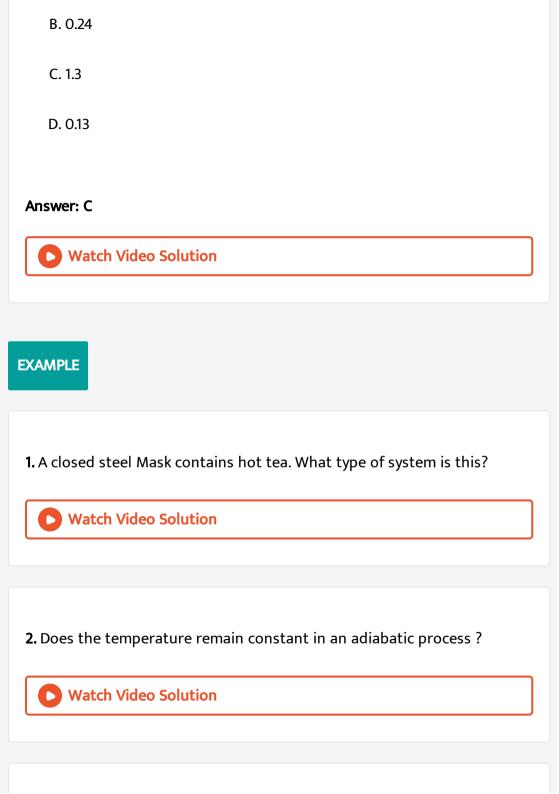
49. If w_1, w_2, w_3 , and we are work done in isothermal adiabatic, isobaric and isochoric reversible processes, then the correct sequence (for expansion) would be

A.
$$w_1 > w_2 > w_3 > w_4$$

B.
$$w_3 > w_2 > w_1 > w_4$$

$$C. w_3 > w_2 > w_4 > w_1$$

D.
$$w_3 > w_1 > w_2 > w_4$$


Answer: D

Watch Video Solution

50. Molar heat capacity (C_p) of water of constant pressure is $75JK^{-1}mol^{-4}$. The increase in temperature (in K) of 100g of water when I kJ of heat is supplied to it is

A. 2.4

3. 10 grams of steam has higher internal energy than 10 grams of ice.

4. A chamber contains $77gofCO_2$. The chamber was divided into three compartments X, Y and Z as shown below. Suggest the relation between the internal energies of the gas in the three compartments X, Y and Z.

 $X 11gCO_2$ $y22gCO_2$ $Z44gCO_2$

5. In a process, a system loses 125 J of heat when 400 J of work was done on the system. Calculate the change in internal energy.

6. A system absorbs 100J of heat at constant volume and its temperature raises from 300K to 320K, Calculate the change in internal energy.

Watch Video Solution

7. From the observations given below, suggest the relation between X, Y and 7

Experiment	Heat supplied	Work done	ΔΕ
1	100J Supplied to the system	200J done by the system	X Joules
II	200J Supplied to the system	200J done on the system	Y Joules
III	400J lost to the system	100J done by the system	Z Joules

Watch Video Solution

8. What are the values of w and ΔE , when a system absorbs 250J of heat by expanding from 1 lit to 10 lit against 0.5 atm pressure and at constant

temperature.

Watch Video Solution

9. $C_{\text{(graphite)}} + H_2 O_{(a)} \rightarrow CO_{(a)} + H_{2(a)}$,

 $\Delta H = +131.4kJ$. (Assume reaction occures at STP) How much energy is absorbed when one litre of hydrogen gas is formed at STP?

Watch Video Solution

10. $N_{2(q)} + O_{2(q)} + 180.6kJ \rightarrow 2NO_{(q)}$, calculate (a) heat of reaction, (b) heat of formation of nitric oxide and (c) heat required to form one litre of nitric oxide at 25 ° C.

Watch Video Solution

11. ΔH^0 for a reaction $F_2 + 2HCl \rightarrow 2HF + Cl_2$ is given as -352.8kJ. ΔH_f^0 for HF is $-268.3 KJmol^{-1}$, then ΔH_f^0 of HCl would be

12. Calculate enthalpy of ionisation of OH^- ion. Given:

$$H_2O_{(l)} \to H^+_{(aq)} + OH^-_{(aq)}, \Delta H^\circ = -285.83KJ$$

13. Calculate the value of $(\Delta H$ - $\Delta E)$ in calories for the combustion of CH_4 at 27 $^{\circ}$ C.

14. 19.5 g of benzene on burning in the free supply of oxygen liberated 12.6 kJ of energy at constant pressure. Calculate the enthalpy of combustion of benzene. Write the thermochemical equation.

15. 4.184g of benzoic acid was burnt in bomb calorimeter. The rise in the temperature is 10° . The heat capacity of calorimeter and its contents is $2.644kcalK^{-1}$. Calculate the heat of combustion of benzoic acid.

16. $H_2SO_4(aq) + 2NaOH_{(aq)} \rightarrow Na_2SO_4(aq) + 2H_2O_{(l)}$. Suggest the hest of this reaction.

17. $HCN_{(aq)} + NaOH_{(aq)} \rightarrow NaCN_{(aq)} + H_2O_{(l)}, \Delta H = -12.13KJ.$

Calculate heat of ionisation of HCN.

18. In the reaction between strong acid and strong base, 1.8 g of water is formed. The heat evolved is used to raise the temperature of one kg of

water at 25 ° C. What is the final temperature of water?

Watch Video Solution

19. One mole of solite AB dissolved in 20 moles of water absorbed 15.9 KJ of heat. When one male of same se is dissolved in 250 moles of water 18.58KJof heat is absorbed. Calculate the enthalpy of dilution

Watch Video Solution

20. The bond enthalpies of D-D and O-O and D - (are respectively, + 440, + and $+491.5kJmol^{-1}$. Calculate 498 ΔH for the reaction $D_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow D_2O_{(l)}$

Watch Video Solution

21. ΔH for the formation of XY is $-200kJmol^{-1}$. The bond enthalpies of X_2, Y_2 , and XY are in the ratio 1:0.5:1. Then determine the bond

enthalpies.

22. The enthalpies of combustion of carbon and carbon monoxide are -390KJmol⁻¹ and -278KJmol⁻¹ respectively. The enthalpy of formation of carbon monoxide is

Watch Video Solution

23. The heat of transition of S_{α} into S_{β} is +2.5 kJ. The heat of combustion of monoclinic sulphur is -300kJmol⁻¹. Calculate heat of combustion of rhombic sulphur (S_{α}) .

Watch Video Solution

24. Heats of combustion of benzene, carbon and hydrogen -782, -94, -68kcalmol⁻¹ respectively. Calculate heat of formation of benzene.

25. The heat of formation of crystalline sodium chloride is -410kJmol⁻¹. The heat of sublimation of sodium metal is 180.8kJmol⁻¹. The heat of dissociation of chlorine gas into atoms is 242.7kJmol⁻¹. The ionisation energy of Na and electron affinity of Cl are 493.7kJ and -368.2kJ respectively. Calculate the lattice energy of NaCl.

26. The heats of formation of $CO_{2(g)}$, $H_2O_{(l)}$ and $CH_{4(g)}$ are respectively $-394kJmol^{-1}$, $-286kJmol^{-1}$ and $-76kJmol^{-1}$. Calculate the heat of combustion of methane.

27. The standard molar heat for formation of ethane, carbondioxide and water are respectively, -21.1,-94.1 and -68.3 Kacal mol⁻¹. What is the standard molar heat of combustion of ethane?

28. Latent heat of fusion of ice is $6kJmol^{-1}$. Calculate the entropy change in the fusion of ice.

29. The entropy change for vaporisation of a liquid is $109.3JK^{-1}mol^{-1}$. The molar heat of vaporisation of that liquid is $40.77kJmol^{-1}$. Calculate the boiling point of that liquid.

30. Based on entropy Change predict a spontaneous reaction among the following.

$$(A): \left(NH_4\right)_2 CO_3(s) \to 2NH_3(g) + CO_2(g) + H_2O(l) \text{ and } (B): NH_3(g) + H_2S(g) - H_2O(l)$$

31. Calculate
$$DetlaG^{\circ}$$
 for the following reaction, $Zn_{(s)} + Cu_{(aq)}^{2+} \rightarrow Zn_{(aq)}^{2+} + Cu_{(s)} \cdot \Delta G_f^{\circ}$ of $Zn_{(aq)}^{2+}$ and $Cu_{(aq)}^{+2}$ is-147.2 kJ

 mol^{-1} and $65kJmol^{-1}$.

32. The equilibrium constant of a reaction is 73. Calculate standard free energy change.

33. The reaction, $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)}$, is spontaneous. The ΔS ° = -163.1 $Jmol^{-1}K^{-1}$. The absolute entropies of $H_{2(q)}$ and $O_{2(q)}$ are $130.6JK^{-1}mol^{-1}$ and $205JK^{-1}mol^{-1}$ respectively. Calculate the absolute entropy of water.

Watch Video Solution

34. The standard free energy of $Cu_{(aq)}^+$ is $50kJmol^{-1}$ and that of $Cu_{(aq)}^{2+}$ is $66kJ. \, mol^{-1}$. Calculate the change in free energy for the reaction, $Cu_{(aq)}^{+} \rightarrow Cu_{(aq)}^{2+} + e^{-}.$

35. $Zn_{(s)} + Fe_{aq}^{2+} \Leftrightarrow Zn_{aq}^{2+} + Fe_{(s)}$. The vale of K_c for this reaction is `10^(23). Calculate the standard free energy change.

36. 1 g of graphite is burnt in a bomb calorimeter in excess of O_2 at 298 K and 1 atm. Pressure according to the equations.

$$C_{\text{graphite}} + O_{2(g)} \rightarrow CO_{2(g)}$$

During the reaction the temperature rises from 298 K to 200K. Heat capacity of the bomb calorimeter is $20.7KJK^{-1}$. What is the enthalpy change for the above reaction at 298 K 1 atm?

Watch Video Solution

37. Calculate ΔG ° for conversion of oxygen to ozone, $\frac{3}{2}O_{2(g)} \rightarrow O_{3(g)}$ at 298K, if K_P for this conversion is 2.47×10^{-29}

Watch Video Solution

38. What are the sign of the entropy change (+ or -) in the following:

I: A liquid crystallises into a solid

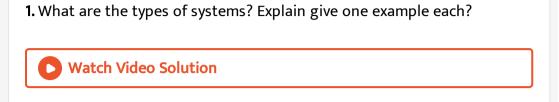
II: Temperature of a crystalline solid is raised from 0K to 115K

III: $2NaHCO_{3(g)} \rightarrow Na_2CO_{3(g)} + CO_{2(g)} + H_2O_{(g)}$

 $\mathsf{IV}: H_{2(g)} \to 2H_{(g)}$

39. A swimmer coming out from a pool is covered with a film of water weighing about 18g. How much heat must be supplied to evaporate this water at 298 K? Calculate the internal energy of vaporisation at $100\,^\circ$ C.

$$\Delta H_{vap}^{\circ}$$
 for water at $373K = 40.66kJmol^{-1}$



40. Find out the value of equilibrium constant for the following reaction at 298 K.

`2NH_(3(g)) + CO_(2(g)) standard Gibbs energy change, ΔG ° at the given temperature is -13.6kJmol ⁻¹.

SUBJECTIVE EXERCISE-1 (LONG NSWER QUESTIONS)

- **2.** State and explain the first law of themodynamics.
 - Watch Video Solution

SUBJECTIVE EXERCISE-1 (SHORT ANSWER QUESTIONS)

- **1.** What are intensive and extensive properties?
 - Watch Video Solution

2. Discuss on internal energy and enthalpy?

3. Define heat capacity and molar heat capacity. How are C_p and C_{ν} related?

4. What is a thermochemical equation? Write its significance.

A Watab Vidaa Calutian

examples.

6. An ideal gas expands from $500cm^3$ to $700cm^3$ against 1 atm pressure, by absorbing 2J of energy. Calculate change in internal energy of the ideal

5. What does one mean by exothermic and endothermic reactions? Give

gas.

Watch Video Solution

7. How are ΔH and ΔE are related for a gaseous equilibrium reaction ? What is $(\Delta H - \Delta E)$ for $CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(a)}$?

Watch Video Solution

8. Give the mathematical formulation of first law of thermodynamics.

Watch Video Solution

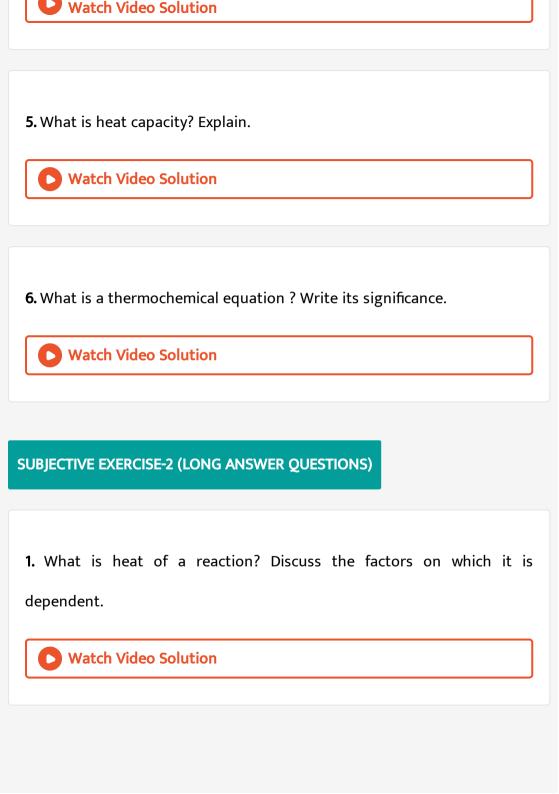
9. In a process 701 J of heat is absorbed by a system and 394 J of work is done by the system. What is the change in internal energy for the process?

10. For an isolated system, $\Delta U = 0$ what will be ΔS ?

Watch Video Solution

11. At 400K, 5 moles of an ideal gas expands isothermally and reversibly from $10dm^3$ to $20dm^3$. Calculate the work done by the gas.

Watch Video Solution


12. 0.14kg of nitrogen at 300K is expanded isothermally and reversibly until its volume becomes doubled. Calculate the work done by the gas.

Watch Video Solution

13. 0.096kg of oxygen is compressed iso thermally and reversibly from $10^5 N.\,M^{-2}$ to $2\times 10^5 N.\,M^2$ at 300 K. Calculate the work done during the impression process.

Watch Video Solution			
SUBJECTIVE EXERCISE-1(VERY ANSWER QUESTIONS)			
1. Explain "system" and "surroundings".			
Watch Video Solution			
2. Name three intensive properties.			
Watch Video Solution			
3. Name three intensive properties.			
Watch Video Solution			
4. Explain enthalpy.			

2. What is heat of combustion ? How is it determined using bomb		
calorimeter?		
Watch Video Solution		
3. State and explain Hess law. Write its important applications		
Watch Video Solution		

4. By using Born-Haber cycle to calculate the crystal lattice energy of NaCl, discuss the heats, involved in all the changes.

SUBJECTIVE EXERCISE-2 (SHORT ANSWER QUESTIONS)

1. Define heat of neutralisation. Write the basic equation. Why the heat liberated by the neutralisation of a weak acid is less than 57.3kJmol⁻¹?

2. Calculate the difference between ΔE and ΔH values for the combustion reaction of ethylene at 300K

3. When 2.4g of carbon reacted with X g of oxygen to form CO and CO_2 , 50.4kJ of heat was released and no reactant is left over. Standard heats of formation of carbon monoxide and carbondioxide are $-110.5kJmol^{-1}$ and $-393.5kJmol^{-1}$ respectively. Calculate X.

4. Heats of atomisation of chlorine and hydrogen are $243kJmol^{-1}$ and $435kJmol^{-1}$ respectively. Heat of formation of HCl is $-92kJmol^{-1}$. Calculate the bond energy of HCL.

Watch Video Solution

5. The bond energy of $H_{2(g)}$ is 436kJ/mole. The bond enthalpy of $N_{2(g)}$ is 941.3 kJ/mole. What is the bond enthalpy of N - H if NH_3 formation energy is -46.0 kJ/mole ?

6. Calculate the number of kJ of heat necessary to rise the temperature of 60.0 g of aluminum from $35 \,^{\circ} C \rightarrow 55 \,^{\circ} C$. Molar heat capacity of aluminum is 24 J $mol^{-1}K^{-1}$.

7. The reaction of cyanamide (s), with dioxygen was carried out in a bomb calorimeter and ΔU was found to be -742.7 kJ mol^{-1} at 298 K. Calculate the enthalpy change for the reaction at 298 K.

$$NH_2CN_{(g)} + \frac{3}{2}O_2(g) \rightarrow N_{2(g)} + CO_{2(g)} + H_2O_l$$

8. The molar heat capacity at constant volume of a system is 12.41J. mol^{-1} . In an adiabatic expansion the temperature of one mole of that gas falls from 298K to 288K. Calculate the work done by the gas.

9. Enthalpy of ammonia and water are $-46.19KJ. \, mol^{-1}$ and $-285.9KJ. \, mol^{-1}$. Calculate AH for the reaction,

$$4NH_3(g) + 3O_2(g) \rightarrow 2N_2(g) + 6H_2O(l).$$

10. The heats of combustion of hydrogen and cyclohexene are $-241kJmol^{-1}$ and $-3800kJmol^{-1}$. The heat of hydrogenation of cyclohexene is $-121kJmol^{-1}$. Calculate the heat of combustion of cyclohexane.

Watch Video Solution

11. At constant pressure, the heat of combustion of carbon monoxide at $17^{0}C$ is -284.5 kJ. Calculate its heat of combustion at constant volume

Watch Video Solution

12. Heat of formation of water and heats of combustion of ethylene and acetylene are respectively 286, -1410 and $-1299kJmol^{-1}$, Calculate the heat of the reaction,

$$C_2H_{2(g)} + H_{2(g)} \rightarrow C_2H_{4(g)}.$$

13. At 298K heats of formation of $H_2O_{(l)}$, $CO_{2(g)}$, $HCl_{(g)}$ and $CCl_{4(l)}$ are respectively -241.8, -393.7, -92.5 and -106.7 $kJmol^{-1}$. Calculate ΔH for the following reaction

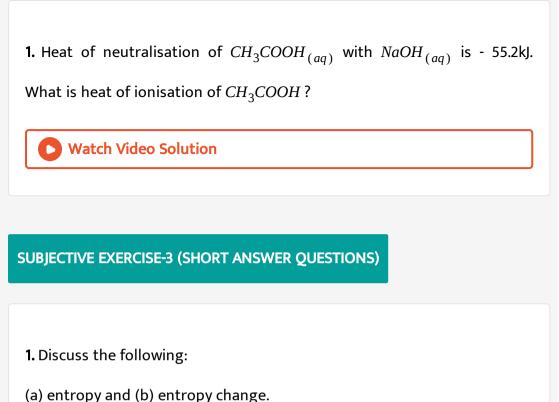
$$CCl_{4(l)} + 2H_2O_{(g)} \rightarrow CO_{2(g)} + 4HCl_{(g)}$$

14. Define heat capacity. What are C_p and C_v ? Show that $C_p - C_v = R$.

15. Define Heat of solution. Give an example.

16. Define heat of formation. Write suitable examples.

17. Heats of ionisation of acetic acid and ammonium hydroxide are xkJmol⁻¹ and ykJmol⁻¹. Heat of neutralisation of HCl and NaOH is zkJmol⁻¹. Calculate the heat when acetic acid is neutralised with ammonium hydroxide. $\left(z - (x + y)kJmol^{-1}\right)$


Watch Video Solution

18. 500mL of IM HCl and 500mL of 1M NaOH are mixed in Dewar flask. Then temperature is T_1 . In another rise in experiment 1000mL1MHCl and 1000mLof1MNaOHare mixed in Dewar flask. Then rise in temperature is T_2 . What is the relation between T_1 and T_2 ?

Watch Video Solution

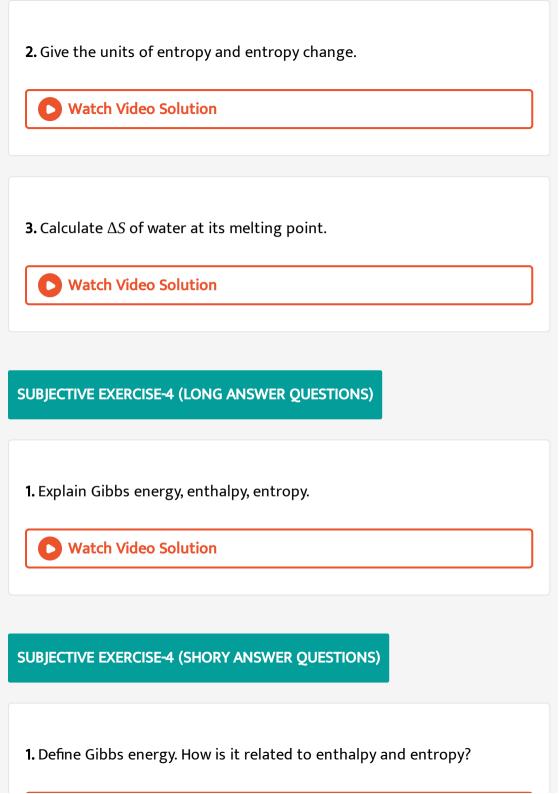
SUBJECTIVE EXERCISE-2 (VERY SHORT ANSWER QUESTIONS)

Watch Video Solution

Watch Video Solution

2. State the second law of thermodynamics and explain it.

3. Explain whether a reaction occurs on its own, by considering the entropy change of the reaction.


4. The absolute entropies of $H_{2(g)}$, $O_{2(g)}$ and $H_2O_{(l)}$ are respectively 130.6, 205.1 and 69.9JK - mol^{-1} . Calculate the value of ΔS for the formation of one mole liquid water.

SUBJECTIVE EXERCISE-3 (VERY SHORY ANSWER QUESTIONS)

1. Give the order of entropies of solid, liquid and gas.

2. What are the criteria for the spontaneity of chemical reaction?

3. State the third law of thermodynamics.

4. At 300K, heat of dissociation of lime stone is $+180kJmol^{-1}$. Entropies of $CaCO_3$, CaO and Co_2 are respectively 93, 39 and $213Jmol^{-1}K^{-1}$.

Calculate ΔS_{total}

5. $4Fe(s) + 3O_{2(g)} \rightarrow 2Fe_2O_3(g)$. The value of ΔS is $-550JK^{-1}$ and the value of DH is -1650kJ at 298 K. Does the process is spontaneous or not?

6. For the equilibrium , $2NOCl(g) \Leftrightarrow 2NO(g) + Cl_2(g)$ the value of the equilibrium constant, K_c is 3.75×10^{-6} at 1069K. Calculate the K_p for the reaction at this temperature ?

7. For the reaction at 298 K,

$$2A + B \rightarrow C$$

$$\Delta H = 400kJmol^{-1}$$
 and $\Delta S = 0.2kJK^{-1}mol^{-1}$.

At what temperature will the reaction becomes spontaneous considering ΔH and ΔS to be constant over the temperature range?

8. The e.m.f. of the cell reaction

 $Zn_{(s)} + Cu_{(aq)}^{+2} \rightarrow Zn_{(aq)}^{+2} + Cu_{(s)}$ is 1.1 V. Calculate the free energy of the cell reaction.

 ΔG ?

Watch Video Solution

9. The equilibrium constant for a reaction is 10. What will be the value of

 $R = 8.314JK^{-1}mol^{-1}, T = 300K.$

10. For the reaction,

$$2A(g) + B(g) \rightarrow 2D(g)$$

 $\Delta U^{\theta} = -10.5kJ$ and $\Delta S^{\theta} = -44.1JK^{-1}$

Calculate ΔG^{θ} for the reaction, and predict whether the reaction can occur spontaneously or not.

Water video Solution

11. Calculate the entropy change in surroundings when 1.00 mole of

 $H_2O_{(1)}$ is formed under standard conditions $\Delta_t H^{\theta} = -286 k J mol^{-1}$.

12. At $60\,^{\circ}$ C dinitrogen tetroxide is fifty percent dissociated. Calculate the standard free energy change at this temperature and at one atmosphere.

13. $N_2 + 3H_2 \rightarrow 2NH_3$, $\Delta H = -46K$. Cals. From the above reaction, heat of formation of ammonia is

14. At 427 ° C, for a given change the values of ΔG and ΔH are -11, $500 Jmol^{-1}$ and -11, $300 Jmol^{-1}$ respectively. Calculate the value of ΔS

Watch Video Solution

15. The reaction $A+B\Leftrightarrow C$ has the value of ΔH and value of ΔS respectively -12.52kJ and $313Jmol^{-1}K^{-1}$. At What temperature the reaction attains equilibrium state.

Watch Video Solution

SUBJECTIVE EXERCISE-4 (VERY SHORY ANSWER QUESTIONS)

1. Give Gibbs Equation.

2. Give Debye equation.
Watch Video Solution
3. Define Nernst heat theorem.
Watch Video Solution
4. Define free energy.
Watch Video Solution
5. Suggest the spontaneity for the thermal decomposition of lime stone and discuss.
Watch Video Solution
OBJECTIVE EXERCISE-1

- **1.** Which of the following come under the view of thermodynamics?
 - A. Predicting the feasibility of chemical change
 - B. Predicting the extent of completion of the chemical change
 - C. Rate at which chemical change occurs at particular set of
 - D. Effect of temperature on the rate of reaction

Answer: A

- 2. An isolated system is that in which:
 - A. There is no exchange of energy with the surroundings
 - B. There is exchange of mass and energy with the surroundings
 - C. There is no exchange of mass and energy with the surroundings

D. There is exchange of mass with the sounroundings

Answer: C

Watch Video Solution

- **3.** A well stoppered thermos flask contains some ice cubes. This is an example of
 - A. Closed system
 - B. Open system
 - C. Isolated system
 - D. Non-thermodynamic system

Answer: C

4. A system which can exchange energy with the surrounding but not matter is called

A. A heterogeneous system

B. An open system

C. A closed system

D. An isolated system

Answer: C

- **5.** An intensive property of theromdynamics means a property which depends
 - A. On the amount of the substance only
 - B. On the nature of the substance only
 - C. Both on the amount as well as nature of the substance

D. Neither on the amount nor on the nature			
Answer: B			
Watch Video Solution			
6. The intensive property among these quantities is			
A. Weight			
B. Density			
C. Entropy			
D. Volume			
Answer: B			
Watch Video Solution			
7. Which is an extensive property of the system?			

A. Volume **B.** Viscosity C. Temperature D. Refractive index Answer: A **Watch Video Solution** 8. In which of the following sets, all the properties belong to same category (all extensive or all intensive) A. Mass, volume, specific heat B. Temperature, pressure, volume C. Heat capacity, density, entropy D. Enthalpy, internal energy, volume Answer: D

- 9. Which of the following statements is correct?
 - A. Only internal energy is a state function but not work
 - B. Only work is a state function but not internal energy
 - C. Both internal energy and work are state functions
 - D. Neither internal energy nor work is a state function

Answer: A

- **10.** Which of the following statement is false?
 - A. Work is a state function
 - B. Temperature is a state function

C. Change of state is completely defined when initial and final states are specified

D. Work appears at the boundary of the system

Answer: A

Watch Video Solution

11. A process in which no heat change takes place is called

A. An isothermal process

B. An adiabatic process

C. An isobaric process

D. An isochoric process

Answer: B

12. A gaseous system changes from state

 $A(P_1, V_1, T_1)$ to $B(P_2, V_2, T_2)$, B to $C(P_3, V_3, T_3)$ and finally from C to

- A. The whole process may be called
 - A. Reversible process
 - B. Cyclic process
 - C. Isobaric process
 - D. Spontaneous process

Answer: B

- 13. A gas expands isothermally and reversibly. The work done by the gas
 - A. Zero
 - B. Maximum

		•
(NAIR	nimum
ͺ.	14111	IIIIIIIIII

D. Not known

Answer: B

Watch Video Solution

14. For the adiabatic expansion of an ideal gas

A. Increase in temperature

B. q = 0

C. W = 0

D. $\Delta E = 0$

Answer: B

15. Which among the following gives the expression for work done by ideal gas ?

A.
$$-P\Delta V$$

$$\text{B.} - nRT \text{ln} \frac{V_2}{V_1}$$

C. Both 1 and 2

D. Neither 1 nor 2

Answer: C

16. What is correct about isothermal expansion of the ideal gas?

A.
$$W_{rev} = W_{irr}$$

$$B. W_{rev} + W_{irr} = 0$$

C.
$$W_{rev} > W_{irr}$$

 $D. q_{rev} = q_{irr}$

Answer: C

Watch Video Solution

- 17. In thermodynamics, a process is called reversible when
 - A. Surroundings and system change into each other
 - B. There is no boundary between system and surroundings
 - C. Surroundings are always in equilibrium with system
 - D. System changes into surroundings spontaneously

Answer: C

Watch Video Solution

18. In an adiabatic expansion of ideal gas:

$$A. \Delta E = W$$

B. ΔE is maximum

$$C. \Delta E = 0$$

D. dp is maximum

Answer: A

- **19.** A heat engine absorbs heat q_1 from a source at temperature T_1 and heat q_2 from a source at temperature T_2 . Work done is found to be $J(q_1+q_2)$. This is in accordance with
 - A. Violates 1st law of thermodynamics
 - B. Violates 1st law of thermodynamics if Q_1 is negative
 - C. Violates 1st law of thermodynamics if Q_2 is negative
 - D. Does not violate first law of thermodynamics

Answer: D

Watch Video Solution

20. Two moles of an ideal gas is expanded isothermally and reversibly from 1 litre to 10 litre at 300 K. The internal energy change (in kJ) for the process (R = 8.3J)

A. 11.4*KJ*

B. - 11.4*KJ*

C. 0*KJ*

D. -4.8KJ

Answer: C

21. During adiabatic expansion of an ideal gas, 100J work is done, ΔE of system is

A. Zero

B. 100J

C. 200J

D. -100J

Answer: D

- 22. On which of the following factors does internal energy depend upon
 - A. Mass of the system
 - B. Temperature of the system
 - C. Nature of the system
 - D. All the above

Watch Video Solution 23. For a substance more internal energy is observed in [same quantity] A. Solid state B. Liquid state C. Gaseous state D. All have same **Answer: C Watch Video Solution** 24. The total heat content of a system at constant pressure is A. Enthalpy

Answer: D

B. Internal energy

C. Entropy

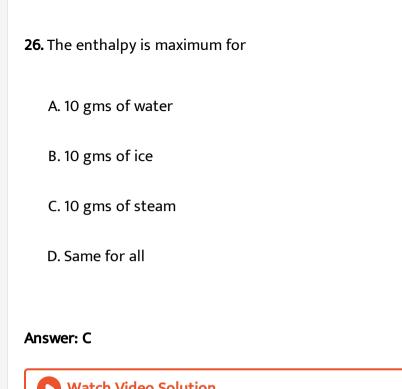
D. Free energy

Answer: A

Watch Video Solution

25. Enthalpy "H" can be given as

A.H = E - PV


B.H = E + PV

C. H = E + P + V

D.H = E - TS

Answer: B

Watch Video Solution

27. The expression $[\Delta E/\Delta T]_V$ represent

- A. Heat capacity at constant volume
- B. Heat capacity at constant pressure
- C. Enthalpy change
- D. Eantropy change

Answer: A

Watch Video Solution

28. The heat of reaction at constant volume and temperature is represented by

- A. ΔE
- $B. \Delta H$
- $\mathsf{C}.\,\Delta P$
- D. ΔV

Answer: A

Watch Video Solution

29. Which of the following relationships is correct for a reaction involving both reactants and products both in either solid or liquid state?

A.
$$\Delta H > \Delta E$$

 $B. \Delta H = \Delta E$

 $C. \Delta H < \Delta E$

D. $\Delta H - \Delta E = \infty$

Answer: B

Watch Video Solution

30. The different between ΔH and ΔE for the reaction

 $BaCl_{2(aq)} + K_2SO_{4(aq)} \rightarrow BaSO_{4(s)} \downarrow + 2KCl_{(aq)}$

A. RT

B. 2RT

D. Zero

C. (1/2)RT

Answer: C

31. For which one of the following systems DE < DH

$$A. 2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$$

$$B.N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$$

$$C.2NH_{3(g)} \rightarrow N_{2(g)} + 3H_{2(g)}$$

$$D.H_{2(g)} + I_{2(g)} \rightarrow 2HI_{(g)}$$

Answer: C

32. When a reaction is conducted in an open vessel, the heat of reaction

is represented as

A. ΔH

B. ΔE

 $C. P\Delta V$

D. ΔnRT

Answer: A

Watch Video Solution

33. Which of the following holds good to the laws of thermodynamics for the reaction?

$$C_2H_{4(g)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 2H_2O_{(l)}$$

$$A. \Delta H = \Delta E + RT$$

B.
$$\Delta H = \Delta E - RT$$

$$\mathsf{C.}\ \Delta H = \Delta E + 2RT$$

D.
$$\Delta H = \Delta E - 2RT$$

Answer: D

34. For which of the following reaction $\Delta H = \Delta E + 2RT$

A.
$$2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$$

$$B. NH_4HS_{(s)} \rightarrow NH_{3(g)} + H_2S_{(g)}$$

$$\mathsf{C.}\,N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$$

$$\mathsf{D}.\,\mathit{PCl}_{5(g)}\,\to\,\mathit{PCl}_{3(g)}\,+\mathit{Cl}_{2(g)}$$

Answer: B

Watch Video Solution

35. According to IUPAC conventions, which one of the following is/are correct?

A. The heat absorbed by a system is taken as positive

B. If a system is accompained by decrease in energy, ΔE is negative

C. The work done by the system is taken as negative

D. All the above three statements are correct

Answer: D

Watch Video Solution

36. For N_2 + $3H_2$ \rightarrow $2NH_3$, enthalpy and internal energy changes respectively are, ΔH & ΔU then

$$A. \Delta H = O$$

B. $\Delta H \Delta U$

C. $\Delta H < \Delta U$

D. $\Delta H > \Delta U$

Answer: C

37. During expansion of a gas into vaccum $(P_{\rm ext} = 0)$, Work done is zero if the process is

(A) Reversible (B) Irreversible (C) Isothermal

A. A,B & C are true

B. A,B,&C are false

C. A & C are true

D. B & C are false

Answer: A

Watch Video Solution

38. Assertion(A): Absolute values of internal energy cannot be determined

Reason (R): It is impossible to determine the exact values of constituent energies of the substances

40. Give the mathematical formulation of first law of thermodynamics.

A.
$$C_V = aT^3$$

$$B. \Delta S_{\text{total}} = \Delta S_{\text{sys}} + \Delta S_{\text{sur}}$$

$$C. q = \Delta U + W$$

D.
$$\Delta S_{sys} = \frac{qrev}{T}$$

Answer: C

Watch Video Solution

41. A system absorbs 'xJ' heat and does "yJ" work. Its ΔE is +Ve when

A.
$$y > x$$

$$B. x > y$$

$$C. y = 2x$$

$$D. x = y$$

Answer: B

Watch Video Solution

42. In an adiabatic expansion of ideal gas:

A.
$$W = -\Delta E$$

B.
$$W = \Delta E$$

$$C. \Delta E = 0$$

D.
$$W = 0$$

Answer: A

Watch Video Solution

43. During isothermal expansion of an ideal gas, its internal energy

- A. Decreses
- B. Increases
- C. May increase or decrease
- D. Remains unchanged

Answer: D

Watch Video Solution

- 44. For the gaseous reaction involving the complete combustion of isobutane
 - A. $\Delta H = \Delta E$
 - B. $\Delta H > \Delta E$
 - $C. \Delta H = \Delta E = 0$
 - D. $\Delta H < \Delta E$

Answer: D

45. A gas absorbs 400 J of heat and expands by $2 \times 10^{-3} m^3$ against a constant pressure of $1 \times 10^5 Nm^{-2}$. The change in internal energy is (1 L atm = 100 J)

A. Zero

B. 200 J

C. -600J

D. -200*J*

Answer: B

Watch Video Solution

46. A gas expands isothermally and reversibly. The work done by the gas

is

A. Zero B. Maximum C. Minimum D. Not known **Answer: B Watch Video Solution 47.** During adiabatic expansion of an ideal gas, 100J work is done, ΔE of system is A. Zero B. 100J C. 200J D. - 100J **Answer: B**

48. Calculate the charge of one mole of protons.

A. 900 Cal

B. 1800 Cal

C. 7482 Cal

D. 0 Cal

Answer: A

49. Which are of the following is an exothermic reaction?

A.
$$H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)}, \Delta H = -184.6KJ$$

B.
$$N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}, \Delta H = +180.8KJ$$

C.
$$C_{\text{(graphite)}} + H_2O_{(g)} \rightarrow CO_2 + H_{2(g)}\Delta H = -131.4KJ$$

D.
$$C_{\text{(graphite)}} + 2S_{(g)} \rightarrow CS_{2(1)}$$
 Delta H =+ 91.9 KJ

Answer: A

Watch Video Solution

- **50.** Which of the following reaction do you think will result in the absorption of heat ?
 - A. Carbon burning in air
 - B. Iron reacting with sulphur to form iron sulphide
 - C. Formation of water gas from steam and coke
 - D. Formation of producer gas

Answer: C

51. The formation of water from $H_{2(g)}$ and $O_{2(g)}$ is an exothermic reaction because

 $\operatorname{A.}H_{2\left(g\right)}$ and $O_{2\left(g\right)}$ have a higher chemical energy than water

 $\mathrm{B.}\,H_{2\,(g)}\,$ and $\,O_{2\,(g)}\,$ have a lower chemical energy than water

 $\mathrm{C.}\,H_{2(g)}\,$ and $\,O_{2(g)}\,$ have a higer temperature than water

D. Energy considerations does not arise

Answer: A

Watch Video Solution

52. When a solid melts there is

A. An increase in enthalpy

B. A decrease in enthalpy

C. No change in enthalpy

D. A decrease in internal energy

Answer: A

Watch Video Solution

53. The formation of water from $H_{2(g)}$ and $O_{2(g)}$ is an exothermic reaction because

- A. $H_{2(q)}$ and $Oa_{2(q)}$ have a higher chemical energy than waer
- $\operatorname{B.}H_{2(g)}$ and $\operatorname{O}_{2(g)}$ have a lower chemical energy than water
- $\mathrm{C.}\,H_{2(g)}$ and $O_{2(g)}$ have a higher temperature than water
- D. Energy considerations does not arise

Answer: A

Watch Video Solution

54. Extensive property is a property whose value depends on the quantity of size of matter present in the system. Those properties which do not

depend on the quantity of size of matter present are known as intensive properties. Find out the correct match

A. Internal energy → intensive property

B. Pressure → Extensive property

C. Molar heat capacity → Extensive property

D. Mass → Intensive property

Answer: C

Watch Video Solution

55. Which of the following is an endothemic reaction?

A.
$$N_{2(q)} + 3H_{2(q)} - 92KJ \rightarrow 2NH_{3(q)}$$

$${\sf B.}\,N_{2(g)} + O_{2(g)} + 180.8KJ \,\to\, 2NO_{(g)}$$

$$C. H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)}, \Delta H = -184.6KJ$$

D.
$$C_{\text{(graphite)}} + 2H_{2(s)} \rightarrow CH_{4(g)} + 74.8KJ$$

Answer: B

Watch Video Solution

56. In exothermic reaction

$$\mathsf{A.}\,N_{2(g)} + O_{2(g)} + 180.\,8kJ \,\to\, 2NO_{(g)}$$

$${\sf B.}\,N_{2(g)} + 3H_{2(g)} - 92kJ \to 2NH_{3(g)}$$

$$\mathsf{C.}\ C_{(\mathsf{graphite})} + H_2O_{(g)} \to CO_{(g)} + H_{2(g)} - 131.3KJ$$

D.
$$C_{\text{(graphite)}} + 2S_{(s)} \rightarrow CS_{2(l)} - 91.9kJ$$

Answer: B

Watch Video Solution

57. For which of the following elements, the standard enthalpy is not zero?

A. C (Diamond) B. C (Graphite) C. Liquid mercury D. Rhombic suphur Answer: A **Watch Video Solution** 58. The enthalpy of elements in their standard states are taken as zero. Hence the enthalpy of formation of a compound is A. always negative B. always positive C. positive (or) negative D. equal to zero Answer: C

59. In which of the following equations ΔH^0 reaction equal to ΔH_f^0 for the product?

A.
$$2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)}$$

B.
$$N_{2(g)} + O_{3(g)} \rightarrow N_2 O_{3(g)}$$

$$\mathsf{C.}\,\mathit{CH}_{4(g)} + 2\mathit{Cl}_{2(g)} \,\rightarrow\, \mathit{CH}_{2}\mathit{Cl}_{2(l)} + 2\mathit{HCl}_{(g)}$$

$$D. Xe_{(g)} + 2F_{2(g)} \rightarrow XeF_{4(g)}$$

Answer: D

Watch Video Solution

60. Identify the reaction in which the heat liberated corresponds to the heat of formation (ΔH_f) :

A.
$$C_{\text{(diamond)}} + O_{2(g)} \rightarrow CO_{2(g)} + \text{heat}$$

B. $2H_{2(q)} + O_{2(q)} \rightarrow 2H_2O_{(q)} + \text{heat}$

 $C.C_{(diamond)} + 2H_{2(g)} \rightarrow CH_{4(g)} + heat$

D. $S_{\text{(rhombic)}} + O_{2(q)} \rightarrow SO_{2(q)} + \text{heat}$

Answer: D

Watch Video Solution

61. The heat change for the following reaction $C_{(s)} + 2S_{(s)} \rightarrow CS_{2(l)}$ is known as

A. Heat of formation of CS_2

B. Heat of fusion of CS_2

C. heat of vapourisation of CS_2

D. Heat of transition of Carbon

Answer: A

62. Which of the following reactions represents
$$\Delta H_f^{\circ}$$

$$A. C_{\text{(diamond)}} + O_{2(g)} \rightarrow CO_{2(g)}$$

B.
$$\frac{1}{2}H_{2(g)} + \frac{1}{2}F_{2(g)} \rightarrow 2NH_{3(g)}$$

$$C. N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$$

$$D.CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)}$$

Answer: B

Watch Video Solution

63. Which of the following equation represents standard heat of formation of ethanol?

A.
$$CH_3CHO_{(l)} + \frac{1}{2}H_{2(g)} \xrightarrow{Ni} C_2H_5OH_{(l)}$$

B.
$$2C_{\text{graphite}} + 3H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow C_2H_5OH_{(g)}$$

C.
$$2C_{\text{diamond}} + 3H_{2(g)} + \frac{1}{2}o_{2(g)} \rightarrow C_2H_5OH_{(g)}$$

D.
$$2C_{\text{grapite}} + 3H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow C_2H_5OH_{(l)}$$

Answer: D

Watch Video Solution

64. The reaction which shows standard heat of formation of water correctly is

A.
$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O$$
, $\Delta H = -68.3 kcal$

B.
$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(s)}, \Delta H = -68.3kcal$$

$$C.H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(g)}, \Delta H = -68.3kcal$$

D.
$$2H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow 2H_2O_{(l)}, \Delta H = -136.6kcal$$

Answer: A

65. The enthalpy of the reaction

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \to H_2O_{(g)}$$
 is ΔH_1 and that of $H_{2(g)} + \frac{1}{2}O_{2(g)} \to H_2O_{(l)}is\Delta H_2$. Then

A.
$$\Delta H_1 < \Delta H_2$$

$$B. \Delta H_1 + \Delta H_2 = 0$$

$$\mathsf{C.}\,\Delta H_1 > \Delta H_2$$

D.
$$\Delta H_1 = \Delta H_2$$

Answer: A

Watch Video Solution

standard heat of formation of CO₂?

66. In which of the following reactions heat liberated is known as

A.
$$2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)} + 135.6$$
 kcals

B.
$$C_{\text{(diamond)}} + O_{2(g)} \rightarrow CO_{2(g)} + 94.5 \text{ kcals}$$

$$C. C_{\text{(grphite)}} + O_{2(g)} \rightarrow CO_{2(g)} + 94.05 \text{ kcals}$$

$$\mathsf{D.}\, CH_{4(g)} + 2O_{2(g)} \,\to\, 2CO_{2(g)} + 2H_{2(g)} + 2H_{2(l)} + 2128 \; \mathsf{ikcals}$$

Answer: C

Watch Video Solution

67. The enthalpies of formation of the elements in their standard states

are

B. Zero

A. unity

C. > Zero

D. < 1 but > 0

Answer: B

68. $S_8 + 8O_2 \rightarrow 8SO_2$, $\Delta H = -QKJ$. Then ΔH for $SO_2 \rightarrow S + O_2$ is

A. - Q

B. + Q

c. $\frac{+Q}{8}$

D. $\frac{-Q}{8}$

Answer: C

Watch Video Solution

69. The enthalpies of elements under the following conditions are assumed to be

A. Zero at 298 K and 1 atm

B. Unity at 298 K and 1 atm

C. Zero at 273K and 1 atm

D. Unity at 273 K and 1 atm

Answer: A

Watch Video Solution

70. Which of the following is not a combustion reaction

$$A. CO + \frac{1}{2}O_2 \rightarrow CO_2$$

$$B. C + O_2 \rightarrow CO_2$$

$$C.C + \frac{1}{2}O_2 \rightarrow CO$$

$$D. CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Answer: C

Watch Video Solution

71. C_{graphite} + $O_{2(g)}$: $\Delta H = -393.5 kJ$. ΔH of the above reaction cannot be

A. formation of CO_2

C reaction D. transition Answer: D **Watch Video Solution** 72. The enthalpy of combustion of a substance A. is always positive B. is always negative C. can be either zero or greater than zero D. is unpredictable till calculations are done **Answer: B**

B. combustion of C

73. The chemical process involved in the combustion reactions is

- A. Oxidation
- B. Reduction
- C. Redox reaction
- D. Disproportionation reaction

Answer: C

Watch Video Solution

74. $H_2 + Cl_2 \rightarrow 2HCl + 44$ K.Cal. Heat of formation of HCl is

- A. -44K. Cal
- B. +44*K*. *Cal*
- C. -22K. Cal
- D. +22*K*. *Cal*

Answer: D

Watch Video Solution

- 75. The heat of neutralisation is maximum when
 - A. Sodium hydroxide is neutralised by acetic acid
 - B. Ammonium hydroxide is neutrallised by acetic acid
 - C. Ammonium hydroxide is neutralised by hydrochloric acid
 - D. Sodium hydroxide is neutralised by hydrochloric acid.

Answer: D

Watch Video Solution

76. For the following reaction $H_{(aq)}^+ + OH_{(aq)}^- \rightarrow H_2O_{(l)}$, $\Delta H = -Q$, where ΔH represents

A. Heat of formation B. Heat of combustion C. Heat of neutralisation D. Heat of dilution Answer: C **Watch Video Solution** 77. Enthalpy of neutralisation of all strong acids and strong bases has the same value because A. Neutralisation leads to the formation of a salt and water B. Strong acid and bases are ionic substances C. Acids always furnish H^+ ions and bases always furnish OH^- ions D. The net chemical change involves the combination of 1 mol of H^+

ions and 1 mol OH ions to form water.

Answer: D

Watch Video Solution

78. Equal volumes of equi molar HCl and H_2SO_4 are separately neutralised by dilute NaOH solution, then heats liberated and x kCal and y kCal respectively. Which of the following is true.

$$A. x = y$$

$$B. x = y/2$$

$$C. x = y/3$$

D.
$$x = 2y$$

Answer: B

79. The standard enthalpy of formation $\left(\Delta H^0\right)$ at 298K for methane, $CH_{4(g)}$ is 74.8 $kJmol^1$. The additional information required to determine the average energy for C-H bond formation would be

- A. The dissociation eneergy of hydrogen molecule, \boldsymbol{H}_2
- B. The dissociation energy of hydrogen molecule, \boldsymbol{H}_2
- C. Latent heat of vaporisation of methane.
- D. The first four ionisation energies of carbon and electron gain enthalpy of hydrogen

Answer: B

that

Watch Video Solution

80. For the transition $C_{\text{(diamonid)}} \rightarrow C_{\text{(graphite)}}$, $\Delta H = -1.5 \text{KJ}$. It follows

A. Graphite is stabler than diamond

B. Diamond is stabler than graphite

C. Graphite is endothermic substance

D. Diamond is exothermic substance

Answer: A

Watch Video Solution

81. If the heats of formation of Al_2O_3 and Fe_2O_3 are -400 K.Cal and -190

K.Cal respectively, the heat of the following reaction is

$$2Al + Fe_2O_3 \rightarrow 2Fe + Al_2O_3$$

A. 590K. Cal

B. -210K. Cal

C. -290K. Cal

D. 210K. Cal

Answer: D

82. The expression
$$\Delta H_{sub}^0 = \Delta H_{fus}^0 + \Delta H_{vap}^0$$
 is true at all

- A. temperatures
- B. pressures
- C. temperatures and pressures
- D. temperatures and 1 atm pressure conditions

Answer: D

- **83.** Which of the following is not correct?
 - A. Dissolution of $N\!H_4\!C\!l$ in excess of water is an endothermic process
 - B. Neutralisation process is always exothermic

C. The absolute value of enthalpy (H) can be determined experimentally

D. The heat of reaction at constant volume is denoted by ΔE

Answer: C

Watch Video Solution

84. $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}, \Delta H = -393.5 kJ$. This equation can not represent

A. Heat of transition

B. Heat of reaction

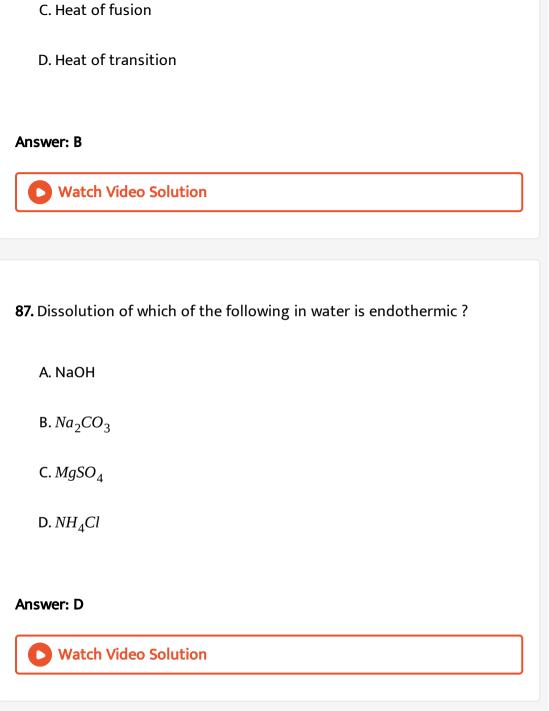
C. Heat of combustion

D. Heat of formation

Answer: A

85. The enthalpy change for the process $C_{\text{(graphite)}} \rightarrow C(g)$, $\Delta H = +xKJ$ represents enthalpy of

- A. Fusion
- B. Sublimation
- C. Combustion
- D. Vapourisation


Answer: B

Watch Video Solution

86. $MgSO_{4(s)} + H_2O \rightarrow MgSO_{4(aq)}, \Delta H = -84K$. Cals, ΔH of the reaction is known as

- A. Heat of dilution
 - B. Heat of solution

88. Calculate ΔH in Joules for

$$C_{\text{(graphite)}} \rightarrow C_{\text{(Diamond)}}$$

using the following by data

$$C_{\text{(graphiter)}} + O_{2(g)} \rightarrow CO_{2(g)}, \Delta H^{\circ} = -393.5KJ$$

$$C_{\text{(Diamond)}} + O_{2(g)} \rightarrow CO_{2(g)}, \Delta H^{\circ} = -395.4KJ$$

A. 1900

B. -788.9×10^3

D. 788×10^{3}

C. 190000

Answer: B

A. The standard enthalpy of an overall reaction is the sum of the enthalpy changes in individual reactions.

B. enthalpy of formation of compound is same as the enthalpy of decomposition of the compound into constituent elements, but with opposite sign

C. at constant temperature the pressure of a gas in inversely proportional to its volume.

D. the mass of a gas dissolved per lit of a solvent is proportional to the pressure of the gas in equilibrium with the solution.

Answer: A

Watch Video Solution

90. Hess's law states that

A. H = E + PV

B. It is not possible to create or destroy energy

C. Enthalpy change of a given chemical reaction is same whether the process occurs in one or more sequence of steps

D. Total entropy of the universe remains constant

Answer: C

Watch Video Solution

91. The enthalpy of combustion of cyclohexane cyclohexene and H_2 are respectively -3920, -3800 and -241 $KJmol^{-1}$. The heat of hydrogenation of cyclohexene in $KJmol^{-1}$ is

A. - 205*KJ*

B. +205KJ

C. = 53.5KJ

D. +53.5*KJ*

Answer: D

Watch Video Solution

92. Given that $C + O_2 \rightarrow CO_2$, $\Delta H^{\circ} = -xkJ$

$$2CO + O_2 \rightarrow 2CO_2, \Delta H^{\circ} = -ykJ$$

The enthalpy of formation of carbon monoxide will be

A.
$$\frac{2x - y}{2}$$

B.
$$\frac{y - 2x}{2}$$

C.
$$2x - y$$

D.
$$y = 2x$$

Answer: B

Watch Video Solution

93. The enthalpy change during a chemical reaction depends upon

A. path by which the reactants change into products

B. volume change accompanying the chemical reaction.

C. nature of the initial reactants and the final proucts

D. temperature of the reactants and the products

Answer: C

Watch Video Solution

94. In which of the following equations, ΔH^0 reaction equals to ΔH_f^0 for the product?

A.
$$2CO_{2(g)} + O_{2(g)} \rightarrow 2CO_{2(g)}$$

$$B. N_{2(g)} + O_{3(g)} \to N_2 O_{3(g)}$$

$$\mathsf{C.}\,\mathit{CH}_{4(g)} + 2C_{2(g)} \,\rightarrow\, \mathit{CH}_2\mathit{Cl}_2(l) + 2\mathit{HCl}_{(g)}$$

$$\mathsf{D.}\,\mathit{Ce}_{(g)} + 2F_{2(g)} \to \mathit{CeF}_{4(g)}$$

Answer: D

95. The reaction which shows standard heat of formation of water correctly is

$$A.H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)},$$

B.
$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(s)}, \Delta H = -68.3 kcal$$

$$C.H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(g)}, \Delta H = -68.3kcal$$

$$\mathsf{D.}\,2H_{2\left(g\right)}+O_{2\left(g\right)}\,\rightarrow\,2H_{2}O_{\left(l\right)},\Delta H=\,-\,136.6kcal$$

Answer: A

Watch Video Solution

96. A hypothetical reaction $A \rightarrow 2B$, proceed through following sequence of steps

$$A \rightarrow C, \Delta H = q_1, C \rightarrow D, \Delta H = q_2 \frac{1}{2} D \rightarrow B, \Delta H = q_3$$

The heat of reaction is

A.
$$q_1 + q_2 + 2q_3$$

B. $q_1 + q_2 - 2q_3$

 $C. q_1 + q_2 + 2q_3$

D. $q_1 + 2q_2 - 2q_3$

Answer: C

Watch Video Solution

is 670K. $Calmol^{-1}$. The C-C bond energy is:

97. The dissociation energy of CH_4 is 400K. $Calmol^{-1}$ and that of ethane

- A. 270 K.Cal
- B. 70 K.Cal
- C. 200 K.Cal
- D. 240 K.Cal

Answer: B

98. Heat of reaction (ΔH) is given by

A. $\Delta H = Activation$ energy of forward reaction - Activation energy of backward reaction

B. $\Delta H =$ Sum of bond energy of reactants Sum of bond energy of products

C. $\Delta H = \text{Sum of enthalpy of products} - \text{Sum of enthalpy of reactants}$

D. All the above

Answer: D

Watch Video Solution

99. The factor which does not influence that heat of the reaction is

A. Pressure

- B. Temperature

 C. Physical state of substance

 D. Number of steps involved in the reaction

 Answer: D

 Watch Video Solution
- **100.** Hess.s law is based on
 - A. Law of conservation of mass
 - B. Gibb's equation
 - C. First law of thermodynamics
 - D. Kirchoff's equation

Answer: C

101. Which of the following process makes the one porous?
A. Evaporation of liquid into vapour.
B. Temperature of crystalline solid increase from 0 K to 120 K.
C. Decomposition of sodium bicarbonate into sodium carbonate,
water and carbondioxide
D. A liquid crystallizes into its solid.
Answer: D
Watch Video Solution
102. The incorrect statement according to second law of themodynamics

A. Heat cannot flow from colder body to a hotter body of its own

B. All spontaneous processes are thermodynamically irreversible

is

C. Heat can be converted into work completely without casusing some

permanent change in the system (or) surroundings

D. Perpetul motion machine of second kind is not possible

Answer: C

Watch Video Solution

103. The enthalpy is maximum for

A. Methane

B. Water

C. Carbon

D. Phosphorus

Answer: A

104. Incorrect statement related to an irreversible process is

- A. Entropy of the universe goes on increasing
- B. 'Gibbs energy of the system goes on decreasing
- C. Total energy of the universe goes on decreasing
- D. Total energy of the universe remains constant

Answer: C

Watch Video Solution

105. Entropy of a system depends upon

- A. Volume only
- B. Temperature only
- C. Pressure only
- D. Pressure, volume and temperature

Answer: D

106. False statement regarding second law of thermodynamics is

- A. It is imposible to construct a mackine working in cycles which transforms heat from a lower temperature region to higher temperature region without intervention of any ecternal agency.
- B. Heat cannot flow from a colder body to a hotter body on its own
- C. Any spontaneous process taking place in isolated system, $\Delta S < O$
- D. All spontaneous processes are thermodynamically irreversible and entropy of the system increases in all spontaneous processes.

Answer: C

107. One of the following reactions involves in decrease of entropy

- A. Sublimation of dry ice
- B. Crystallisation of salt from brine (aq)
- C. Burning of rocket fuel
- D. Decomposition of gaseous N_2O_4 .

Answer: B

Watch Video Solution

108. The enthalpy of the reaction

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \to H_2O_{(g)}$$
 is ΔH_1
 $H_{2(g)} + \frac{1}{2}O_{2(g)} \to H_2O_{(l)}is\Delta H_2$. Then

and

that

of

A.
$$\Delta H = -Ve$$
, $\Delta S = +Ve$

B.
$$\Delta H = -Ve$$
, $\Delta S = -Ve$

C.
$$\Delta H = + Ve$$
, $\Delta S = - Ve$

D.
$$\Delta H = + Ve$$
, $\Delta S = + Ve$

Answer: B

Watch Video Solution

109. (A): Heat flows always from a hotter body to a colder body by itself(R): without an external aid heat cannot flow from colder body to a hotter body

- A. Both A and R are correct and R is the correct explanation of A
- B. Both A and R are correct and R is not the correct explanation of A
- C. A is correct but R is wrong
- D. A is wrong but R is correct

Answer: A

110. Which of the following process has negative value of ΔS ?

- A. Dissolution of sugar in water
- B. Stretching of rubber band
- C. Decomposition of lime stone
- D. Evaporation of water

Answer: B

- **111.** For the reaction $I_{2(g)} \Leftrightarrow I_{2(s)}$, $\Delta H = -ve$. Then choose the correct statement from the following
- (A) The process is spontaneous at all temperature
- (B) The process is accompained by an increase in entropy
- (C) The process is accompained by a decrease in entropy
- (D) The process is accompained by a decrease in enthalpy
 - A. Only a, b and c

B. Only b and d

C. Only c and d

D. Only a,c and d

Answer: C

Watch Video Solution

112. For a spontaneous process, in a reaction

A.
$$\Delta S_{\text{total}} = \left(\Delta S_{\text{system}} + \Delta S_{\text{surroundings}}\right) < O$$

B.
$$\Delta S_{\text{total}} = \left(\Delta S_{\text{system}} + \Delta S_{\text{surroundings}}\right) = O$$

C.
$$\Delta S_{\text{total}} = \left(\Delta S_{\text{system}} + \Delta S_{\text{surroundings}}\right) > O$$

D. $\Delta S_{SVS} > O$ only

Answer: C

113. Some statements are given with regard to entropy. The incorrect statement(s) are

- (A) The absolute entropy of substances cannot be determined
- (B) In standard state entropy of elements is always positive
- (C) The entropy of universe always decreases
- (D) In a spontaneous process, for an isolated system the entropy of the system generally increases

A. A,B

B. B,C

C. A,C

D. Only C

Answer: C

114. For an irreversible process, the value of $\left[\Delta S_{(\text{system})} + \Delta S_{(\text{surroundings})}\right]$

is

- A. > 0
- B. < 0
- **C**. 0
- D. $2De < sS_{(surr)}$

Answer: A

Watch Video Solution

115. A process is spontaneous at all temperatures when

A.
$$\Delta H = -ve$$
, $\Delta S = -ve$

B.
$$\Delta H = + ve$$
, $\Delta S = - ve$

C.
$$\Delta H = -ve$$
, $\Delta S = +ve$

D. $\Delta H = + ve$, $\Delta S = + ve$

Answer: C

Watch Video Solution

- **116.** $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(l)}, \Delta H = -ve \text{ and } \Delta G = -ve.$ Then the reaction is
 - A. Spontaneous and endothermic
 - B. Spontaneous and slow
 - C. Non spontaneous and slow
 - D. Non spontaneous ans slow

Answer: C

117. $H_{(aq)}^+ + OH_{(aq)}^- \rightarrow H_2O_{(l)}, \Delta H = -ve \text{ and } \Delta G = -ve \text{ then the}$

A. Spontaneous and instantaneous

B. Spontaneous and endothermic

C. Spontaneous and slow

D. Non spontaneous ans slow

Answer: A

Watch Video Solution

118. Among the following what is necessary condition for spontanity of a process?

A. $\Delta S > 0$

B. $\Delta E < 0$

 $\mathsf{C}.\,\Delta H < 0$

D.
$$\Delta G < 0$$

Answer: D

Watch Video Solution

119. Which of the following is the condition for a non spontaneous reaction at high temperature but spontaneous at low temperature?

$$\Delta H \Delta S$$

$$\Delta H \Delta S$$

$$\Delta H \Delta S$$

Answer: A

120. Based on the third law of themodynamics, the entropy can be obtained using the equation.

A.
$$\Delta S = \frac{\Delta H}{T}$$

$$B. \int_0^T T. C_P^1 dT = S$$

$$\mathsf{C.}\ \Delta G = T\Delta S$$

$$D. \int_0^T C_p T^{-1} dT = S$$

Answer: D

Watch Video Solution

121. A chemical reaction cannot occur at all if its

A.
$$\Delta His(+)ve$$
 and $\Delta Sis(-)ve$

B.
$$\Delta His(-)ve$$
 and $\Delta Sis(+)ve$

C.
$$\Delta H$$
 and $\Delta Sare(+)ve$ but $\Delta H < T\Delta S$

D.
$$\Delta H$$
 and ΔS are(-) $vebut\Delta H > T\Delta S$

Answer: A

Watch Video Solution

122. An equilibrium reaction $X + Y \Leftrightarrow W + Z$, $\Delta H = + ve$ is spontaneous in the forward direction. Then corresponding sign of ΔG and ΔS should be respectively

$$C. + ve, + ve$$

Answer: B

A. ΔH is positive and ΔS are negative

B. Both ΔH and ΔS are negative

C. Both ΔH and ΔS are positive

D. ΔH is negative whereas ΔS is positive

Answer: C

Watch Video Solution

124. For which of the process, ΔS is negative?

$$A. H_{2(g)} \rightarrow 2H_{(g)}$$

 $B. N_{2(g)}(1atm) \rightarrow N_{2(g)}(8atm)$

$$C.2SO_{3(g)} \rightarrow 2SO_{2(g)} + O_{2(g)}$$

 $D. C_{\text{(diamond)}} \rightarrow C_{\text{(graphite)}}$

Answer: B

125. The process of evaporation of a liquid is accompanised by

(A) Increase in enthalpy (B) Increase in entropy (C) Decrease in Gibbs energy

The correct statement(s) is/are

- A. Only a and c
- B. Only b and c
- C. Only a and b
- D. All

Answer: D

Watch Video Solution

126. The favourable conditions for a spontaneous reaction are

A. $T\Delta S > \Delta H$, $\Delta H = + ve$, $\Delta S = + ve$

B.
$$T\Delta S > \Delta H$$
, $\Delta H = + ve$, $\Delta S = -ve$

C.
$$T\Delta S = \Delta H$$
, $\Delta H = + ve$, $\Delta S = -ve$

D.
$$T\Delta S = \Delta H$$
, $\Delta H = + ve$, $\Delta S = + ve$

Answer: A

Watch Video Solution

127. A reaction has both DH and DS negative. The rate of reaction

- A. Increases with increase of temperature
- B. Increases with decrease of temperature
- C. Remains unaffected by change of temperature
- D. Cannot be predicted for change in temperature

Answer: A

128. At 27 ° C the reaction,

$$C_6H_{6(l)} + \frac{15}{2}O_{2(g)} \rightarrow 6CO_{2(g)} + 3H_2O((l))$$
 proceeds spontaneously because the magnitude of

A.
$$\Delta H = T\Delta S$$

B.
$$\Delta H > T\Delta S$$

$$\mathsf{C}.\ \Delta H < T\Delta S$$

D.
$$\Delta H > 0$$
, $T\Delta S < 0$

Answer: B

Watch Video Solution

129. Although the dissolution of ammonium chloride in water is an endothermic reaction, even then it is spontaneous because

A. ΔH is positive, ΔS is negative

B. ΔH is positive, ΔS is zero

C. ΔH is positive, $T\Delta S < \Delta H$

D. ΔH is positive, ΔS is positive and $\Delta H < T\Delta S$

Answer: D

Watch Video Solution

130. For the precipitation reaction of Ag^+ ions with NaCl, which of the following statements is correct ?

A. ΔH for the reaction is zero

B. ΔG for the reaction is zero

C. ΔG for the reaction is negative

D. ΔG is equal to ΔH

Answer: C

131. Which one of the following has ΔS^0 greater than zero?

$$A. CaO_{(s)} + CO_{2(s)} \Leftrightarrow CaCO_{3(s)}$$

$$\mathsf{B.}\,\mathit{NaCl}_{(q)} \Leftrightarrow \mathit{NaCl}_{(s)}$$

$$C. NaNO_{3(s)} \Leftrightarrow Na_{(aq)}^+ + NO_{3(aq)}^-$$

$$\mathsf{D}.\, N_{2(g)} + 3H_{2(g)} \Leftrightarrow 2NH_{3(g)}$$

Answer: C

Watch Video Solution

132. For which of the following elements, the standard enthalpy is not zero?

A. C (Diamond)

B. C (Graphite)

C. Liquid mercury

D. Rhombic suphur

Answer: A

Watch Video Solution

133. The equilibrium constant of a reaction is 73. Calculate standard free energy change.

A. Both A & R are true and R is the correct explanation of A

B. Both A & R are true but R is not the correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: D

Watch Video Solution

134. For a reaction R_1 , $\Delta G = xKJmol^{-1}$. For a reaction R_2 , $\Delta G = yKJmol^{-1}$.

Reaction ${\cal R}_1$ is non-spontaneous but along with ${\cal R}_2$ it is spontaneous. This

means that

A. x is -ve, y is +ve but in magnitude x > y

B. x is +ve, y is -ve but in magnitude y > x

C. Both x and y are -ve but not equal

D. Both x and y are +ve but not equal.

Answer: B

Watch Video Solution

135. Which of the following relationship is correct?

A. $\Delta G^0 = -RT \ln K$

 $B.K = e^{-\Delta G^0/RT}$

C. $K = 10^{-\Delta G^0/2.303RT}$

D. All of correct

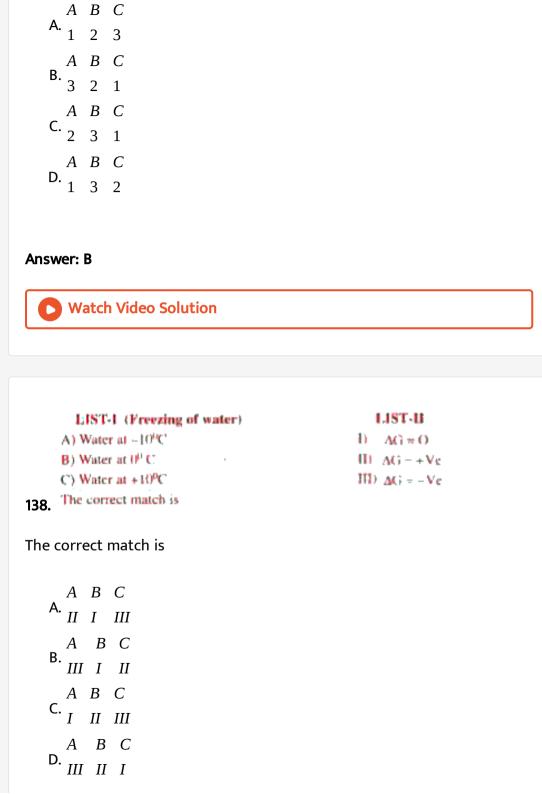
Answer: D

136. The least random state of H_2O system is

- A. Ice
- B. Liquid water
- C. Steam
- D. Randomness is same all.

Answer: A

Watch Video Solution


LIST-I

- A) Work
- B) Enthalpy
- C) Temperature
- D) P, V, T and n
- (2) P, V, I and n
- 137. The correct match is

The correct match is

LIST-II

- 1) Extensive property
- 2) Intensive property
- State variable
- 4) Path function

Answer: B

Watch Video Solution

139. For a spontaneous process, in a reaction

- A. which needs some initalation like heat or energy
- B. which takes place instantaneously
- C. which takes place by itself
- D. takes place by itself or by initiation.

Answer: D

Watch Video Solution

140. When a system is in equilibrium state

A. Gas

B. Liquid

C. Solution

D. Solid

Answer: A

equilibrium

Watch Video Solution

 $A. G_{(ice)} = G_{(water)} = 0$

141. $H_2O(l) \Leftrightarrow H_2O_{(s)}, \Delta H = -q$ application of pressure on

this

B. $G_{(ice)} = G_{(water)} \neq 0$

 $C.G_{(ice)} > G_{(water)}$

D. $G_{ice} < G_{(water)}$

Answer: A

142. The favourable conditions for a spontaneous reaction are

A.
$$\Delta H = -ve$$
, $\Delta S = +ve$

B.
$$\Delta H = + ve$$
, $\Delta S = - ve$

$$C. \Delta H = -ve, \Delta S = -ve$$

D.
$$\Delta H = + ve$$
, $\Delta S = + ve$

Answer: A

Watch Video Solution

143. For a process change in enthalpy is 36 kJ.mol and change in entropy is 120 J mole $^{-1}K^{-1}$. The temperature at which the sywstem attains eequibrium is

A.
$$50 \degree C$$

B. 47 ° C

C. 27 ° C

D. 12 ° *C*

Answer: C

Watch Video Solution

144. $\Delta G_{\rm sys}$ is equal to

A. $T\Delta S_{sys}$

B. $T\Delta S_{\text{total}}$

C. - $T\Delta S_{\text{total}}$

D. $\Delta S_{\rm sys} \Delta S_{\rm surrounding}$

Answer: C

145. For $A_{(g)}$ + $B_{(s)}$ \rightarrow 2 $C_{(g)}$, ΔH and ΔS respectively are 50 KJ and 100

J/K respectively. Then at 228 ° C

$$A. \Delta G = 02$$

 $B. \Delta G > 0$

$$\mathsf{C.}\,\Delta G=2$$

D. $\Delta G < 0$

Answer: D

Watch Video Solution

146. First law of thermodynamics does not tell about

A. Law of conservatin of energy

B. Word done whether +ve (or) -ve

C. Feasibility of a process

D. ΔE at constant temperature

Answer: C

Watch Video Solution

147. For change in entropy, units are

A. mol/lit

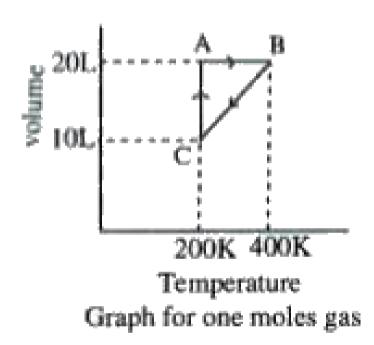
B. mol. $lit^{-1}sec^{-1}$

C. J. $mol^{-1}K^{-1}$

 $D. s^{-1}$

Answer: C

Watch Video Solution


148. In standard state the non spontaneous reaction among the following

is

A. Melting of ice B. natural radioactiveity C. Freezing of water D. Rusting of iron **Answer: C** Watch Video Solution **149.** If the u_{rms} of an ideal gas in a closed container is doubled, then which of the following statement correctly explains how the change is accomplished? A. I,II B. II,III C. III,I D. I,II,III

Watch Video Solution

Process $A \rightarrow B$ represents

150.

A. enthalpy for exothermic reactions

B. enthalpy for endothermic rreactions

C. entropy for exothermic reactions

D. entropy for endothermic reaction

Answer: B

Watch Video Solution

151. The correct statement regarding entropy is

- A. At absolute zero temperaure, entropy of a perfectly crystalline solid is zero.
- B. At absolute zero temperature, the entropy of a perfectly crystalline substance is +Ve.
- C. At obsolute zero temperature, the entropy of all crystalline substance is zero.
- D. At $0 \,^{\circ} C$, the entropy of a perfect crystlline solid is zero.

Answer: A

152. Identify the correct statements among the following

- I) At equilibrium, change in entropy for a process, *DetlaS* = 0
 - II) Temperature is an extensive property

III)For a cyclic process $\Delta U \neq 0$

IV)During free expansion of a gas under reversible or irreversible condition $\Delta W=0$

- A. I & II
- B. I & IV
- C. II & III
- D. I & III

Answer: B

Watch Video Solution

153. A reaction has both DH and DS negative. The rate of reaction

A. Increase with increase in temperature

- B. Cannot be predicted for change in temperature
- C. Increase with decrease in temperature
- D. Remains unaffected by change in temperature

Answer: C

Watch Video Solution

OBJECTIVE EXERCISE-2

- **1.** A system absorbs 600J of energy and does work equivalent to 400J J of energy. The internal energy changes
 - A. 1000J
 - B. 200 J
 - C. 600J
 - D. 300J

Answer: B

Watch Video Solution

2. During a process work equivalent to 400J is done on a system, which gives out of 125J of energy. The change in internal energy is

A. 525J

B. 375J

C. 275J

D. 200J

Answer: C

Watch Video Solution

3. One litre-atmosphere is appromixmately equal to

A. 19.2*KJ* B. 101J C. 8.31J D. 831J **Answer: B** Watch Video Solution 4. One mole of an ideal gas at 300K is expanded isothermally reversibly from an initial volume of 1 litre to 10 litres. The ΔE for this process is (R = 2 cal $mol^{-1}K^{-1}$) A. 163.7cal B. Zero C. 1381.1cal D. 9 lit atm

Answer: B

Watch Video Solution

- **5.** An ideal gas occuping a volume of $2dm^3$ and a pressure of 5 bar undergoes isothermal and irreversible expansion against external pressure of 1 bar. The final volume of the system and work involved in the process is
 - A. $10dm^3$, 1000J
 - B. $8dm^3$, 800J
 - C. $10dm^3$, 800J
 - D. $10m^3$, 1000J

Answer: C

6. A system absorbs 10kJ of heat at constant volume and its temperature rises from 27 $^{\circ}$ C to 37 $^{\circ}$ C. The ΔE of reaction is

A. 100*KJ*

B. 10*kJ*

C. 0

D. 1KJ

Answer: B

7. An ideal gas expands in volume from $10^{-3}m^3$ to $10^{-2}m^3$ at 300 K against a constant pressure of 10^5Nm^{-2} . The work done is

A. -900*J*

B. 900*KJ*

C. 270KJ

D	-900KJ	
υ.	- 500113	

Answer: A

Watch Video Solution

8. Two moles of an ideal gas is expanded spontaneously into a vacuum.

The work done is

A. Zero

B. 2J

C. 4J

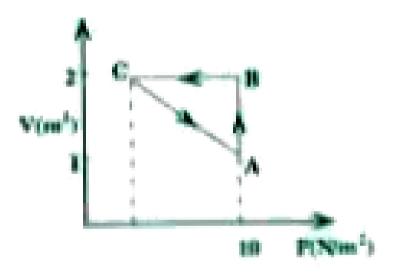
D. 8J

Answer: A

9. A gas absorbs 250 J of heat and expands from 1 litre to 10 litre at constant temperature against external pressure of 0.5 atm . The values of q, w and ΔE will be respectively.

- A. $10cm^3$, 500J
- B. $10^3 dm^3$, 510*J*
- C. $10dm^3$, 1010J
- D. $5dm^3$, 1010J

Answer: D



Watch Video Solution

10. The internal energy change when a system goes from state A to B is 40 KJ/mole. If the system goes from A to B by a reversible path and returns to state A by an irreversible path what would be the net change in internal energy?

A. 40KJ B. > 40KJC. < 40KJD. Zero **Answer: D** Watch Video Solution 11. The work done when 65.38g of zinc dissolved completely in HCl in an open beaker at 300k A. -2494.2J B. -249.4*J* C. 1*J* D. -24.94J **Answer: A**

12. An ideal gas is taken through the cycle $A \to B \to C \to A$, as shown in the figure. If the net heat supplied to the gas in the cycle is 5 J, what is the work done by the gas in the process $C \to A$

A. - 5*J*

B. - 10J

C. - 15*J*

D. - 20*J*

Answer: A

Watch Video Solution

13. Latent heat of vapourisation of a liquid at 500k and 1atm pressure is 10K. Cal/mole. What is the change in internal energy when 3 moles of the liquid is vapourised at the same temperature

- A. 27K. Cal
- B. 7K. Cal
- C. 33K. Cal
- D. 25K. Cal

Answer: A

14. The molar heat capacity of water at constant pressure, C, is $75JK^{-1}mol^{-1}$. When 1.0KJ of heat is supplied to 100g of water which is free to expand, the increase in temperature of water is :

- A. 1.4K
- B. 2.4K
- C. 4.8*K*
- D. 6.6*K*

Answer: B

Watch Video Solution

15. For an ideal gas, $\left(\frac{\partial E}{\partial V}\right)_T$ is

- A. zero
- B. + Ve

		170
•	_	VΡ

D.
$$\Delta H$$

Answer: A

Watch Video Solution

16. For a gas having molar mass M, specific heat at constant pressure can be given as:

A.
$$\frac{\gamma R}{M(\gamma - 1)}$$

B.
$$\frac{\gamma}{RM}$$

C.
$$\frac{M}{R(\gamma - 1)}$$

D.
$$\frac{\gamma RM}{\gamma + 1}$$

Answer: A

17. Molar heat capacity of water in equilibrium with ice at constant pressure is:

A. Zero

B. Infinity (∞)

C. 40.45*KJK*⁻¹*mol*⁻¹

D. $5.48JK^{-1}mol^{-1}$

Answer: B

Watch Video Solution

18. Molar heat capacity $\left(C_p\right)$ of water of constant pressure is $75JK^{-1}mol^{-4}$. The increase in temperature (in K) of 100g of water when I kJ of heat is supplied to it is

A.
$$1.8 \times 10^{-3}$$
 mol

B.
$$3.6 \times 10^{-5}$$
 mol

C. 0.0288*g*

D. 0.288mg

Answer: D

Watch Video Solution

19. Temperature of 1 mole of an ideal gas is increased from 300 K to 310 K under isochoric process. Heat supplied to the gas in this process is Q = 25

R, where R = universal gas constant. What amount of work has to be done by the gas if temperature of the gas decreases from 310 K to 300 K

adiabatically?

A. 16X

B. 6.25*X*

C. 32X

D. 12.5*X*

Answer: D

20. Change in enthalpy when $11.2dm^3$ of He at NTP is heated in a cylinder to 100 ° C is

A. 623.5*J*

B. 1039.25J

C. 1227*J*

D. 520J

Answer: B

Watch Video Solution

21. On which of the following factors does internal energy depend upon

A. q = 500J, W200J

B. 1 = -400J, W = +200J

C.
$$q = 500J$$
, $W = 200J$

D.
$$q = 400J$$
, $Q = 100J$

Answer: C

Watch Video Solution

22. Which of the one following is not a state function?

Α. ΔΗ

 $B. \Delta S$

C. *S*

D. W

Answer: B

23. A gas absorbs 250 J of heat and expands from 1 litre to 10 litre at constant temperature against external pressure of 0.5 atm . The values of q, w and ΔE will be respectively.

A. 250*J*, 455*J* and 710*J*

B. 250J, -455J and -205J

C. -250J, -455J and -205J

D. -250, 455J and 205J

Answer: C

Watch Video Solution

24. Heat of combustion of C_2H_4 is -337 kCal. If 5.6 lit O_2 is used at STP, in the combustion heat liberated is kCal

A. 28.08

B. 14.04

C. 42.06

D. 56.16

Answer: A

Watch Video Solution

25. Human body requires 2370 K. Cal of energy daily. The heat of combustion of glucose is -790 K.cal/mole. The amount of glucose required for daily consumption is

A. 650g

B. 540g

C. 327g

D. 490.5*g*

Answer: B

26. The heats of combustion of ethane, ethene and acetylene are -341.1 kcal, -330 kcal and -310.9 kCal mol^{-1} respectively. The best fuel among them is

- A. Ethane
- B. Ethene
- C. Acetylene
- D. All are equal

Answer: C

Watch Video Solution

27. The heat of combustion of benzene at $27\,^{\circ}C$ found by bomb calorimeter i.e., for the reaction $C_6H_6 - ((l)) + 7\frac{1}{2}O_{2(g)} + 6CO_{2(g)} + 3H_2O_{(l)}$ is -780K. Calmol⁻¹. The

heat evolved on burning 39g of benzene in an open vessel will be

A. 390 K.Cal

B. 780.9K. Cal

C. 390.45K. Cal

D. 780K. Cal

Answer: C

Watch Video Solution

28. $N_2 + 3H_2 \rightarrow 2NH_3$, $\Delta H = -46K$. Cals. From the above reaction, heat of

formation of ammonia is

A. 46 K.Cal

B. -46K. Cals

C. - 23K.Cals

D. 23' K.Cals

Answer: C

29. Given that $\frac{1}{2}S_{8(s)} + 6O_{2(g)} \rightarrow 4SO_{3(g)}$, $\Delta H^0 = -1590kJ$. The standard enthalpy of formation of SO_3 is

D.
$$+397.5 K J mol^{-1}$$

Answer: B

Watch Video Solution

30. The amount of heat evolved on combustion of 10 grams of benzoic acid is 10 K.Cals. The heat of combustion of benzoic acid is

B. - 122K.Cals C. - 132 K.Cals D. -92 K.Cals Answer: A **Watch Video Solution** 31. The heat of reaction at constant volume and temperature is represented by A. -160 B. -320C. -1600 D. 1600 **Answer: C Watch Video Solution**

32. The heat of combustion of solid benzoic acid at constant volume is

-321.30KJ at 27 $^{\circ}$ C . The heat of combustion at constant pressure is

A. -321.30 - 300*R*

B. -321.30 + 300R

C. -321.30 - 150R

D. -321.30 + 900R

Answer: C

Watch Video Solution

33. For the reaction $2H_2O_{(l)} \rightarrow H_3O_{(aq)}^+ + OH_{(aq)}^-$, the value of ΔH is

A. 114.6*KJ*

B. - 144.6KJ

C. 57.3*KJ*

D. -57.3*KJ*

Answer: C

Watch Video Solution

- **34.** (A): Pyrolusite is an ore of manganese.
- (R) : Formula of pyrolusite is Mn_3O_4 .
 - A. 624.67*KJ*
 - B. 462.67*KJ*
 - C. 476.67*KJ*
 - D. 426.67*KJ*

Answer: B

35. Heat liberated in the neutralisation of 500 ml of 1N HCl and 500ml of 1N NH_4OH is -1.36 K.Cals. The heat of ionisation of NH_4OH is

A. 10.98K.Cals

B. -12.34 K.Cals

C. - 10.98K.Cals

D. 12.34 K.Cals

Answer: A

Watch Video Solution

36. When 1 litre of IM HCl is mixed with 1 litre of 1M NaOH, the rise in temperature was found to be T_1 . In another experiment 1 litre of 0.5 M NaOH is mixed with 1 lit. of 0.5 M HCl. The rise in temperature was found to be T_2 . Then

A.
$$T_1 = T$$

C. $T_1 = 2T_2$

B. $T_1 < T_2$

D. $T_2 = 2T_1$

Answer: C

Watch Video Solution

37. $H_2SO_{4(aq)} + 2KOH_{(aq)} \rightarrow K_2SO_{4(aq)} + 2H_2O_{(l)}, \Delta H$ for the above

A. - 13.7K.Cal

reaction is

C. -27.4K.Cal

D. - 137K.J

B. + 57.3K.J

Answer: C

38. Equal volumes of equi molar HCl and H_2SO_4 are separately neutralised by dilute NaOH solution, then heats liberated and x kCal and y kCal respectively. Which of the following is true.

A.
$$x = y$$

$$B. x = y/2$$

$$C. x = 2y$$

D.
$$x = y/3$$

Answer: B

Watch Video Solution

39. When $50cm^3$ of 0.2N H_2SO_4 is mixed with $50cm^3$ of 1N KOH, the heat liberated is

A. 11.45*KJ*

B. 57.3KJ

C. 573KJ

D. 573*J*

Answer: D

Watch Video Solution

40. Heat of neutralisation for the reaction $NaOH + HCl \rightarrow NaCl + H_2O$ is - 57.1kJmole⁻¹. The heat relased when

0.25 moles of NaOH is treated with 0.25 moles of HCl is

A. 22.5 K.J/mole

B. 57.1 K.J/mole

C. 14.3 K.J/mole

D. 28.6K.J/mole

Answer: C

41. The heats of neutralisation of HCl with NH_4OH and that of NaOH with CH_3COOH are repectively -51.4 and -50.6 $KJeq^{-1}$. The heat of neutralisation of acetic acid with NH_4OH will be

Answer: A

Watch Video Solution

42. Given that the data for neutralization of a weak acid (HA) and strong acid with a strong base is:

 $HA + OH^{-} \Rightarrow A^{-} + H_{2}O : \Delta H = -41.80kJ, H^{+} + OH^{-} \Rightarrow H_{2}O, \Delta H = -55.90kJ$

43. $H_2SO_{4(aq)} + 2KOH_{(aq)} \rightarrow K_2SO_{4(aq)} + 2H_2O_{(l)}, \Delta H$ for the above

The enthalpy of dissociation of weak acid would be

A. -97.20*KJ*

B. +97.70KJ

D. 14.10*KJ*

C. -14.10*KJ*

Answer: D

reaction is

A. 13.6

B. 6.8

C. 27.2

$\overline{}$	2	72
υ.	۷.	. / 2

Answer: C

Watch Video Solution

- **44.** 20 ml of 0.4 MH_2 , SO_4 , and 80 ml of 0.2 M NaOH are mixed. Then the p^H of the resulting solution is
 - A. 9
 - B. 36
 - C. 27
 - D. 18

Answer: A

45. In which of the following combinatins of HCL and NaOH, the heat energy liberated is maximum

A. 10 ml of 0.1 M HCl + 40 ml of 0.1 M NaOH

B. 30 ml of 0.1 M HCl + 20 ml of 0.1 M NaOH

C. 25ml of 0.1 M HCl + 25 ml of 0.1 M NaOH

D. 35ml of 0.1 M HCl + 15 ml of 0.1 M NaOH

Answer: C

Watch Video Solution

46. The enthalpy of the reaction

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(g)}$$
 is ΔH_1 and that of

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)}is\Delta H_2$$
. Then

A. 491.5

B. 495.1

C. 419.5

D. 415.9

Answer: A

Watch Video Solution

47. Heat of combustion of benzoic acid $\left(C_6H_5COOH\right)$ at constant volume at 25 ° C is -3233KJ/mole. When 0.5g of benzoic acid is burnt in bomb calorimeter, the temperature of calorimeter increased by 0.53 ° C. Now in the same bomb calorimeter 1g of C_2H_6 burnt then temperature increased by 2.04 ° C. ΔH for combustion of C_2H_6 is

A. -1530 KJ/mole

B. -1536.2 KJ/mole

C. -1522.8*KJ*/mole

D. +1536.2KJ/ mole

Answer: B

Watch Video Solution

48. The heat of atomisation of $PH_{3(g)}$ is $118K. \ Calmol^{-1}$ and that of $P_2H_{4(q)}$ is 355K. Calmol⁻¹ The energy of the P-P bond is (in K.Cal),

A. 102

C. 26

B. 51

D. 204

Answer: B

49.
$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_{2}O_{(l)}, \Delta H = -286.2KJ$$

$$H_{2}O_{(l)} \rightarrow H_{(aq)}^{+} + OH_{(aq)}^{-}, \Delta H = +57.3KJ$$

Enthalpy of ionization OH in aqueons solution is

- A. -228.5*KJ*
- B. +228.5*KJ*
- C. -343.5KJ
- D. zero

Answer: A

Watch Video Solution

50. Among the following ions, for which one standard enthalpy of ionisation is zero

- A. $OH_{(aq)}^-$
 - $B.Cl_{(aq)}^{-}$
 - $\mathsf{C}.H^{\mathsf{-}}_{(aq)}$
 - $D.H_{(aq)}^+$

Answer: D

Watch Video Solution

$$\frac{1}{2}H_{2(g)} + \frac{1}{2}Cl_{2(g)} \rightarrow HCl_{(g)}, \Delta H^0 = -92.4$$

kJ/mole,

$$HCl_{(g)} + nH_2O \rightarrow H_{(aq)}^+ + Cl_{(aq)}^-$$
, $\Delta H^0 = -74.8$ kJ/mole $\Delta H^0 f$ for $Cl_{(aq)}^-$

is

A. -17.6 KJ/mole

B. -167.2 KJ/mole

C. +17.6KJ/mole

D. -35.2 KJ/mole

Answer: B

52. Work done during the combustion of one mole of CH_4 in bomb calorimeter is

A. zero

B. - 101*J*

C. -24.2*J*

D. -1*J*

Answer: A

Watch Video Solution

53. A sample of CH_4 of 0.08g was subjected to combustion at 27 $^{\circ}C$ in a bomb calorimeter. The temperature of the calorimeter system was found to be raised by 0.25 $^{\circ}C$. If heat capacity of calorimeter is $18kJ/^{\circ}C$, ΔH for combustion of CH_4 at 27 $^{\circ}C$ is

A. -900 KJ/mole

B. -950KJ/mole

C. -859KJ/mole

D. -890KJ/mole

Answer: B

Watch Video Solution

54. For the reaction of one mole zinc dust with one mole sulphuric acid in a bomb calorimeter, ΔU and w correspond to

A. $\Delta U > 0$, w = 0

B. $\Delta U < 0$, w < 0

C. $\Delta U > 0$, w = 0

D. $\Delta U > 0$, w > 0

Answer: A

55. The dissociation energy of CH_4 is 400K. $Calmol^{-1}$ and that of ethane is 670K. $Calmol^{-1}$. The C-C bond energy is:

- A. 270 K.Cal
- B. 70 K.Cal
- C. 200 K.Cal
- D. 240 K.Cal

Answer: B

Watch Video Solution

56. $H_{(aq)}^+ + OH_{(aq)}^- \rightarrow H_2O_{(l)}, \Delta H = -ve \text{ and } \Delta G = -ve \text{ then the}$ reaction is

A.
$$-q_1 - \left[-q_2 - q_3 \right]$$

B.
$$[-q_2 - q_3] + q_1$$

C.
$$-q_1 - q_2 - q_3$$

D.
$$q_1 + q_2 + q_3$$

Answer: B

Watch Video Solution

57.
$$\Delta H_f$$
 or $BaCO_{3(s)}$, $CO_{2(g)}$, $HCl_{(aq)}$ and $H_2O_{(l)}$ respectively are

-1216, -393, -176 and -286
$$KJ/mol$$
. Then ΔH_f of $BaCl_{2(aq)}$ from $BCo_{3(s)} + 2HCl_{(aq)} \rightarrow BaCl_{2(aq)} + CO_{2(q)} + H_2O_{(l)}'\Delta H = -QKJ$

B.
$$(Q + 889)KJ$$

C.
$$-(Q + 889)KJ$$

Answer: C

58.

 $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}, \Delta H = -395kJ, S_{(g)} + O_{2(g)} \rightarrow SO_{2(g)}, \Delta H = -295kJ$

Given

The heat of formation of
$$CS_{2(I)}$$
 is

 $CS_{2(1)} + 3O_{2(q)} \rightarrow CO_{2(q)} + 2SO_{2(q)}, \Delta H = -1110kJ$

B. -3043KJ

D. - 2984KJ

C. - 2925KJ

Answer: B

Watch Video Solution

59. Given $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}, \Delta H = -395kJ, S_{(g)} + O_{2(g)} \rightarrow SO_{2(g)}, \Delta H = -295kJ$

$$CS_{2(l)} + 3O_{2(g)} \rightarrow CO_{2(g)} + 2SO_{2(g)}, \Delta H = -1110kJ$$

The heat of formation of $CS_{2(l)}$ is

A. $+125KJmol^{-1}$

C. 62.5*KJmol* ⁻¹

Answer: A

Watch Video Solution

60. 1)
$$C_{\text{Graphite}} + O_{2(g)} \rightarrow CO_{2(g)}, \Delta H = -94K. Cals$$

2) $C_{\text{Diamond}} + O_{2(g)} \rightarrow CO_{2(g)}, \Delta H = -94.5K. Cals$

From the above data the heat of transition of $C_{\text{diamond}} \rightarrow C_{\text{Graphite}}$

C. -500 Cal

D. 100 Cal

Answer: C

Watch Video Solution

61. ΔH of combustion of yellow P and red P are `- 11 K.J and -9.78 KJ respectively DeltaH of transition of yellow P to Red P is

A. -20.78K. J

B. - 1.22*K*. *J*

C. +1.22*K*. *J*

D. +20.78K. J

Answer: B

62. How much energy is released when 6 mole of octane is burnt in air?

Given ΔH_f^0 for $CO_{2(q)}$, $H_2O_{(q)}$ and $C_8H_{18(l)}$ respectively are -390, -240 and +160 KJ/mol

B. -37.4*MJ*

C. -35.5MJ

D. -20.0MJ

Answer: A

Watch Video Solution

63. Given $C + 2S \rightarrow CS_2$, $\Delta Hf^0 = +117.0 KJmol^{-1}$, $C + O_2 \rightarrow CO_2$, $\Delta Hf^0 = -393.0 KJmol^{-1}$

. The heat of combustion of $CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2$ is

A. -807*KJmol* - 1

 $C. + 110 K J mol^{-1}$ D. $+807 K J mol^{-1}$ **Answer: B** Watch Video Solution 64. The reaction which shows standard heat of formation of water correctly is A. -251.9*KJ* B. 241.9KJ C. -241.9KJ D. 301.9KJ

Watch Video Solution

Answer: C

B. - 1104KJmol - 1

65. The lattice energy of solid NaCl is 180K. Call per mol. The dissolution of the solid in water in the form of ions is endothermic to the extent of 1K, Cal per mol. If the solvation energies of Na^+ and Cl^- ions are in ratio 6:5, what is the enthalpy of hydration of sodium ion?

- A. -85.6K.Cal/mol
- B. -97.5*K*. Cal/mole
- C. 82.6K. Cal/mol
- D. + 100K. Cal/mol

Answer: B

Watch Video Solution

66. Heat of formation of CO and CO_2 are -26.4, -94.0 kcal/mole respectively. What is the heat of combustion of CO in kcals?

B. 120.6

C. -67.6

D. 135.2

Answer: C

Watch Video Solution

67. $Cl_{(g)} + e^- \rightarrow Cl_{(g)}^-, E_A = -348kJ/\text{mole}$ at 0 K. then ΔH for same

process at 300K (in kJ) [R=8J/mol/K] [Hint : $\Delta H = EA - \frac{5}{2}RT$].

A. + 354

B. + 348

C. -354

D. Zero

Answer: C

$$2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)}, \Delta H = -571kJ$$

bond energy of (H-H) = 435 kJ, of (O = O) = 498kJ, then the average bond energy of O-H bond using the above data

A. 484KJ

B. -84*KJ*

C. 271kJ

D. -271kJ

Answer: A

Watch Video Solution

69. If values of ΔH_f° of $ICl_{(g)}, Cl_{(g)}$ and $I_{(g)}$ are respectively 17.57, 121.34, $106.96 J mol^{-1}$. The value of I - Cl (bond energy) in $J mol^{-1}$ is:

- **A.** 17.57
- B. 210.73
- C. 35.15
- D. 106.96

Answer: B

70. If the standard molar enthalpy of formation of
$$CaO_{(s)}$$
, $CO_{2(s)}$ and $CaCO_{3(s)}$ is -635 , -393 and $-1207kJ$ mol⁻¹ respectively, the $\Delta_r H^{\odot}$ in $kJmol^{-1}$ for the reaction $CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$ is

- A. -179
- B. 265
- C. 223.5
- D. + 179

Watch Video Solution

71. If
$$S + O_2 \rightarrow SO_2$$
, $\Delta H = -398.5kJ$

$$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3, \Delta H = -98.7kJ, SO_3 + H_2O \rightarrow H_2SO_4, \Delta H = -130.5kJ$$

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O, \Delta H = -227.3kJ$$

If magnitude of enthalpy of formation of sulphuric acid at 298K is 95x, x=?

A.
$$Q_2 = Q_1 \left(-Q_3 \right) = -Q_4$$

B.
$$-Q_2 = Q_1 - 2Q_3 - Q_4$$

C.
$$Q_1 + Q_2 = -(Q_3 + Q_4)$$

D.
$$Q_1 - Q_4 = Q_2 - Q_3$$

Answer: B

72.
$$C_2H_{6(g)} + 3.5O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(g)}$$

$$\Delta S_{\text{vap}}(H_2O, l) = x_1 \text{ cal} K^{-1} \text{ (boiling point is } T_1)$$

$$\Delta H_f \Big(H_2 O, l \Big) = x_2, \Delta H_f \Big(C O_2 \Big) = x_3, \Delta H_f \Big(C_2 H_6 \Big) = x_4$$
 Hence ΔH for the reaction is

Answer: C

Watch Video Solution

73. The enthalpy of the reaction

$$H_{2(g)}+rac{1}{2}O_{2(g)} o H_2O_{(g)}$$
 is ΔH_1 and that of $H_{2(g)}+rac{1}{2}O_{2(g)} o H_2O_{(l)}is\Delta H_2$. Then

- A. 163
- B. 788
- C. 394
- D. -81.5

Answer: A

- **74.** The enthalpies of HCl, NaOH ,NaCl and H_2O are -120, -82, -148 and -68 kCals. Respectively. ΔH of the following reaction is $HCl + NaOH \rightarrow NaCl + H_2O$
 - A. -28.7K.Cals
 - B. 18 k.Cals
 - C. -57.3 K.Cals
 - D. 14 K.Cals

Answer: D

Watch Video Solution

75. ΔH^0 for a reaction F_2 + $2HCl \rightarrow 2HF + Cl_2$ is given as -352.8kJ. ΔH_f^0 for HF is -268.3kJmol $^{-1}$, then ΔH_f^0 of HCl would be

- A. $-22K Jmol^{-1}$
- B. 880kJmol 1
- C. -91.9kJmol -1
- D. -183.8kJmol⁻¹

Answer: C

Watch Video Solution

76. What is theheat of formation of C_6H_6 , given that the heats of combustion of benzene, carbon and hydrogen are 782, 94 and 68K. Cal

respectively A. + 14K.Cal B. - 14 K.Cal C. +28 K.Cal D. -28 K.Cal Answer: A **Watch Video Solution** 77. The heats of combustion of carbon hydrogen and acetylene are -394kJ, -286kJ and -1301kJ respectively. Calculate heat of formation of C_2H_2 A. 621K. J B. 454K. J C. -227K. J

D. 227K. J

Answer: D

Watch Video Solution

78. The standard enthalpies of formation of $H_2O_{2(I)}$ and $H_2O_{(I)}$ are - 187.8kJmole⁻¹ and - 285.8kJmole⁻¹ respectively. The ΔH^0 for the decomposition of one mole of $H_2O_{2(I)}$ to $H_2O_{(I)}$ and $O_{2(g)}$ is

Answer: B

79. The enthalpies of combustion of carbon and carbon monoxide are $-390 KJmol^{-1}$ and $-278 KJmol^{-1}$ respectively. The enthalpy of formation of carbon monoxide is

- A. 668KJmol 1
- B. 112*KJmol* 1
- C. 112*KJmol* ^{- 1}
- D. -668*KJmol* -1

Answer: C

Watch Video Solution

80. Calculate the heat of formation of KOH from the following data

$$K_{(s)} + H_2O + aq \rightarrow KOH_{(aq)} + \frac{1}{2}H_{2(g)}, \Delta H = -48.4K. Cal$$

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)}, \Delta H = -68.44K. Cal$$

$$KOH_{(s)} + aq \rightarrow KOH_{aq}, \Delta H = -14.01K. Cal$$

B. + 130.85

C. -102.83

D. -130.85

Answer: C

81.

Watch Video Solution

The enthalpy of formation of NO is

 $N_{2(g)} + 2O_{2(g)} \to 2NO_2 + xkJ, 2NO_{(g)} + O_{2(g)} \to 2NO_{2(g)} + ykJ.$

B. X - Y

C. 1/2(Y - X)

D. 1/2(X - Y)

Answer: C

82. If
$$S + O_2 \rightarrow SO_2$$
, $\Delta H = -398.5kJ$

$$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3, \Delta H = -98.7kJ, SO_3 + H_2O \rightarrow H_2SO_4, \Delta H = -130.5kJ$$

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O, \Delta H = -227.3kJ$$

If magnitude of enthalpy of formation of sulphuric acid at 298K is 95x, x=?

A. -854.4K. J

B. - 754.4K. J

C. -650.3K. J

D. -433.7K. J

Answer: A

A. +348KJB. -348KJ

D. +87KJ

C. - 174KJ

Answer: A

Watch Video Solution

84. Let M_1 and M_2 be the masses of the nuclei ${}_1\!H^2$ and ${}_2\!H^4$ respectively.

Aslo let m_p and m_n be the masses of proton and neutron respectively.

A. -87

B. - 170

C. + 170

D. Zero

Answer: B

85. If the heats of formation of Al_2O_3 and Fe_2O_3 are -400 K.Cal and -190

K.Cal respectively, the heat of the following reaction is

$$2Al + Fe_2O_3 \rightarrow 2Fe + Al_2O_3$$

- A. 210K. Cal
- B. 590K. Cal
- C. -590K. Cal
- D. -210K. Cal

Answer: D

Watch Video Solution

86. $C_6H_6 \rightarrow C_6H_{12}$, $\Delta H = -204KJ$. Heat of hydrogenation of each C=C

(assumed to be) in benzene is [in KJ]

B. -612

C. -204

D. -34

Answer: A

Watch Video Solution

87. $Zn_{(s)} + Cu_{(aq)}^{+2} \rightarrow Cu_{(s)} + Zn_{(aq)}^{+2}$,

 ΔG for $Zn_{(s)} + 2Ag_{(aq)}^+ \rightarrow 2Ag_{(s)} + Zn_{(aq)}^{+2}$ will be (in KJ)

$$\Delta G = -XKJ, Cu_{(s)} + 2Ag_{(aq)}^{+} \rightarrow 2Ag_{(s)} + Cu_{(aq)}^{+2},$$

$$\Delta G = -YKJ, \text{ then}$$

B. - 22*KJ*

C. + 226KJ

D. Zero

Answer: A

Watch Video Solution

88. Calculate ΔH° for the reaction :

 $Na_2O + SO_3 \rightarrow Na_2SO_4$ given the following :

A)
$$Na_{(s)} + H_2O(1) \rightarrow NaOH_{(s)} + \frac{1}{2}H_{2(g)}, \Delta H^{\circ} = -146kJ$$

B)
$$Na_2SO_{4(s)} + H_2O(1) \rightarrow 2NaOH_{(s)} + SO_{3(g)}, \Delta H^{\circ} = +418kJ$$

C)
$$2Na_2O_{(s)} + 2H_{2(g)} \rightarrow 4Na_{(s)} + 2H_2O_{(l)}, \Delta H^{\circ} = +259 \text{ kJ}$$

A.
$$+823KJ$$

D.
$$+531KJ$$

Answer: B

89. Given that

$$S_{(s)} + \frac{3}{2}O_{2(g)} \rightarrow SO_{3(g)} + 2xK. cal$$

$$SO_{2(q)} + \frac{1}{2}O_{2(q)} \rightarrow SO_{3(q)} + yK. Cal.$$

Which would be the enthalpy of formation SO_2 ?

A.
$$(2x - y)$$

B.
$$(2x + y)$$

C.
$$(y - 2z)$$

D.
$$\frac{2x}{y}$$

Answer: C

Watch Video Solution

90. If the standard molar enthalpy of formation of $SO_{2(g)}$ and $SO_{3(g)}is$ - 296. $82kJmol^{-1}$ and $-395.72kJmol^{-1}$ respectively, then enthalpy change for the reaction in $kJmol^{-1}$, $SO_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow SO_{3(g)}$, is

B. + 98.9

C. -395.72

D. -98.9

Answer: D

Watch Video Solution

respectively, then ΔH° for the reaction :

91. If the bond energies of H-H, Br-Br and HBr are 433, 192 and $364kJmol^{-1}$

$$H_{2(g)} + Br_{2(g)} \rightarrow 2HBr_{(g)}$$
 is

A. -261kJ

B. + 103kJ

C. + 261kJ

D. -103kJ

Answer: D

Watch Video Solution

92. The standard free energy of $Cu^+_{(aq)}$ is $50kJmol^{-1}$ and that of $Cu^{2+}_{(aq)}$ is $66kJ.\,mol^{-1}$. Calculate the change in free energy for the reaction, $Cu^+_{(aq)} \to Cu^{2+}_{(aq)} + e^-$.

A. -16

B. + 116

C. - 116

D. + 16

Answer: D

93. $\triangle Sf$ or $4Fe_{(s)} + 3O_{2(g)} \rightarrow 2Fe_2O_{3(s)}$ is -550 J/mole/K.The process is

found to be spontaneous even at 298K because $[\Delta H = -1660kJ]$

A.
$$\Delta S_{\text{total}} = -2000J$$

$$B. \Delta S_{\text{total}} = +1650J$$

$$C. \Delta S_{\text{total}} = +4980J$$

D.
$$\Delta S_{\text{total}} = -4980J$$

Answer: C

Watch Video Solution

94.
$$A \Leftrightarrow B, K = 8 - - - (I)$$

$$B \Leftrightarrow C, K, = 10 - - (II)$$

$$C \Leftrightarrow D, K = 0.01 - - (III)$$

The correct order of ΔG values of processes at the same temperature is

A.
$$III > I > II$$

B.
$$III > I > = II$$

Answer: A

Watch Video Solution

95. ΔS for vapousization of 900 g water (in KJ//K) is $\Delta H_{vap} = 40 KJ/mol$

A.
$$(900 \times 40)$$

B.
$$\frac{50 \times 40}{373}$$

c.
$$\frac{900 \times 40}{373}$$

D.
$$\frac{18 \times 40}{373}$$

Answer: B

96. ΔS_{surr} for $H_2 + 1/2O_2 \rightarrow H_2O$, $\Delta H - 280kJ$ at 400K is

A. 700 J/g/K

B. 700 KJ/mol/J

C. 700 J/mol/K

D. 0.7J/mol/K

Answer: C

Watch Video Solution

97. For a certain reaction, ΔH^0 & ΔS^0 respectively are 400kJ & 200 J/mol/K. The process is non-spontaneous at

A. 2100 K

B. 2010 K

C. 1990 K

D. 2020 K

Answer: C

Watch Video Solution

98. Enthalpy of vapourisation for water is 186.5 KJ mole⁻¹. The entropy change during vapourisation is KJmole⁻¹

- **A.** 0.5
- B. 1.0
- **C**. 1.5
- D. 2.0

Answer: A

Watch Video Solution

99. One mole of ice is converted into water at 273 K. The entropies of $H_2O_{(s)}$ and $H_2O_{(l)}$ are 38.20 and $60.01 Jmol^{-1}K^{-1}$ respectively. The

enthalpy change for the conversion is A. `595.4 J ml ^(-1) B. `59.54 J mol ^(-1) C. 320.6Jmol⁻¹ D. 595*Jmol* ⁻¹ Answer: D **Watch Video Solution** 100. One of the following reactions involves in decrease of entropy A. Sublimation of dry ice B. Crystallisation of salt from brine (aq) C. Burning of rocket fuel D. Decomposition of gaseous N_2O_4 . **Answer: B**

101.
$$S_{H_{2(g)}}^{0} = 130.6JK^{-1}mol^{-1}, S_{H_{2}O_{(l)}}^{0} = 69.9JK^{-1}mol^{-1}, S_{O_{2(g)}}^{0} = 205JK^{-1},$$

Then the absolute entropy change of $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)}$ is

A.
$$-163.2 Jmol^{-1} K^{-1}$$

B.
$$+163.2 Jmol^{-1}K^{-1}$$

C.
$$-303 Jmol^{-1}K^{-1}$$

D.
$$+303 Jmol^{-1}k^{-1}$$

Answer: A

Watch Video Solution

102. Standard entropies of $H_2(g)$, $O_2(g)$ and $H_2O(l)$ are respectively 126.6, 201.2 and $68JK^{-1}mol^{-1}$ Determine ΔS for $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$ at

25 ° C.

- A. -574
- B. + 574
- C. + 1148
- D. 1148

Answer: A

Watch Video Solution

103. The equilibrium constant for a reaction is 10. What will be the value of ΔG^{θ} ?

 $R = 8.314JK^{-1}mol^{-1}, T = 300K.$

- **A.** -2.872
- B. -5.744
- C. -11.488
- D. 8.572

Watch Video Solution

104. For a reaction the ΔS value is $-20 Jmol^{-1}k^{-1}$. If the temperature is increased from $0 \,^{\circ}C$ at $25 \,^{\circ}C$, the increases in the value of ΔG is (in $Jmol^{-1}$)

- A. 500
- B.-500
- **C**. 0
- D. 14900

Answer: A

- A. +505.6
- **B.** -505.6
- **C.** -1011.2
- D. +1011.2

Watch Video Solution

106. For the reaction $A \to B$, $\Delta E = 85kJmol^{-1}$, if the system proceeds from A to B by a reversible path and returns to A by an irreversible path, the net change in internal energy (in KJ) is

- A. 170
- B. zero
- C. 42.5
- D. unpredicatable

Watch Video Solution

107. Which property is common in diamond and graphite?

- **A.** -2.9
- B. + 2.9
- C. + 5.8
- D. -5.8

Answer: C

Watch Video Solution

108. The entropy value at temperature T is

A.
$$S = \int_{0}^{T} C_{P} dT$$

$$B. S = \int_{o}^{T} C_{P}. TdT$$

$$C. S = \int_{o}^{T} \frac{C_{P}}{T}. dT$$

$$D. S = \int_{o}^{T} C_{P}. T^{3} dT$$

Answer: C

109. In the vicnity of absolute zero , the value of C_p - $C_{\scriptscriptstyle V}$ is

A.R

B. zero

 $C. aT^3$

D. 3/2RT

Answer: B

110. In a reversible reaction at equilibrium the net heat change of the reaction is :

- A. Positive
- B. Negative
- C. Zero
- D. Cannot be predicated

Answer: C

Watch Video Solution

111.
$$S_{H_{2(g)}}^{0} = 130.6JK^{-1}mol^{-1}, S_{H_{2}O_{(l)}}^{0} = 69.9JK^{-1}mol^{-1}, S_{O_{2(g)}}^{0} = 205JK^{-1},$$

Then the absolute entropy change of $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)}$ is

- A. $163.2 Jmol^{-1}K^{-1}$
 - B. $+163.2 Jmol^{-1}K^{-1}$
 - C. $-303 Jmol^{-1}K^{-1}$

D.
$$+303mol^{-1}K^{-1}$$

Answer: A

Watch Video Solution

112. At 0 ° C ice and water are in equilibrium and $\Delta H = 6.0 KJ$ then ΔS will be

- A. $22JK^{-1}mol^{-1}$
 - B. $35JK^{-1}mol^{-1}$
 - C. $48JK^{-1}mol^{-1}$
 - D. $100JK^{-1}mol^{-1}$

113. Melting & boiling point of NaCl respectively are 1080 K & 1600K. ΔS

for stage -I & II in $NaCl_{(s)} \rightarrow \Delta H_{\text{fus}} = 30kJNaCl_{(l)} \rightarrow \Delta H_{\text{vap}} = 160kJ$ are

- A. $\frac{\Delta S(I)}{1/36(KJ/mol/K)}$ $\frac{\Delta S(II)}{1/10(KJ/mol/K)}$
- $\Delta S(I)$ $\Delta S(II)$ B. $\Delta S(II)$
- B. 36(KJ/mol/K) 100(KJ/mol/K) $\Delta S(I)$ $\Delta S(II)$
- C. 1/36(KJ/mol/K) 10(KJ/mol/K)
- D. $\frac{\Delta S(I)}{36(KJ/mol/K)}$ $\frac{\Delta S(II)}{1/10(KJ/mol/K)}$

Answer: A

Watch Video Solution

114. At 300K, heat of dissociation of lime stone is $+180kJmol^{-1}$. Entropies of $CaCO_3$, CaO and Co_2 are respectively 93, 39 and $213Jmol^{-1}K^{-1}$.

Calculate ΔS_{total}

- **A.** -441
- B. + 441

D. -220.5

Answer: A

Watch Video Solution

115. In the conversion of lime stone to lime, $CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$, the values of ΔH° and ΔS° are + 179.1 kJ mol^{-1} and 160.2 $JK^{-1}mol^{-1}$ respectively at 298K and 1 bar. Assuming, ΔH° and ΔS° do not change with temperature, temperature above which conversion of lime stone to lime will be spontaneous is

B. -2734

C. -2984

D. -838

Answer: B

116. For an isothermal reversible phase transition process , ΔS is

- A. $T/\Delta H$
- B. *T*. Δ*H*
- $C. \Delta H/T$
- $\mathrm{D.} \int_o^T \frac{C_P}{T} dT$

Answer: C

Watch Video Solution

117. The thermodynamic property that measures the extent of molecular disorder is called entropy. The direction of a spontaneous process for which the energy is constant is always the one that increases the molecular disorder. Entropy change of phase transformation can be

calculated using Trouton's formula $\left(\Delta S = \frac{\Delta H}{T}\right)$. In the reversible adiabatic process, however, ΔS will be zero. The rise in temperature in isobaric and isochoric conditions is found to increase the randomness or entropy of the system. $\Delta S = 2.303 C \log \left(T_1/T_2\right)$, $\left(C = C_P \text{ or } C_V\right)$ The melting point of a solid is 300K and its latent heat of fusion is 600 cal

The melting point of a solid is 300K and its latent heat of fusion is 600 cal mol^{-1} . The entropy change for the fusion of 1 mole of the soli (in cal K^{-1}) at the same temperature would be:

A. 200

B. 2

C. 0.2

D. 20

Answer: B

Watch Video Solution

118. Which of the following reaction is spontaneous at room temperature

- A. ΔH and ΔG should be negative
- B. Only ΔH should be negative
- C. ΔH and ΔG should be positive
- D. Only ΔG should be positive

Watch Video Solution

119. One mole of ice is converted into water at 273 K. The entropies of $H_2O_{(s)}$ and $H_2O_{(l)}$ are 38.20 and $60.01 Jmol^{-1}K^{-1}$ respectively. The enthalpy change for the conversion is

- A. 59.54*Jmol* ⁻¹
- B. 5954*Jmol* ⁻¹
- C. 595.4*Jmol* ⁻¹
- D. 320.6*Jmol*⁻¹

Watch Video Solution

OBJECTIVE EXERCISE-3

1. Ionisation of energy of F^- is $320kJmol^{-1}$. The electron gain enthalpy of fluorine would be

C.
$$-208.1 k J mol^{-1}$$

Answer: D

2. For the reaction, $Ag_2O_{(s)} \Leftrightarrow 2Ag_{(s)} + \frac{1}{2}O_{2(g)}\Delta H$, ΔS and T are 40.63 kJ mol^{-1} , $108.8JK^{-1}mol^{-1}$ and 373K respectively. Free energy change ΔG of the reaction will be ____

A. 300 K

B. 285.7*K*

C. 273*K*

D. 450*K*

Answer: B

3. Assume each reaction is carried out in an open container. For which reaction will $\Delta H = \Delta E$?

$$A. 2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)}$$

$$B.H_{2(g)} + Br_{2(g)} \rightarrow 2HBr_{(g)}$$

$$C.C_{(s)} + H_2O_{(g)} \rightarrow 2H_{2(g)} + CO_{2(g)}$$

$$\mathsf{D}.\, PCl_{5(g)} \,\rightarrow\, PCl_{3(g)} + Cl_{2(g)}$$

Watch Video Solution

- **4.** Identify the incorrect statement with reference to Bentham and Hookers system
 - A. If $\Delta G_{\mathrm{system}} < 0$, the process is not spontaneous,
 - B. If $\Delta G_{\text{system}} > 0$, the process is not spontaneous.
 - C. If $\Delta G_{\text{system}} = 0$, the system has attained equilibrium
 - D. If $\Delta G_{\rm system}$ = 0, the system is still moving in a particular direction.

Answer: C

5. Heats of atomisation of chlorine and hydrogen are $243kJmol^{-1}$ and $435kJmol^{-1}$ respectively. Heat of formation of HCl is $-92kJmol^{-1}$. Calculate the bond energy of HCL.

- A. 380kJmol 1
- B. $425kJmol^{-1}$
- C. 245kJmol 1
- D. 290kJmol⁻¹

Answer: B

- **6.** Which is the following are not state functions?
- i)q + w
- ii) v
- iii) w
- iv) H-TS

A. I, ii and iii

B. iiand iii

C. I and iv

D. ii,iii and iv

Answer: B

View Text Solution

is/are correct?

7. For the reaction $PCl_{5(g)} \leftrightarrow PCl_{3(g)} + Cl_{2(g)}$. Which of the graph

A. $\Delta H < 0$ and $\Delta S < 0$

C. $\Delta H = 0$ and $\Delta S < 0$

B. $\Delta H > 0$ and $\Delta S < 0$

D. $\Delta H > 0$ and $\Delta S > 0$

Answer: D

8. The bond dissociation energies for Cl_2 , I_2 and Icl are 242.3, 151 and 211.3 kJ/mol respectively. The enthalpy of sublimation of iodine is 62.8 kJ/mol.

What is the standard enthalpy of formation of $ICl_{(s)}$?

A.
$$-93kJmol^{-1}$$

B.
$$245kJmol^{-1}$$

Answer: A

Watch Video Solution

9. The value of ΔH - ΔU for the following reaction at 27 $^{\circ}C$ will be :

$$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$$

A. 910 K

B. 1110 K

C. 510 K

D. 710 K

Answer: B

Watch Video Solution

10. The following two reactions are known

$$FeO_{(s)} + CO_{(g)} \rightarrow Fe_{(s)} + CO_{2(g)}, \Delta H = -16.5kJ/mol$$

 $Fe_2O_{3(s)} + 3CO_{(g)} \rightarrow 2Fe_{(s)} + 3CO_{2(g)}, \Delta H = -26.8kJ/mol$

The value of ΔH for the following reaction

$$Fe_2O_{3(s)} + CO_{(g)} \rightarrow 2Feo_{(s)} + CO_{2(g)}$$
 is

A.
$$+10.3kJ/mol$$

D.
$$+6.2kJ/mol$$

Answer: D

Watch Video Solution

- 11. In the reaction $N_{2(g)} + O_{2(g)} \Leftrightarrow 2NO_{(g)}, \Delta H = + 180$ kJ On increasing the temperature the production of NO
 - A. 750 K
 - B. 1000K
 - C. 1250K
 - D. 500K

Answer: B

12. Two moles of an ideal gas is expanded spontaneously into a vacuum.

The work done is

- A. infinite
- B. 3 Joules
- C. 9 Joules
- D. zero

Answer: D

Watch Video Solution

13. For an endothermic reaction energy of activation is E_a and enthalpy of reaction is ΔH (both in kJ mol $^{-1}$) Minimum value of E_a will be

- A. less than ΔH
- B. equal to ΔH
- C. more than ΔH

D. equal to zero

Answer: C

Watch Video Solution

14. Consider the following process:

$$\frac{1}{2}A \to B \qquad \Delta H = +150(kJ/mol)$$

$$3B \rightarrow 2C + D \quad \Delta H = -125(kJ/mol)$$

$$E + A \rightarrow 2D$$
 $\Delta H = +350(kJ/mol)$
For $B + D \rightarrow E + 2C$, ΔH will be

D. 325 kJ/mol

Answer: B

15. Ionisation of energy of F^- is $320kJmol^{-1}$. The electron gain enthalpy of fluorine would be

A.
$$10 Jmol^{-1}K^{-1}$$

B.
$$1.0 Jmol^{-1}K^{-1}$$

C.
$$0.1 Jmol^{-1}K^{-1}$$

D.
$$100 Jmol^{-1}J^{-1}$$

Answer: D

Watch Video Solution

16. The enthalpy change for the reaction $C_2H_{6(g)} \rightarrow 2C_{(g)} + 6H_{(g)}$ is x kJ. The bond energy of C-H bond is:

D. +217.4kJ

Answer: C

Watch Video Solution

- **17.** Latent heat of fusion of ice is $6kJmol^{-1}$. Calculate the entropy change in the fusion of ice.
 - A. 10.52 cal/(mol K)
 - B. 21.04 cal(molK)
 - C. 5.260 cal/(mol K)
 - D. 0.526 cal (mol K)

Answer: C

18. The standard molar engthalpy of vaporisation of benzene $\Delta_{vap}H$ ° at 353 K is 30.8 kl mol^{-1} .

If the benzene vapours behave as an ideal gas, the change in internal energy of vaporisation of 78 g of benzene at 353 K in kJ mol^{-1} is

- **A.** +37.56
- B. -43.76
- C. +43.76
- D. +40.66

Answer: A

Watch Video Solution

19. When 5 litres of a gas mixture of methane and propane is perfectly combusted at $0\,^{\circ}C$ and 1 atmpsphere, 16 litres of oxygen at the same temperature and pressure is consumed. The amount of heat released

from this combustion in $kJ(\Delta H_{comb.})(CH_4) = 890kJmol^{-1}$,

20. A reaction having equal energies of activation for toward and reverse

$$\Delta H_{comb.} \left(C_3 H_8 \right) = 2220 k J mol^{-1}$$

A. 38

B. 317

D. 32

C. 477

Answer: B

A.
$$\Delta H = 0$$

reaction has

 $B. \Delta H = \Delta G = \Delta S = 0$

 $\mathsf{C.}\ \Delta S=0$

$$D. \Delta G = 0$$

Answer: A

Watch Video Solution

21. From the following data

$$CH_3OH(l) + \frac{3}{2}O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$$

$$\Delta_r H^\circ = -726 k J mol^{-1}$$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l), \Delta_r H^\circ = -286kJmol^{-1}$$

$$C(\text{graphite}) + O_2(g) \rightarrow CO_2(g), \Delta_r H^\circ = -393 \text{kJmol}^{-1}$$

The standard enthalpy of formation of $CH_3OH(l)$ in $kJmol^{-1}$ is

$$A. z = x + y$$

$$B. x = y + z$$

$$C. y = 2z - x$$

D.
$$x = y - z$$

Answer: B

22. For the reaction
$$X_2O_{4(l)} \rightarrow 2XO_{2(g)}$$
, $\Delta U = 2.1$ kcal, $\Delta S = 20$ cal K^{-1} at 300K, Hence ΔG is

Watch Video Solution

23. Which of the following statements is correct

A. ΔS is negative and therefore ΔH should be highly positive.

B. ΔS is negative and therefore, ΔH should be highly negative.

C. ΔS is positive and therefore ΔH should be negative.

D. ΔS is positive and therefore, ΔH should also be highly positive

Answer: B

Watch Video Solution

24. Enthalpy of combustion of carbon to CO_2 is -393.5kJ mol^{-1} . Calculate the heat released upon formation of 35.2 g of CO_2 from carbon and dioxygen gas.

A. + 315*kJ*

B. -630*kJ*

C. -3.15*kJ*

D. -315*kJ*

Answer: A

25. A sample of an ideal gas with initial pressure 'P' and volume 'V' is taken through an isothermal process during which entropy change is found to be DS. The work done by the gas is

A.
$$\Delta S = nR \ln \left(\frac{p_f}{P_i} \right)$$

B.
$$\Delta S = nR \ln \left(\frac{p_i}{P_f} \right)$$

C.
$$\Delta S = nRT \ln \left(\frac{p_f}{P_i} \right)$$

D.
$$\Delta S = nRT \ln \left(\frac{p_i}{P_f} \right)$$

Answer: B

Watch Video Solution

26. The correct thermodynamic conditions for the spontaneous reaction at all temperatures is

A.
$$\Delta H < 0$$
 and $\Delta S < 0$

B.
$$\Delta H > 0$$
 and $\Delta S < 0$

C.
$$\Delta H < 0$$
 and $\Delta S > 0$

D.
$$\Delta H < 0$$
 and $\Delta S < 0$

Answer: C

Watch Video Solution

27. A gas absorbs 100 J of heat and is simultaneously compressed by a constant external pressure of 1.5 atm from a volume of 8.0L to 2.0L. The change in internal energy for the gas in Joules is (1L - atm = 101.32 J))

Answer: D

Watch Video Solution

28. In the conversion of lime stone to lime, $CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$, the values of ΔH° and ΔS° are + 179.1 kJ mol^{-1} and 160.2 $JK^{-1}mol^{-1}$ respectively at 298K and 1 bar. Assuming, ΔH° and ΔS° do not change with temperature, temperature above which conversion of lime stone to lime will be spontaneous is

A.
$$T > 298K$$

B.
$$T < 425K$$

C.
$$T = 425K$$

Answer: C

