

CHEMISTRY

JEE (MAIN AND ADVANCED) CHEMISTRY

REDOX REACTIONS

Lecture Sheet Exercise I Level I Main Straight Objective Type Questions

1. Oxidation state of .S. in S_8 molecule is

A. 0

B. + 2

C. + 4

D. + 6

Answer: A

NAVARALIS VIII A CALARIANI

2. Oxidation state of N in
$$N_3H$$
 is

$$A. + 1/3$$

$$B. + 3$$

$$C. -1/3$$

$$D.-1$$

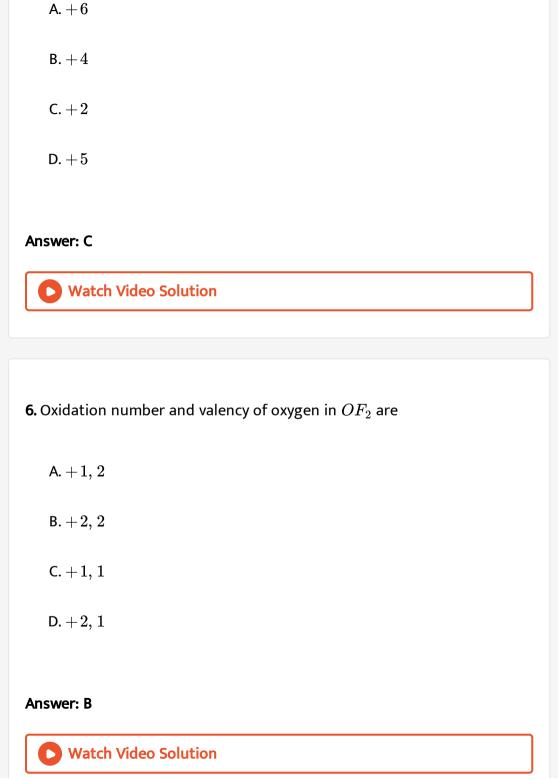
Watch Video Solution

3. Oxidation number of C in CH_2O is

$$\mathsf{A.}-2$$

$$\mathsf{B.}+2$$

Watch Video Solution


- **4.** Oxidation state of Ni in $Ni(CO)_4$ is
 - A.-2
 - $\mathsf{B.}+2$
 - C. 0
 - D. 4

Answer: A

Watch Video Solution

5. Oxidation state of Fe in $K_4igl[Fe(CN)_6igr]$

\Box	- 1	9
υ.	\dashv	- 4

Watch Video Solution

- 9. The maximum oxidaton state that fluorine exhibits is
 - A. -1
 - B. zero
 - C. + 1
 - D. + 2

Answer: B

10. The element that always exhibits a negative oxidation state in its compounds is

A. Nitrogen

B. Oxygen

C. Fluorine

D. Chlorine

Answer: C

11. The minimum oxidation state that nitrogen exhibits is

A.-2

 $\mathsf{B.}-3$

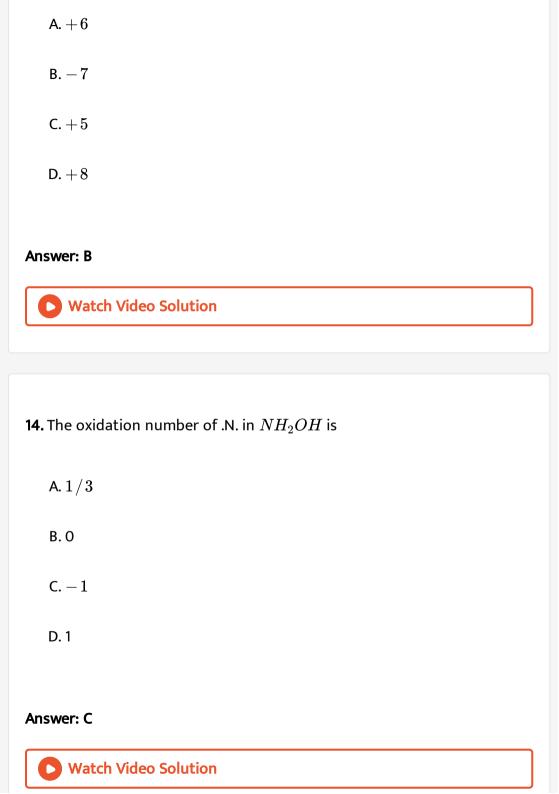
 $\mathsf{C.}-4$

D.-5

Answer: B

Watch Video Solution

12. In the conversion of $K_2Cr_2O_7$ to K_2CrO_4 the oxidation number of the following changes


- A. K
- B. Cr
- C. Oxygen
- D. None

Answer: D

Watch Video Solution

13. The oxidation number of 'Mn' in potassium permanganate is

15. What is the oxidation state of carbon in carbondioxide? A. + 2B.+4 $\mathsf{C.}+6$ D. + 1**Answer: B** Watch Video Solution 16. In which of the following compounds oxygen exhibits an oxidations state of +2? A. H_2O B. H_2O_2 $\mathsf{C}.\,OF_2$

$$\operatorname{D.} H_2SO_4$$

Watch Video Solution

- **17.** The oxidation number of sulphur in $S_8,\,S_2F_2\,\,\,{
 m and}\,\,\,H_2S$ are
 - A. 0,+1 and -2
 - B. + 2, + 1 and -2
 - C.0, +1 and +2
 - D. -2, +1 and -2

Answer: A

18. In the conversion of $CrO_4^{-2} o Cr_2O_7^{-2}$, the oxidation number of oxygen

A. increases

B. decreases

C. becomes zeo

D. remains unchanged

Answer: D

Watch Video Solution

19. Oxidation number of carbon is zero in the compound

A. methyl chloride

B. chloroform

C. glucose

D. carbon tetrachloride

Watch Video Solution

LIST - 1

LIST - 2

(Oxidation state) (Substance)

A) + 3

1) Nitrogen

20. B) + 1C) 0

2) Nitrous oxide 3) Nitrate ion

D) + 5

4) Hydroxylamine

5) Nitrite ion

The correct match is

A. $egin{array}{cccccc} A & B & C & D \\ 1 & 4 & 3 & 2 \end{array}$

 ${\sf B.} \, \begin{array}{cccc} A & B & C & D \\ 5 & 2 & 4 & 3 \end{array}$

 $A \quad B \quad C \quad D$

C. 4 5 3 1

D. $egin{array}{ccccc} A & B & C & D \\ 5 & 2 & 1 & 3 \end{array}$

Answer: D

- A) NH_3 1) Oxidant
- B) $KMnO_4$ 2) Both oxidant and reductant
- C) SO_2 3) Neither oxidant nor reductant D) He 4) Reductant
- 5) Dehydrating agent

The correct match is

21.

$$A$$
 B C D

- $\mathsf{c.} \, \begin{matrix} A & B & C & D \\ 4 & 1 & 2 & 3 \end{matrix}$
- D. $\begin{pmatrix} A & B & C & D \\ 3 & 2 & 1 & 4 \end{pmatrix}$

Answer: C

- **22.** In the reaction, $I_2 + 2KClO_3 \rightarrow 2KIO_3 + Cl_2$
- i) lodine is oxidised
- ii) Chlorine is reduced

iii) Iodine displaces chlorine iv) $KCIOP_3$ is decomposed

The correct combination is

A. Only i & iv are correct

B. Only iii & iv are correct

C. i,ii,iii are correct

D. All are correct

Answer: C

Watch Video Solution

23. Which of the following reactions does not involve the change in oxidation state of metal?

A.
$$VO^{-2}
ightarrow V_2O_3$$

B.
$$K o K^+$$

C.
$$Cu^{2\,+} o Cus$$

D. $Cu^{2+} o Cu$

Answer: B

Watch Video Solution

24. Which of the following is not a redox reaction?

A.
$$2BaO + O_2
ightarrow 2BaO_2$$

B. $BaO_2 + H_2SO_4
ightarrow BaSO_4 + H_2O_2$

C. $2KClO_3
ightarrow 2KCl + 3O_2$

D. $SO_2 + 2H_2S
ightarrow 2H_2O + 3S$

Answer: C

(R): All redox reactions are disproportionation reactions.

Watch Video Solution

26. $2CuI ightarrow Cu + CuI_2$ the reaction is

A. disproportionation

B. Neutralisation

C. Oxisation

D. Reduction

Answer: A

Watch Video Solution

27. Which of the following is not chemical combinations

A. $C + O_2 \rightarrow CO_2$

B. $S + O_2 \rightarrow SO_2$

Watch Video Solution

A. $2HqO \rightarrow 2Hq + O_2$

 $\mathsf{C}.\,S + O_2 o SO_2$

B. $CH_4+2O_2
ightarrow CO_2+2H_2O$

D. $Cl_2 + 2KBr + 2KCl + Br_2$

C. $2Al + N_2
ightarrow 2AlN$

D. $2H_2O
ightarrow 2H_2 + O_2$

28. Which of the following is decomposition reaction

Watch Video Solution

Answer: A

Answer: A

29. Which of the following is not Decomposition reactions

A.
$$2HgO
ightarrow 2Hg + O_2$$

B.
$$2H_2O
ightarrow 2H_2 + O_2$$

$$\mathsf{C.}\ 2KClO_3 o 2KCl + 3O_2$$

D.
$$CH_{4\,(\,g\,)}\,+2O_{2\,(\,g\,)}\,+2H_{2}O_{\,(\,l\,)}$$

Answer: D

Watch Video Solution

30. Following reaction describes the rusting of iron $4Fe+3O_2 o 4Fe^{3+}+6O^{2-}$. Which one of the following statement is incorrect .

A. This is an example of a redox reaction

B. Metallic iron is reduced to Fe^{3+}

C. Fe^{3+} is an oxidising agent D. Metallic iron is a reducing agent Answer: B **View Text Solution**

Lecture Sheet Exercise I Level Ii Advanced Straight Objective Type Questions

1. Most stable oxidation state of gold is

A. + 1

B. + 3

C. + 2

D. + 4

Answer: B

2. The most stable oxidation state of chromium is

$$\mathsf{A.}+5$$

$$B.+3$$

$$\mathsf{C.} + 2$$

$$D.+4$$

Answer: B

Watch Video Solution

3. Oxidation number of carbon in $C_3O_2,\,Mg_2O_3$ are respectively :

A.
$$-\frac{4}{3}$$
, $+\frac{4}{3}$

$$B. + \frac{4}{3}, - \frac{4}{3}$$

$$C. -\frac{2}{3}, +\frac{2}{3}$$

$${\rm D.} - \frac{2}{3}, \; + \; \frac{4}{3}$$

Answer: B

Watch Video Solution

- **4.** The atomic number of an element which shows the oxidation state of +
- 3 is
 - A. 13
 - B. 32
 - C. 33
 - D. 17

Answer: A

Watch Video Solution

5. The most common oxidation state of an element is -2 The number of electrons present in its outermost shell is

A. 2 B. 4 C. 6 D. 8 **Answer: C** Watch Video Solution 6. It is found that V forms a double salt, isomorphous will Mohr.s salt. The oxidation number of V in this compound is A. + 3B. + 2 $\mathsf{C.}+4$ D.-4**Answer: B**

7. The oxidation number of phosphorous in $Mg_2P_2O_7$ is

$$\mathsf{A.}+5$$

$$B.-5$$

$$\mathsf{C.}+6$$

D.
$$-7$$

Answer: A

Watch Video Solution

8. The oxidation number of Pt in $[Pt(C_2H_4)Cl_3]^-$ is

$$A. + 1$$

$$\mathsf{B.}+2$$

$$\mathsf{C.} + 3$$

Answer: B

Watch Video Solution

- **9.** Among the following , identify the species with an atom in + 6 oxidation state
 - A. MnO_4^-
 - B. $Cr(CN)_6^{3-}$
 - C. NiF_6^{2-}
 - D. CrO_2Cl_2

Answer: D

10. Oxidation number of CI in $NOCIO_4$ is	
A.+7	
B.-7	
C.+5	
D.-5	
Answer: A	
Watch Video Solution	
11. Oxidation number of Chlorine in chlorine heptaoxide is	
11. Oxidation number of Chlorine in chlorine heptaoxide is $ A. +1 $	
A.+1	
A.+1 $B.+4$	

Answer: D

Watch Video Solution

12. Oxidation number of Cr in K_3CrO_8 is

A. +3

B. + 5

C. + 8

D.+6

Answer: B

Watch Video Solution

13. Addition of zinc power to $CuSO_4$ solution precipitate copper due to

A. reduction of Cu^{2+}

B. reduction of $SO_4^{2\,-}$ C. reduction of 7n D. hydrolysis of $CuSO_4$ Answer: A **View Text Solution** 14. Which change occurs when lead monoxide is converted into lead nitrate? A. Oxidation B. Reduction C. Neither oxidation nor reduction D. Both oxidation and reduction **Answer: C View Text Solution**

15. In the reaction , $As_2S_3 + HNO_3
ightarrow H_3AsO_4 + H_2SO_4 + NO$, the element oxidised is/are :

A. As only

B. S only

C. N only

D. As and S both

Answer: D

View Text Solution

16. Which combination is odd with respect to oxidation number?

A. $H_2SO_5,\, H_2S_2O_8,\, K_2Cr_2,\, SF_6$

 $\mathsf{B.}\, K_2Cr_2O_7, K_2CrO_4, CrO_5, CrO_2Cl_2$

C. $NH_3, NH_4^{\,+}, N_3H, NO_2^{\,-}$

D. CaH_2, NaH, LiH, MgH_2

Answer: C

Watch Video Solution

- 17. In a conjugate pair of reductant and oxidant, the oxidant has
 - A. higher ox. no
 - B. lower ox.no.
 - C. same ox.no
 - D. either of these

Answer: A

Watch Video Solution

18. In which SO_2 acts as oxidant, while reacting with

B. acidified $K_2Cr_2O_7$ C. H_2S D. acidified C_2H_5OH **Answer: C** Watch Video Solution 19. Which is not an oxidising agent? A. $KClO_3$ $B.O_2$ C. $C_6H_{12}O_6$ D. $K_2Cr_2O_7$ **Answer: C Watch Video Solution**

A. acidified $KMnO_4$

20. In which reactions hydrogen is acting as an oxidizing agent?

A. with iodine to give hydrogen iodie

B. with lithium to give lithium hydride

C. with nitrogen to give ammonia

D. with sulphur to give hydrogen sulphide

Answer: B

Watch Video Solution

21. Which substance serves as a reducing agent in the following reactions

?

 $14H^{\,+} + Cr_2O_7^{2\,-} + 3Ni
ightarrow 2Cr^{3\,+} + 7H_2O + 3Ni^{2\,+},$

A. H_2O

 $B.O_2$

C. H^+

D. $Cr_2O_7^{2\,-}$

Answer: B

Watch Video Solution

22. Which reaction indicates the oxidising behaviour of H....

A.
$$2PCl_5 + H_2SO_4
ightarrow 2POCl_3 + 2HCl + SO_2Cl_2$$

B.
$$2NaOH + H_2SO_4
ightarrow Na_2SO_4 + 2H_2O$$

C.
$$NaCl + H_2SO_4
ightarrow NaHSO_4 + HCl$$

D.
$$2HI+H_2SO_4
ightarrow I_2+SO_2+2H_2O$$

Answer: D

23. As the oxidation state for any metal increases, the tendency to show ionic nature

A. Decreases

B. Increases

C. Remains same

D. None of these

Answer: A

24. A compound contains atoms X,Y,Z The oxidation number of X is + 5 and Z is -2. The possible formula of the compound is :

A. XY_1Z_2

B. $Y_2(XZ_3)_2$

 $\mathsf{C.}\,X_3(YZ_4)_2$

D.
$$X_3(Y_4Z)_2$$

Watch Video Solution

- **25.** How many electrons are transferred from reductant to oxidant is the following redox $As_2S_3+HNO_3 o H_3ASO_4+H_2SO_4+NO$
 - A. 2
 - B. 4
 - C. 24
 - D. 84

Answer: D

Lecture Sheet Exercise I Level Ii Advanced More Than One Correct Answer Type Questions

1. Which statments (s) about oxidatien number is are correct?

A. The oxidation number is the number of electrons lost (+ve) or gained (-ve) by an atom during the formation of ionic compounds

B. For covalent compounds, the oxidation number is indicated by the charge that an atom of element would have acquired if the subtance would have been ionic

C. Oxidation number may have fractional values

D. Oxidation number is always negative.

Answer: A::B::C

2. The different oxidation state (s) by oxygen is (are) ____

$$\mathsf{A.}-2$$

B. - 1

C. 0

 $\mathsf{D.}-\frac{1}{2}$

Answer: A::B::C::D

Watch Video Solution

3. The oxidation number of carbon is zero is

A. HCHO

B. CH_2Cl_2

 $C. C_6 H_{12} O_6$

D. $C_{12}H_{22}O_{11}$

Answer: A::B::C::D

4. The oxidation number of Cr is +6 in

A.
$$FeCr_2O_4$$

B. $KCrO_3Cl$

C. CrO_3

D. $[Cr(OH_4)]^-$

Answer: B::C

5. Which of the following have been arranged in order of decreasing oxidation number of sulphur?

A.
$$H_2S_2O_7 > Na_2S_4O_6 > Na_2S_2O_3 > S_8$$

B.
$$SO^{2+} > SO_4^{2-} > SO_3^{2-} > HSO_4^{-}$$

$$\mathsf{C.}\,H_2SO_5>H_2SO_3>SCl_2>H_2S$$

D. $H_2SO_4 > SO_2 > H_2S > H_2S_2O_8$

Answer: A::C

Watch Video Solution

- **6.** Which of the following statements (s) is (are) correct ?
 - A. All reaction are oxidation and reduction reactions
 - B. Oxidizing agent is itself reduced
 - C. Oxidation and reduction always go side by side
 - D. Oxidation number during reduction decreases

Answer: B::C::D

Watch Video Solution

7. Which of the following reactions involve oxidation reduction?

B. $CuI_2 + Cl_2 \rightarrow CuCl_2 + I_2$

A. $2Rb + 2H_2O
ightarrow 2RbOH + H_2$

C. $NH_4Cl + NaOH
ightarrow NaCl + NH_3 + H_2O$

D. $4KCN + Fe(CN)_2 \rightarrow K_4 \lceil Fe(CN)_6 \rceil$

Answer: A::B

Watch Video Solution

8. In the redox reaction $2S_2O_3^{2-}+I_2 ightarrow S_4O_6^{2-}+2I^-$

B. $S_2O_3^{-2}$ gets reduced to $S_4O_6^{2-}$

A. $S_2O_3^{2-}$ gets oxidised to $S_4O_6^{2-}$

C. I_2 gets reduced to I^-

D. I_2 gets oxidised to I^-

Answer: A::C

9. Which of the following represents redox reaction?

A.
$$SO_3^{2-} + I^-
ightarrow I_2 + SO_3^{2-}$$

$$\operatorname{B.}\operatorname{{\it Ca}}(OH)_2 + \operatorname{{\it Cl}}_2 \to \operatorname{{\it Ca}}(OCl)_2 + \operatorname{{\it Ca}}\operatorname{{\it Cl}}_2$$

$$\mathsf{C.}\,PCl_5\to PCl_3+Cl_2$$

D.
$$Cr_2O_7^{2-} + 2OH^-
ightarrow CrO_4^{2-} + H_2O$$

Answer: A::B::C

Watch Video Solution

10. Which of the following act both as oxidising as well as reducing agents?

A. HNO_2

B. SO_2

 $\mathsf{C}.\,H_2O_2$

D. H_2S

Answer: A::B::C

Watch Video Solution

- **11.** In the reaction : $Cl_2 + OH^-
 ightarrow Cl^- + ClO_4^- + H_2O$ chlorine is :
 - A. Oxidized
 - B. Reduced
 - $\hbox{C. Disproportionate}\\$
 - D. Neither oxidized nor reduced

Answer: A::B::C

Watch Video Solution

Lecture Sheet Exercise I Level Ii Advanced Linked Comprehension Type Questions

1. For the reaction $2KClO_3
ightarrow 2KCl + 3O_2$ which statments (s) is (are) correct ?

A. It is disproportionation

B. It is intramolecular redox change

C. Cl atoms are reduced

D. Oxygen atoms are oxidized

Answer: B::C::D

2. Oxidation number is the charge which an atom of an element has in its ion or appears to have when present in the combined state. It is also called oxidation state. Oxidation number of any atom in the elementary state is zero. Oxidation number of a monoatomic ion is equal to the charge on it. In compounds of metals with non metals, metals have positive oxidation number while non metals have negative oxidation

numbers. In compounds of two difference elements, the more electronegative element has negative oxidation number whereas the other has positive oxidation number. In complex ions, the sum of the oxidation number of all the atoms is equal to the charge on the ion. If a compound contains two or more atoms of the same element, they may have same or different oxidation states according as their chemical bonding is same or different.

Oxidation number of sodium in sodium amalgam is

A. + 1

В. О

 $\mathsf{C.}-1$

 $\mathsf{D.} + 2$

Answer: B

3. Oxidation number is the charge which an atom of an element has in its ion or appears to have when present in the combined state. It is also called oxidation state. Oxidation number of any atom in the elementary state is zero. Oxidation number of a monoatomic ion is equal to the charge on it. In compounds of metals with non metals, metals have positive oxidation number while non metals have negative oxidation numbers. In compounds of two difference elements, the more electronegative element has negative oxidation number whereas the other has positive oxidation number. In complex ions, the sum of the oxidation number of all the atoms is equal to the charge on the ion. If a compound contains two or more atoms of the same element, they may have same or different oxidation states according as their chemical bonding is same or different.

The oxidation state of the most electronegative element in the products of the reaction between BaO_2 and H_2SO_4 are

A. 0 and - 1

B.-1 and -2

$$C. -2$$
 and 0

$$D. -2$$
 and -1

Answer: B

Watch Video Solution

4. Oxidation number is the charge which an atom of an element has in its ion or appears to have when present in the combined state. It is also called oxidation state. Oxidation number of any atom in the elementary state is zero. Oxidation number of a monoatomic ion is equal to the charge on it. In compounds of metals with non metals, metals have positive oxidation number while non metals have negative oxidation numbers. In compounds of two difference elements, the more electronegative element has negative oxidation number whereas the other has positive oxidation number. In complex ions, the sum of the oxidation number of all the atoms is equal to the charge on the ion. If a compound contains two or more atoms of the same element, they may have same or different oxidation states according as their chemical

bonding is same or different. A compound of Xe and F is found to have 53.3% Xe (atomic weight =133). Oxidation number of Xe in this compound is A. + 2B. 0 C. + 4D.+6Answer: D **Watch Video Solution**

Lecture Sheet Exercise I Level Ii Advanced Matrix Matching Type Questions

1. Match the underlined element in the compound in column-I with its oxidation state in column-II

Column-I (Compound)

- A) H₂S₂O₈
- B) H_2SO_4
- C) CaOCl₂
- D) NO2

- P) + 6

Column-II (Oxidation state)

- 0) +1R) - 1
- S) 4

Watch Video Solution

2. Match the compound in column-I with oxidation state of Nitrogen in

column -II

Column-I

- A) NaN₂
- B) N₂H₄
- C) NO
- D) N,O,

Column-H

- P) + 5
- (0) + 2
- R) 1/3
- S) 2

Watch Video Solution

following the columns 3. Match

- A) FeCl₃
- B) Redox reaction
- C) H,S
- D) Decomposition reaction

- P) $2KClO_3 \xrightarrow{\Delta} 2KCl + 3O_2$
- Q) Reducing agent
- R) Oxidising agent
- S) Exothermic

Lecture Sheet Exercise I Level Ii Advanced Integer Type Questions

1. When methane is burnt in oxygen to produce CO_2 and H_2O Find the Change in oxidation number ?

Watch Video Solution

2. One mole of N_2H_4 loses 10 mole electrons to from a new compound X Assuming that at the N_2 appears in new compound There is no change in oxidation state of H. What is the oxidation state on N in X?

3. The number of electrons involved in the reduction of nitrate ion to hydrazine is

4. The number of of electrons required to balance the following equation

$$NO_3^- + 4H^+ + e^-
ightarrow 2H_2O + NO$$
 is _____

Watch Video Solution

Lecture Sheet Exercise Ii Level I Main Straight Objective Type Questions

1. In the reaction $MnO_4^- + SO_3^{2-} + H^+ o Mn^{2+} + SO_4^{2-}$ the number of H^+ ions involved is

A. 2

B. 6

C. 8

D. 16

Answer: B

2. $Cr(OH)_3 + H_2O_2 \stackrel{ ext{Alkali}}{\longrightarrow} CrO_4^{-2} + H_2O$ the number of $OH^$ required to balance the above equation

A. 1

B. 3

C. 4

D. 6

Answer: C

3.

Watch Video Solution

the

reaction the stoichiometry coefficients respectively $Cr_2O_7^{2-}, NO_2^- \text{ and } H^+$ are $Cr_2O_7^{2\,-} + NO_2^{-} + H^{\,+}
ightarrow Cr^{3\,+} + NO_3^{-} + H_2O$

of

A. 1,3,8

B. 1,4,8

C.	1,3,12

D. 1,5,12

Answer: A

Watch Video Solution

- **4.** Equivalent weight of $Ba(MNO_4)_2$ in acidic medium (M = molar mass)
 - A. M
 - B. M/3
 - C. M/5
 - D. M/10

Answer: D

5. Equivalent weight of As_2O_3 in the following equation

$$As_2O_3+2I_2+2H_2O
ightarrow As_2O_5+4HI$$
 [arsenci at wt. = 75]

- A. 49.5
- B. 156.6
- C. 94
- D. 75

Answer: A

Watch Video Solution

6. Whast is the oxidation state of Fe in the product formed when acidified potassium ferrocyanide $K_4[Fe(CN)_6]$ is treated with hydrogen peroxide?

- A. + 2
- B. + 3

D.+6

Answer: B

Watch Video Solution

7. The number of moles of MnO_4^- and $Cr_2O_7^{-2}$ separately required to oxidise 1 mole of FeC_2O_4 each in acidic medium respectively

A. 0.5, 0.6

B.0.6, 0.4

C. 1.2, 05

D.0.6, 0.5

Answer: D

8. Volume V_1 ml of 0.1 $K_2Cr_2O_7$ is needed for complete oxidation of 0.67g N_2H_4 in acidic medium The volume of 0.3 M $KMnO_4$ need for same oxidation state in acidic medium will be

- A. $\frac{2}{5}V_1$
- B. $rac{5}{2}V_1$
- $\mathsf{C.}\ 113V_1$
- D. can.t say

Answer: A

View Text Solution

9. 25ml of a 0.1M solution of a stable cation of transitional metal Z reacts exactly with 25ml of 0.04M acidified $KMnO_4$ solution. Which of the following is most likely to reperesent the chance in oxidation state of Z correctly

A.
$$Z^+
ightarrow Z^{2\,+}$$

B. $Z^{2+}
ightarrow Z^{3+}$

C. $Z^{3+} + 2^{4+}$

D. $Z^{2+}
ightarrow 2^{4+}$

Answer: D

View Text Solution

according to the reaction $I_2 + HNO_3
ightarrow HIO_3 + NO_2 + H_2O$

10. What weight of HNO_3 is needed to convert 5g of iodine into HIO_3

A. 12.4g

B. 24.8g

C. 0.248g

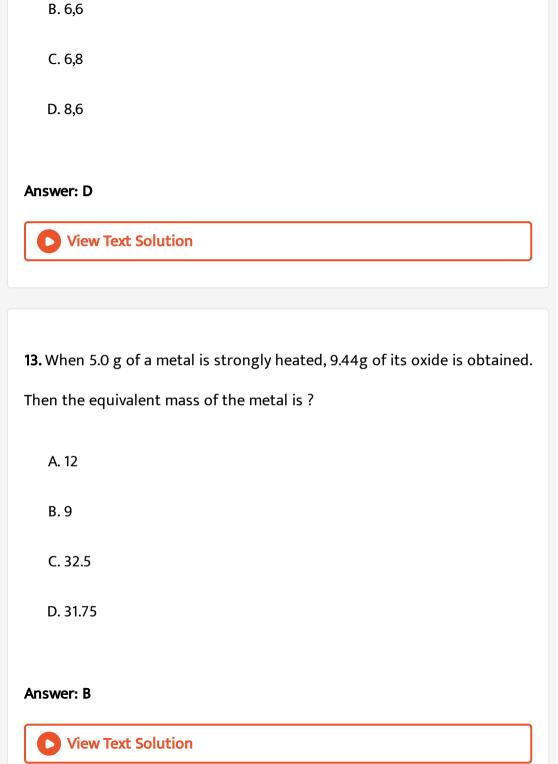
D. 49.6g

Answer: A

View Text Solution

11. What volume of 0.1M $KMnO_4$ is needed to oxidise 5mg of ferrous oxalate in acidc medium (MW of ferrous oxalate is 144) approximately 0.20 mL

- A. 0.1 mL
- B. 0.4 mL
- C. 2.08mL
- D. 49.6 g


Answer: A

View Text Solution

12. n-factors for Cu_2S and Cus when they react with $KMnO_4$ in acidic medium are (neglecting the further oxidation of released SO_2

A. 7,7

14. Equal volumes of 1 M each of $KMnO_4$ and $K_2Cr_2O_7$ are used to oxidize Fe(II) solution in acidic medium. The amount of Fe oxidized will be

A. more with $KMnO_4$

B. more with $K_2Cr_2O_7$

C. equal with both oxidizing agents

D. cannot be determined

Answer: B

View Text Solution

15. How many moles of $KMnO_4$ are needed to oxidised a mixture of 1 mole of each $FeSO_4$ & FeC_2O_4 in acidic medium

A. 4/5

B.5/4

C.3/4

D.5/3

Answer: A

View Text Solution

16. Hydroxyl amine reduces iron (III) according to following equation

$$NH_2OH + Fe_2(SO_4)_3
ightarrow N_2(g) + H_2O + FeSO_4 + H_2SO_4$$

Which statement is correct

A. n-factor for Hydroxyl amine is 12

B. equivalent weight of $Fe_2(SO_4)_3$, is M/2

C. 6 meq of $Fe_2(SO_4)_3$, is contained in 3 millimoles of ferric sulphate

D. all of these

Answer: D

View Text Solution

17. When 159.5g of $CuSo_4$ solution is reacted with KI, then the liberated iodine required 100 ml of 1 M $Na_2S_2O_3$ for complete reaction, then what is the percentage purity of Cu in $CuSO_4$ solution

- A. 10~%
- B. 20~%
- $\mathsf{C.}\,5\,\%$
- D. $40\,\%$

Answer: A

View Text Solution

18. 1.60g of a metal were dissolved in HNO_3 to prepare its nitrate. The nitrate on strong heating gives 2g oxide. The equivalent weight of metal is

D	2	7
о.	2	Z

C. 48

D. 12

Answer: B

View Text Solution

19. Correct order of tendency to loss of electrons

A.
$$Zn>Cu>Ag$$

$$\operatorname{B.}Zn < Cu < Ag$$

C.
$$Zn > Cu < Ag$$

D.
$$Cu > Zn > Ag$$

Answer: A

Lecture Sheet Exercise Ii Level Ii Advanced Straight Objective Type Questions

1. How many mole of electrons are involved in the reduction of one mole of MnO_4^- ion in alkaline medium to MnO_3^- ?

A. 2

B. 1

C. 3

D. 4

Answer: A

Watch Video Solution

2. In the reaction, $CH_3OH o HCOOH$, the number of electrons that must be added to the right is :

A. 4

B. 3

C. 2

D. 1

Answer: A

Watch Video Solution

- **3.** In balancing the half-reaction, $S_2O_3^{2\,-}
 ightarrow S(s)$, the number of electrons that must be added is
 - A. 2 on the right
 - B. 2 on the left
 - C. 3 on the right
 - D. 4 on the left

Answer: D

4. Number of electrons involved in the reduction of $Cr_2O_7^{2\,-}$ ion in acidic solution to $Cr^{3\,+}$ is

A. 3

B. 4

C. 2

D. 6

Answer: B

Watch Video Solution

5. Equivalent mass of FeC_2O_4 in the change, $FeC_2O_4
ightarrow Fe^{3+} + CO_2$ is

A. M/3

B. M/6

C. M/2

D. M/1

Answer: A

Watch Video Solution

6. In the following change, $3Fe+4H_2O \to Fe_3O_4+4H_2$ If the atomic mass of iron is 56, then its equivalent mass will be :

A. 42

B. 21

C. 63

D. 84

Answer: B

7. The eq. mass of $Na_2S_2O_3$ as reductant in the reaction,

$$Na_2S_2O_2 + H_2O + Cl_2
ightarrow Na_2SO_4 + 2HCl$$
 is

- A. $\frac{M}{1}$
- $\operatorname{B.}\frac{M}{2}$
- $\operatorname{C.}\frac{M}{6}$

D. $\frac{M}{8}$

Answer: D

- **8.** Equivalent mass of N, in the change N_2-NH_3 is
 - A. 28/6
 - B. 28
 - C. 28/2
 - D. 28/3

Answer: A

Watch Video Solution

- **9.** In present of dil. H_2SO_4 the equivalent mass of $KMnO_4$ is
 - A. M/5
 - B. M/6
 - C. M/10
 - D. M/2

Answer: A

- **10.** The equivalent mass of iron in Fe_2O_3 would be
 - A. 18.6

C. 56

D. 11

Answer: A

Watch Video Solution

11. When iron reacts with Brion in acid solution Br_2 is liberated. The equivalent mass of $KBrO_3$ in this reaction is

A. M/8

B. M/3

C. M/5

D. M/6

Answer: C

View Text Solution

12. What is the equivalent mass of KIO_3 in the given reaction ?

 $KIO_3 + 2KI + 6HCI \rightarrow 3lCl + 3KCl + 3H_2O$

A. 214

B. 428

C. 107

D. 53.5

Answer: D

View Text Solution

13. What is E_{O_3} in the following reaction, $2O_3
ightarrow 3O_2$

A. 16

B. 48

C. 32

۸ ۳			۰.	
Ar	ısı	ve	Γ:	L

View Text Solution

14. The mass of 50% (mass/mass) solution of HCI required to react with 100g of $CaCO_3$ would be

A. 73 g

B. 100 g

C. 146 g

D. 200 g

Answer: C

15. For the reaction, $2Fe^{3+}+Sn^{2+}\to 2Fe^{2+}+Sn^{4+}$ the normality of SnCl, (mol. wt. = 189.7) solution prepared by dissolving 47.5g in acid solution and diluting with H_2O to a total of 2.25 litre is

A. 0.222N

B. 0.111 N

C. 0.333 N

D. 0.444 N

Answer: A

Lecture Sheet Exercise Ii Level Ii Advanced More Than One Correct Answer Type Questions

1. The equation for a reaction is shown below:

$$2MnO_{4}^{-} + 5H_{2}O_{2} + 6H^{+} \rightarrow 2Mn^{2+} + 8H_{2}O + 5O_{2}$$

Which of the following statements about this reaction are correct?

A. Hydrogen ions are oxidised to water.

B. Hydrogen peroxide is oxidised to oxygen

C. The oxidation number of manganese changes by 6.

D. Hydrogen peroxide is reduced to water.

Answer: B::D

Watch Video Solution

2. $5Cu+2HNO_3
ightarrow 5CuO+H_2O+N_2$, mark out the correct statement(s)

A. a. Equivalent wt. of Cu = 31.75

B. b. Equivalent wt. of $HNO_3=12.6\,$

C. c. Equivalent wt. of $N_2=2.8$

D. d. Balanced chemical reaction suggest that 10 equivalents of Cu combines with 10 equivalents of HNO_3 in order to produce CuO and 10 equivalents of N_2

Answer: A::B::C::D

3. On being heated in oxygen, 3.120 g of a metal M converts to 4.560 g of oxide (atomic weight of M = 52.0). Mark out the correct statement(s)

A. Equivalent wt. of metal M = 17.33

B. Number of equivalents of oxygen reacted with metal = 0.09

C. Metal M forms halide MCI_2

D. The simplest formula of the metal oxide which it forms is $M_2 O_3$

Answer: B::C

4. Which of the following are correct about the reaction,

$$FeS_2 + O_2
ightarrow Fe_2O_3 + SO_2$$

- A. E.q. wt. of FeS_2 is M/11
- B. Eq. wt. of SO_2 is M/5.5
- C. S has -2 oxidation state in FeS_2
- D. 1 mole of FeS_2 requires 7/4 mole of O_2

Answer: A::B::D

Watch Video Solution

5. Preparation of Cl_2 from HCl and MnO_2 involves the process of:

- A. Oxidation of MnO_2
- B. Reduction of MnO_2
- C. Dehydration

D. Oxidation of chloride ion

Answer: B::D

Watch Video Solution

- **6.** In the reaction $3Br_2+6CO_3^{2-}+3H_2O
 ightarrow Br^-+BrO_3+6HCO_3^+$
 - A. Bromine is oxidized and carbonate is reduced
 - B. Bromine is oxidized
 - C. Bromine is reduced
 - D. It is disproportionation reaction or auto redox change

Answer: B::C::D

7. The salt $KHC_2O_4H_2C_2O_4.4H_2O$ may be used as reducing agent as well as an acid. Choose the correct option (S):

A. The equivalent weight of the salt is 72.5 g-equivalent $^{-1}$, when reacted with acidified $KMnO_4$ solution.

B. The equivalent weight of the salt is 145 g-equivalent $^{-1}$, when reacted with NaOH solution,

C. The volume of CO_2 liberated at STP by 1 g of salt when reacted with excess of acidified $KMnO_4$ is 309 ml.

D. The number of ionizable hydrogen ion is one.

Answer: A::C

Watch Video Solution

Lecture Sheet Exercise Ii Level Ii Advanced Linked Comprehension Type Questions 1. The equivalent weights of oxidising and reducing agents can be calculated by the number of electrons gained or lost. The equivalent weight of an oxidising agent is the number of parts by weight of the substance which gains one electron. Thus, it is equal to the molecular weight of the substance divided by the number of electrons gained in the balanced chemical equation. Similarly, equivalent weight of a reducing agent is equal to the molecular weight divided by the number of electrons lost as represented in the balanced chemical equation Equivalent weight of MnO_4^- in acidic, basic and neutral media are in the ratio of

- A. 3:5:15
- B.5:3:1
- C. 5:1:3
- D. 3:5:5

Answer: D

2. The equivalent weights of oxidising and reducing agents can be calculated by the number of electrons gained or lost. The equivalent weight of an oxidising agent is the number of parts by weight of the substance which gains one electron. Thus, it is equal to the molecular weight of the substance divided by the number of electrons gained in the balanced chemical equation. Similarly, equivalent weight of a reducing agent is equal to the molecular weight divided by the number of electrons lost as represented in the balanced chemical equation

The equivalent weight of barium in $BaCrO_4$ used as an oxidising agent in acidic medium is (At, wt, of Ba - 137.34)

- A. 137.34
- B. 45.78
- C. 114.45
- D. 68.67

Answer: B

3. The equivalent weights of oxidising and reducing agents can be calculated by the number of electrons gained or lost. The equivalent weight of an oxidising agent is the number of parts by weight of the substance which gains one electron. Thus, it is equal to the molecular weight of the substance divided by the number of electrons gained in the balanced chemical equation. Similarly, equivalent weight of a reducing agent is equal to the molecular weight divided by the number of electrons lost as represented in the balanced chemical equation

 $As_2S_3 + H^+ + NO_3^-
ightarrow NO + H_2O + AsO_4^{3-} + SO_4^{2-}$ is related to

The equivalent weight of As_2 , S_3 in the following reaction

its molecular weight as

A. M/5

B. M /7

C. M / 14

D. M/28

 H_2SO_4

4. Acic base + Redox titration 1^{st} titration : $\frac{M}{10}$ reacts with oxalic acid as well as H_2SO_4 according to equation

well as H_2SO_4 according to equation $H_2C_2O_4+NaOH o Na_2C_2O_4+H_2O, H_2SO_4+NaOH o Na_2SO_4+MaOH$

 2^{nd} titration : The mixture solution is titrated with $\frac{M}{10}KMnO_4$ solution which will reacts with oxalic acid (redox titration) in the presence of

 $H_2C_2O_4 + KMnO_4 + H_2SO_4
ightarrow K_2SO_4 + MnSO_4 \atop ext{(Purple)} + H_2O + CO_2$

The reaction of oxalic acid with $KMnO_4$ is very slow therefore the oxalic acid solution is heated to $60-70^{\circ}C$ initially. Once the reation has started, its rate automatically increases. MnO_4^- acts as an oxidising agent.

 $MnO_4^- \stackrel{H^+}{\longrightarrow} Mn^{+\,+}\,, MnO_4^{-\,-}\,, MnO_4 \stackrel{ ext{Brown ppt}}{\longrightarrow} MnO_2^-$

In the permanganate titration, the solution of reductant is always made acidic by adding H_2SO_4 rather than HCl or HNO_3 because

A. HCl is a reducing agent and it may get oxidised itself resulting into decrease in the volume of $KMnO_4$ equivalent to the reducing agent under estimation.

B. HNO_3 is an oxidising agent and it may get reduced resulting into consumption of more volume of $KMnO_4$ for the end ponit.

C. H_2SO_4 (dil.) is neither oxidising nor reducing agent

D. All of the above.

Answer: C

Watch Video Solution

5. Acic base + Redox titration 1^{st} titration : $\frac{M}{10}$ reacts with oxalic acid as well as H_2SO_4 according to equation

 $H_2C_2O_4+NaOH o Na_2C_2O_4+H_2O, H_2SO_4)+NaOH o Na_2SO_4+$ 2^{nd} titration : The mixture solution is titrated with $\frac{M}{10}KMnO_4$ solution which will reacts with oxalic acid (redox titration) in the presence of

 H_2SO_4

 $H_2C_2O_4 + KMnO_4 + H_2SO_4
ightarrow K_2SO_4 + MnSO_4 + H_2O + CO_2 \ ext{(Purple)}$

The reaction of oxalic acid with $KMnO_4$ is very slow therefore the oxalic acid solution is heated to $60-70^{\circ}C$ initially. Once the reation has started, its rate automatically increases. MnO_4^- acts as an oxidising agent.

$$MnO_4^- \stackrel{H^+}{\longrightarrow} Mn^{+\,+}, MnO_4^{-\,-}, MnO_4 \stackrel{ ext{Brown ppt}}{\longrightarrow} MnO_2^-$$

Which statement is wrong?

A. In NaOH titration phenolphthalein indicator will be suitable

B. In redox titration with $KMnO_4$ the $KMnO_4$ itself acts as self indicator

C. Sulphuric acid should be added in excess other wise brown ppt of

 MnO_2 may appear

D. Both H_2SO_4 and $H_2C_2O_4$, are titrated with $KMnO_4$

Answer: D

6. Acic base + Redox titration 1^{st} titration : $\frac{M}{10}$ reacts with oxalic acid as well as H_2SO_4 according to equation

 $H_2C_2O_4+NaOH o Na_2C_2O_4+H_2O, H_2SO_4)+NaOH o Na_2SO_4+2^{nd}$ titration : The mixture solution is titrated with $\frac{M}{10}KMnO_4$ solution which will reacts with oxalic acid (redox titration) in the presence of H_2SO_4

 $H_2C_2O_4+KMnO_4+H_2SO_4 o K_2SO_4+rac{MnSO_4}{ ext{(Colourless)}}+H_2O+CO_2$ The reactionof oxalic acid with $KMnO_4$ is very slow therefore the oxalic

acid solution is heated to $60-70^\circ C$ initially. Once the reation has started, its rate automatically increases. MnO_4^- acts as an oxidising agent.

$$MnO_4^- \stackrel{H^+}{\longrightarrow} Mn^{+\,+}\,, MnO_4^{-\,-}\,, MnO_4 \stackrel{
m Brown\ ppt}{\longrightarrow} MnO_2^-$$

If 1.34 gm $Na_2C_2O_4$ dissolve in 50 ml of water this solution is titrated with $KMnO_4$ The volume of $KMnO_4$ used is

A. 20 ml

B. 200/3 ml

C. 40 ml

D. 60 ml

Answer: A

Watch Video Solution

7. 8.7 gm of a sample of MnO_2 (molar mass = 87) is used in a chemical reaction with HCl to release Cl_2 Released Cl_2 is used to displace I_2 from excess of KI solution. The iodine hence released is estimated using hypo and consumes 100 ml of hypo solution.12.5 ml of same hypo solution is required for complete reaction with 25 ml of 0.5 N I_2 solution.

Number of mili of iodine in the solution used with hypo are

A. 4.35

B. 43

C. 50

D. 6.25

Answer: C

Watch Video Solution

8. 8.7 gm of a sample of MnO_2 (molar mass = 87) is used in a chemical reaction with HCl to release Cl_2 Released Cl_2 is used to displace I_2 from excess of KI solution. The iodine hence released is estimated using hypo and consumes 100 ml of hypo solution.12.5 ml of same hypo solution is required for complete reaction with 25 ml of 0.5 N I_2 solution.

Number of mili of iodine in the solution used with hypo are

- A. 106 g
- B. 10.6 g
- C. 5.3 g
- D. 53 g

Answer: B

9. 8.7 gm of a sample of MnO_2 (molar mass = 87) is used in a chemical reaction with HCl to release Cl_2 Released Cl_2 is used to displace I_2 from excess of Kl solution. The iodine hence released is estimated using hypo and consumes 100 ml of hypo solution.12.5 ml of same hypo solution is required for complete reaction with 25 ml of 0.5 N I_2 solution.

Number of mili of iodine in the solution used with hypo are

- A. 6.25
- B. 12.5
- C. 10
- D. 20

Answer: A

Watch Video Solution

Lecture Sheet Exercise Ii Level Ii Advanced Matrix Matching Type Questions

1. Match the redox process in Column - I with n - factor for underlined

species in Column - II

Column-I

(Redox process)

- A) $\underline{\text{As}_2\text{S}_3} \rightarrow \text{AsO}_3^- + \text{SO}_4^{2-}$
- $\mathbf{B}) \quad \underline{\mathbf{I}_2} \to \mathbf{I}^- + \mathbf{IO}_3^-$
- C) $\underline{\text{H}_3\text{PO}_2} \rightarrow \text{PH}_3 + 2\text{H}_3\text{PO}_3$
- D) $H_3PO_2 + \underline{NaOH} \rightarrow NaH_2PO_2 + H_2O$

Column-II

(n-factor for underlined species)

- P) 28
- 0) 4/3
- R) 1
- S) 5/3

0

Watch Video Solution

- A) $O_2^- \rightarrow O_2 + O_2^{2-}$
- B) $CrO_4^{2-} + H^+ \rightarrow$
- C) $MnO_4^- + NO_2^- + H^+ \rightarrow$
- 2. D) $NO_3^- + H_2SO_4 + Fe^{2+} \rightarrow$

P) redox reaction

- Q) one of the products has trigonal planar structure
- R) dimeric bridged tetra- hedral metal ion
- S) disproportionation

View Text Solution

Lecture Sheet Exercise Ii Level Ii Advanced Integer Type Questions

1. In the reaction $SnO_2+nC o Sn+nCO$ then the value of n is

View Text Solution

2. Find the oxidation number of Mn in the product of alkaline oxidative fusion of MnO_2

3. $2Mn_2O_7 o 4MnO_2 + 3O_2$ (If M is mol. wt. of Mn_2O_7). Find the equivalent, weight of Mn_2O_7 in the above change.

4. In hot alkaline solution, Br_2 disproportionates to $3Br_2-6OH^- o 5Br^- + BrO_3^- + 3H_2O$. The equivalent weight of Br_2 is 3M/x (mol wt = M). Then X is?

5. Number of moles of $K_2Cr_2O_7$, reduced by one mole of Sn^{2+} ions is 1/x. The value of x is

6. When copper is treated with a certain concentration of nitric acid, nitric oxide and nitrogen dioxide are liberated in equal volumes according to the following equation $xCu+yHNO_3 \rightarrow Cu(NO_3)_2+NO+NO_2+H_2O$. The coefficient of x is

7. A 1.10 g sample of copper ore is dissolved and the Cu^{2+} is treated with excess KI. The liberated I_2 requires 12.12 mL of 0.10M $Na_2S_2O_3$ solution for titration. Find the % of copper by mass in ore.

8. 1 mole each of FeC_2O_4 and $FeSO_4$ is oxidised separately by $1MKMnO_4$ in acid medium. Calculate the volume ratio of $KMnO_4$ used for FeC_2O_4 and $FeSO_4$

View Text Solution

Practice Sheet Exercise I Level I Main Straight Objective Type Questions

1. Which of the following shows highest oxidation number in combined state

A. Os

B. Ru

C. Both (1) and (2)

D. Fe

Answer: C

2. The	oxidation	number	that	iron	does	not	exhibit	in	its	common
compo	unds or in i	its elemer	ntal st	ate is	i					

A. 0

B. + 1

C. + 2

D. + 3

Answer: A

View Text Solution

3. The halogen that shows same oxidation state in all its compounds with other element is

A. I_2

B. F_2

C. Cl_2
D. Br_2
Answer: B
Watch Video Solution
4. The oxidation states of
products of the reaction bet

4. The oxidation states of the most electronegative element in the products of the reaction between BaO_2 with dilute H_2SO_4 are

A. 0 and - 1

B.-1 and -2

C. -2 and 0

D. -2 and +2

Answer: B

5. In which, iron has the lowest oxidation state?

A. $Fe(CO)_5$

 $\operatorname{B.}Fe_{2}O$

C. $K_4Fe(CN)_6$

 $\mathrm{D.}\, FeSO_4(NH_4)_2SO_46H_2O$

Answer: A

Watch Video Solution

6. Oxidation state of oxygen in $H_2{\cal O}_2$ is

A.-2

B. - 1

 $\mathsf{C.} + 1$

 $\mathsf{D.} + 2$

Answer: B

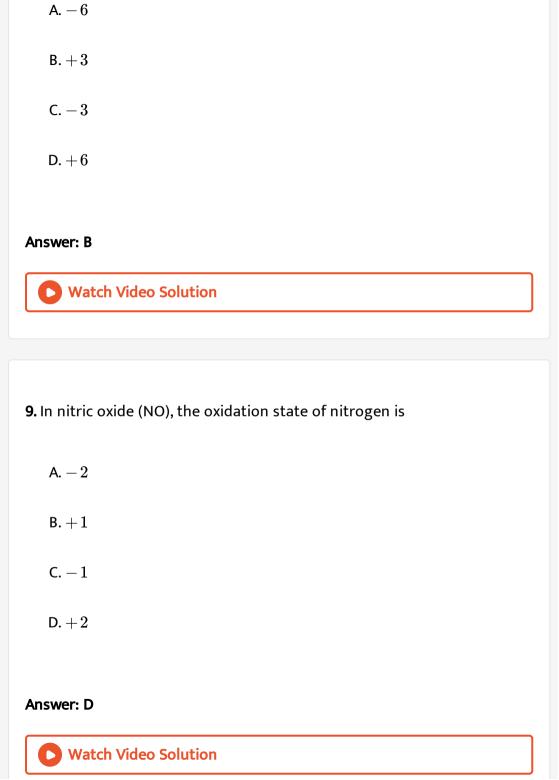
Watch Video Solution

7. In the conversion of Br_2 to BrO_3 the oxidation state of bromine changes from

A.
$$0 \text{ to} + 5$$

B.
$$-1 \text{ to } + 5$$

C. 0 to -3


D. + 2 to + 5

Answer: A

Watch Video Solution

8. The charge on cobalt in $\left[Co(CN)_6 \right]^{3-}$ is

10. In CH_2Cl_2 the oxidation number of C i	S
--	---

A.-4

B. + 2

C. 0

D.+4

Answer: C

Watch Video Solution

11. Oxidation state of oxygen is -1 in the compound:

A. NO_2

B. MnO_2

 $\mathsf{C}.\,PbO_2$

D. Na_2O_2
D. Na_2O_2

Answer: D

Watch Video Solution

- 12. Chlorine has +1 oxidation state in
 - A. HCI
 - $\operatorname{B.}\mathit{HClO}_3$
 - C. Cl_2O
 - D. ICl_3

Answer: C

View Text Solution

A. + 1 $\mathsf{B.}+6$ C. 0 D. -1**Answer: A Watch Video Solution** 14. In which one of the following compounds the oxidation number of iodine is fractional? A. IF_7 $\mathrm{B.}\,I_3^{\,-}$ $\mathsf{C}.\,IF_5$ D. IF_3 **Answer: B**

15. In MgH_2 oxidation number of hydrogen is:

A. -1

B. + 1

 $\mathsf{C.}-2$

D. + 2

Answer: A

16. Which acts as a reducing agent ?

A. HNO_3

B. $KMnO_4$

 $\mathsf{C}.\,H_2SO_4$

D.
$$(COOH)_2$$

Answer: D

View Text Solution

- **17.** The compound that can work both as an oxidizing and reducing agent is
 - A. $KMnO_4$
 - $\operatorname{B.}H_2O_2$
 - $\mathsf{C.}\, Fe_2(SO_4)3$
 - D. $K_2Cr_2O_7$

Answer: B

View Text Solution

18. In the reaction, $C+4HNO_3
ightarrow CO_2 + 2H_2O + 4NO_2, HNO_3$ acts

as

A. An oxidising agent

B. an acid

C. an acid as well as oxidising agent

D. a reducing agent

Answer: A

View Text Solution

19. In the reaction, $2Ag+2H_2SO_4 o Ag_2SO_4+2H_2O+SO_2, H_2SO_4$ acts as :

A. oxidising agent

B. reducing agent

C. dehydrating agent

D. none of these

Answer: A

View Text Solution

20. In which reaction H_2O_2 acts reducing agent ?

A.
$$Ag_2O+H_2O_2+2Ag+H_2O+O_2$$

B.
$$2KI + H_2O_2
ightarrow 2KOH + I_2$$

C.
$$PbS + 4H_2O_2
ightarrow PbSO_4 + 4H_2O$$

D.
$$H_2O_2 + SO_2
ightarrow H_2SO_4$$

Answer: A

View Text Solution

21. When SO_2 is passed in acidified potassium dichromate solution, the oxidation state of S is changed from:

A.
$$+4$$
 to 0

$$\mathrm{B.}+4\ \mathrm{to}$$
 +2

$$C. + 4 to + 6$$

$$D. + 6 to + 4$$

Answer: C

22. Which of the following is redox reaction

A.
$$N_2O_5 + H_2O
ightarrow 2HNO_3$$

B.
$$AgNO_3 + KI
ightarrow AgI + KNO_3$$

C.
$$BaO_2 + H_2SO_4
ightarrow BaSO_4 + H_2O_2$$

D.
$$SnCl_2 + HgCl_2
ightarrow SnCl_4 + Hg$$

Answer: D

23. The decomposition of $KClO_3$ to KCl and O_2 on heating is an example of

- A. Intermolecular redox change
- B. Intramolecular redox change
- C. Disproportionation or auto redox change
- D. Comproportionation reaction

Answer: B

View Text Solution

A. H^- is oxidised

B. Na^+ is reduced

C. both NaH and H_2O are reduced

D. None of the above

Answer: A

View Text Solution

B. $3I_2
ightarrow 5I^- + I^{5+}$

A.
$$2Cu^+ o Cu^{2+}+Cu$$

C.
$$H_2O+Cl_2 o Cl^-+CIO^-+2H^+$$

25. Which of the following disproportionation reaction

D. All of these

Answer: D

Practice Sheet Exercise I Level Ii Advanced Straight Objective Type Questions

1. The oxidation state of sulphur in Caro.s and Marshel.s acids are:

A.
$$S^{6\,+}\,,\,5^{6\,+}$$

B.
$$S^{6\,+}, S^{7\,+}$$

C.
$$S^{6\,+}$$
 , $S^{5\,+}$

D.
$$S^{6\,+}$$
 , $S^{6\,-}$

Answer: A

Watch Video Solution

2. Oxidation number of oxygen in KO_3 , KO_2 and K_2O is

A.
$$-\frac{1}{3}, -\frac{1}{2}, -1$$

$$B. -\frac{1}{3}, -\frac{1}{2}, -\frac{1}{2}$$

$$C. -1, -1, -1$$

$$D. -2, -2, -2$$

Answer: C

View Text Solution

3. It is found that V forms a double salt, isomorphous will Mohr.s salt. The oxidation number of V in this compound is

$$A. + 3$$

$$B. + 2$$

$$C.+4$$

$$\mathsf{D.}-4$$

Answer: B

4. Which among the followings shows maximum oxidation state?			
A. V			
B. Fe			
C. Mn			
D. Cr			
Answer: C			
Watch Video Solution			
5. Fluorine exhibits only -1 oxidation state, while iodine exhibits oxidation			
states of -1, +1, +3, +5 and +7. This is due to			
A. Fluorine being a gas			
B. available d-orbitals in iodine			
C. non-availability of d-orbitals in iodine			
D. iodine is a solid			

Answer: B

View Text Solution

- **6.** The oxidation sate of +3 for phosphorus is in
 - A. hypophosphorous acid
 - B. meta-phosphoric acid
 - C. ortho-phosphoric acid
 - D. phosphorous acid

Answer: D

View Text Solution

- **7.** Oxidation number of P in $P_2O_4^{4\,-}$ is
 - A. + 3

B. + 4

 $\mathsf{C.}+5$

D.+6

Answer: C

View Text Solution

8. The oxidation state of I in $H_4IO_6^-\,$, is

A. + 7

B. - 1

 $\mathsf{C.}+5$

D. + 1

Answer: C

View Text Solution

9. Oxidation state of nitrogen is incorrectly given for M

Compound

Oxidation State

a) $[Co(NH_3)_5Cl]Cl_2$ -3

 $b)NH_2OH$

-1

b) $NH_2OH -1$ c) $(N_2H_5)_2SO_4 +2$

 $d)(Mq_3)N_2$

-3

Watch Video Solution

10. The oxidation number of phosphorus in $PO_4^{-3}P_4O_{10} \,\, {
m and} \,\, P_2O_7^{4-}$ is

A. + 3

B. + 2

 $\mathsf{C.}-3$

D. + 5

Answer: D

View Text Solution

11. The oxidation number of S in $Na_2S_4O_6$ is

$$\mathsf{A.} + 2.5$$

B. +2 and +3 (two S have + 2 and other two have +3)

C. + 2 and + 3 (three S have + 2 and one S has + 3)

D. $+5 \,$ and $\, 0$ (two S have + 5 and the other two S have 0)

Answer: D

12. The oxidation state of phosphorus in $Ba(H_2PO_2)_2$ is

$$A. + 3$$

$$B. + 2$$

$$C. + 1$$

$$D.-1$$

Answer: C

Watch Video Solution

13. Co-ordination number and oxidation state of Cr in $K_3igl[Cr(C_2O_4)_3igr]$ are, respectively

A. 3 and + 3

B. 3 and 0

C.6 and +3

D. 4 and + 2

Answer: C

View Text Solution

14. When SO_2 is passed in a solution of potassium iodate, the oxidation state of iodine changes from

$$A. + 5$$
 to 0

B. + 5 to -1

C.-5 to 0

D. -7 to -1

Answer: A

View Text Solution

- 15. Among the following, identify the species with an atom in + 6 oxidation state
 - A. MnO_4^-
 - B. $Cr(CN)_6^{3-}$
 - C. NiF_6^{2-}
 - D. CrO_2Cl_2

Answer: D

16. $K_4ig[Fe(CN)_6ig]$ is a

A. + 1

B. + 2

C. -1

D. 0

Answer: D

Watch Video Solution

17. Experimentally it was found that a metal oxide has formula $M_{0.98}O.$

Metal M^{2+} and M^{3+} is present as M^{3+} in its oxide. Fraction of the metal which exists as M^{3+} would be

A. 6.05~%

- B.5.08%
- $\mathsf{C.}\ 7.01\ \%$
- D. $4.08\,\%$

Answer: B

View Text Solution

18. Thiosulphate reacts differently with iodine and bromine in the reactions given below

$$2S_2O_3^{2\,-} + I_2 o S_4O_6^{2\,-} + 2I^{\,-}$$

$$S_2 O_3^{2\,-} + 2 B r_2 + 5 H_2 O
ightarrow 2 S O_4^{2\,-} + 2 B r^{\,-} + 10 H^{\,+}$$

Which of the following statements in correct?

- A. a. Bromine is a stronger oxidant than iodine
- B. b. Bromine is a weaker oxidant than iodine
- C. c. Thiosulphate undergoes oxidation by bromine and reduction by

iodine in these reactions

D. d. Bromine undergoes oxidation and iodine undergoes reduction in these reactions

Answer: A

Watch Video Solution

19. Which of the following arrangements represent increasing oxidation number of the central atom ?

A. a.
$$CrO_{2}^{-}$$
 , ClO_{3}^{-} , CrO_{4}^{2-} , MnO_{4}^{-}

B. b.
$$ClO_3^-$$
 , CrO_4^{2-} , MnO_4^- , CrO_2

C. c.
$$CrO_2^-$$
 , ClO_3^- , MnO_4^- , CrO_4^{2-}

D. d.
$$MnO_4^-$$
 , CrO_4^{2-} , ClO_3^- , CrO_2^-

Answer: A

20. Identify disproportionation reaction

A.
$$CH_4 + 2O_2
ightarrow CO_2 + 2H_2O$$

B.
$$CH_4 + 4Cl_2
ightarrow \mathrm{CCl}_4 + 4HCl$$

C.
$$2F_2+2OH
ightarrow2F^-+OF_2+H_2O$$

D.
$$2NO_2+2OH^-
ightarrow NO_2^-+NO_3^-+H_2O$$

Answer: D

Watch Video Solution

21. In the preparation of HNO_3 we get NO gas by catalytic oxidation of ammonia. The moles of NO produced by the oxidation of two moles of NH_3 will be

A. 2

B. 3

C. 4

Answer: A

View Text Solution

- **22.** The electronic configuration of Cu(II) is $3d^9$ whereas that of Cu(I) is
- $3d^{10}$. When of the following is correct ?
 - A. Cu(II) is more stable in aqueous medium
 - B. Cu(I) is more in solid state
 - C. Stability of Cu(I) an Cu(II) depends on nature copper salts in solution state
 - D. All of these

Answer: D

 ${f 23.}\ KMnO_4$ acts as an oxidising agent in alkaline medium, when alkaline

 $KMnO_4$ is treated with KI, iodine ion is oxidised to

- A. I_2
- $B.IO^-$
- $\mathsf{C}.\,IO_3^-$
- D. IO_4^-

Answer: C

- **24.** Strong reducing behaviour of H_3PO_2 is due to
 - A. low oxidation state of phosphorus
 - B. presence of two -OH groups and one P-H bond
 - C. presence of one -OH groups and two P-H bonds
 - D. high electron gain enthalpy of phosphorus

Answer: C

25. Which of the following equations depict the oxidizing nature of hydrogen peroxide?

A.
$$2Mn_4^-6H+5H_2O_2
ightarrow 2Mn^2{}^+8H_2O+5O_2$$

B.
$$2Fe^{3\,+}\,+2H^{\,+}\,+H_2O_2
ightarrow2Fe^{2\,+}\,+2H_2O+O_2$$

C.
$$2I^- + 2H^+ + H_2O_2
ightarrow I_2 + 2H_2O$$

D.
$$KIO_4 + H_2O_2
ightarrow KIO_3 + H_2O + O_2$$

Answer: C

Watch Video Solution

26. Which of the following equation depicts reducing nature of H_2O_2 ?

B. $I_2 + H_2 O_2 + 2 O H^-
ightarrow 2 I^- + 2 H_2 O + O_2$

C. $Mn^{2+} + H_2O_2 \rightarrow Mn^{4+} + 2OH^{-}$

A. $2igl[Fe(CN)_6igr]^{4-}+2H^{+}+H_2O_2
ightarrow2igl[Fe(CN)_6igr]^{3-}+2H_2O$

D. $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$

Answer: B

Watch Video Solution

27. Which of the following reactions is an example of autoreduction?

B. $Cu_2O + C \rightarrow 2Cu + CO$

$$\mathsf{C.}\,Cu^{2+}_{(\mathit{aa})} + Fe_{(\mathit{g})}
ightarrow Cu_{(s)} + Fe^{2+}_{(\mathit{aq})}$$

D.
$$Cu_2+rac{1}{2}Cu_2S
ightarrow 3Cu+rac{1}{2}SO_2$$

A. $Fe_3O_4 + 4CO \rightarrow 3Fe + 4CO_2$

Answer: D

28. For the reaction : $F_2+H_2O \xrightarrow{ ext{Ice cold}} HOF+ ext{HF}$ which one is not correct ?

A. It is intramolecular redox reaction

B. It is intermolecular redox reacton

C. It is auto redox reaction

D. It is a disproportionation reaction

Answer: B

Watch Video Solution

29. In which SO_2 acts as oxidant, while reacting with

A. acidified $KMnO_4$

B. acidified $K_2Cr_2O_7$

 $\mathsf{C}.\,H_2S$

_	: -I:¢I	a II o	тт
υ.	acidified	C_2H_5OI	Н

Answer: C

Watch Video Solution

30. Among the properties (i) reducing (ii) oxidising (iii) complexing the set of properties shown by CN - ion towards metal species is :

A. i,ii,iii

B. ii,iii

C. iii,i

D. i,ii

Answer: C

31. Which substance serves as a reducing agent in the following reactions

?

$$14H^{+} + Cr_{2}O_{7}^{2-} + 3Ni
ightarrow 2Cr^{3+} + 7H_{2}O + 3Ni^{2+},$$

A. H_2O

B. Pb

C. $H^{\,+}$

D. $Cr_2O_7^{2\,-}$

Answer: B

Watch Video Solution

32. Select the incorrect statement for developing of an exposed camera film involving the reaction

HO OH +
$$2AgBr + 2OH$$

Hydroquinol

O + $2Ag + 2H_2O + 2Br$

Quinone

- A. a. Hydroquinol acts as reductant
- B. b. Ag^+ acts as oxidant
- C. c. Hydroquinol and AgBr undergoes redox change
- D. d.it is intramolecular change

Answer: D

- **33.** Which one is not correct for the reaction $(CN)_2 + H_2O o HCN + HOCN$?
 - A. It is an auto redox change
 - B. Ox.no. of C in $(CN)_2$ HCN and HOCN are +3, +2 and +4 respectively

- C. Ox.no. of N in $(CN)_2$ HCN and HOCN are +3, +2 and +4 respectively
- D. The resultant solution is acidic

Answer: C

View Text Solution

Practice Sheet Exercise I Level Ii Advanced More Than One Correct Answer Type Questions

- 1. Which statement(s) about oxidation number is(are) correct?
 - gained (-ve) by an atom during the formation of ionic compounds

A. The oxidation number is the number of electrons lost (+ve) or

- B. For covalent compounds, the oxidation number is indicated by the charge that an atom of element would have acquired if the substance would have been ionic
- C. Oxidation number may have fractional values

D. Oxidation number is always negative.

Answer: A::B::C

View Text Solution

electron (or) electons

- 2. Among the following statements the correct are:
 - A. Neutralisation, salt hydrolysis, precipitate formation, complex formation involve generally no electron transfer.
 - B. Reductant provides electron or electrons and an oxidant accepts
 - C. Oxidant is reduced by accepting electrons and reductant is oxidised by losing electrons.
 - D. The ions which do not undergo any electronic change during a chemical reaction are termed as spectator ions.

Answer: A::B::C::D

3. The process reduction. involves

- A. addition of ${\cal O}_2$ or removal of ${\cal H}_2$ to a molecule
- B. addition of a non-metal or removal of metal
- C. loss of electrons
- D. Addition of electrons

Answer: A::B::C

- **4.** Indicate in which of the following processes nitrogen is recuced?
- A. $NH_4^{\ +}
 ightarrow N_2$
 - B. $NO_3^- o NO$
 - $\mathsf{C.}\,NO_2\to NO_2^-$

D. $NO_3
ightarrow N{H_4}^+$

Answer: A::C::D

View Text Solution

- 5. Which of the following statements (s) is (are) correct?
 - A. Oxidation of a substance is followed by reduction of another
 - B. Reduction of a substance is followed by oxidation of another
 - C. Oxidation and reduction are complementary that both oxidation
 - and reduction should take place in the same reaction
 - D. It is not necessary that both oxidation and reduction should takes place in the same reaction.

Answer: A::B::C

6. Which of the following reaction() is (are) not oxidation, reduction?

A.
$$H^{\,+}\,+OH^{\,-}\, o H_2O$$

B.
$$rac{1}{2}H_2+rac{1}{2}Cl_2
ightarrow HCl$$

$$\mathsf{C.}\ CaCO_3 o CaO + CO_2$$

D.
$$2H_2O_2
ightarrow 2H_2O+O_2$$

Answer: A::C

Watch Video Solution

7. Which of the following represents redox reaction?

A.
$$Cr_2O_7^{-2} + 2OH^-
ightarrow CrO_4^{2-} + H_2O$$

B.
$$SO_5^{2-} + I^-
ightarrow I_2 + SO_4^{2-}$$

C.
$$Ca(OH)_2 + Cl_2
ightarrow Ca(ClO)_2 + CaCl_2$$

D.
$$PCl_5
ightarrow PCl_3 + Cl_2$$

Answer: B::C

Watch Video Solution

8. Which is (are) disproportionation reaction(s)?

A.
$$2RCHO \xrightarrow{\mathrm{Al}(\mathrm{OEt})_3} RCOOCH_2R$$

$$\texttt{B.}\ 4H_3PO_3 \stackrel{\Delta}{\longrightarrow} 3H_3PO_4 + PH_3$$

$$\mathsf{C.}\,PCl_5 o PCl_3+Cl_3$$

D.
$$RCHO \xrightarrow{KOH} RCOOK + RCH_2OH$$

Answer: A::B::D

View Text Solution

9. Which among the following are auto - redox reactions?

A.
$$P_4 + OH^-
ightarrow H_2 PO_2^- + PH_3$$

B. $S_2O_3^{2-}
ightarrow SO_4^{-2}+S$

C. $H_2O_2
ightarrow H_2O+O_2$

D. $AgCl + NH_3
ightarrow igl[Ag(NH_3)_2 igr] Cl$

Answer: A::B::C

10. Thermal decomposition of $(NH_4)_2Cr_2O_7$ involves.

A. Oxidation of N

B. Reduction of Cr

C. Disproportionation of compound

D. Intermolecular redox process

Answer: A::B::D

11. When P reacts with caustic soda. The products are PH_3 and NaH_2PO_2 . This reaction is an example of

A. Oxidation-reduction

B. Disproportionation

C. Auto redox

D. Neutralization

Answer: A::B::C

Watch Video Solution

Practice Sheet Exercise I Level Ii Advanced Linked Comprehension Type Questions

1. The oxidation number of an element in a compound decides its nature to act as oxidant or reductant. Oxidation number is defined as the residual charge which an atom has or appears to have in a molecule when

all other atoms are removed from the molecule as ions. Oxidation number is frequently used interchangebly with oxidation state. The stock notations of oxidation numbers are based on the periodic property - electronegativity. An atom in a molecule can be assigned positive, negative or zero oxidation number by considering its environment. In few cases, oxidation number can even be fractional.

Maximum oxidation state shown by Os, Ru and Xe in their compounds is:

- A. + 8
- $\mathsf{B.}+6$
- C. + 10
- D. + 4

Answer: A

Watch Video Solution

2. The oxidation number of an element in a compound decides its nature to acts as oxidant or reductant. Oxidation number is defined and the

residual charge which an atom has or appears to have in a molecule whenal other atoms are removed from the molecule as ions. Oxidation number is frequently used interchangebly with oxidation state. The stock notations of oxidation number are based on the periodic property-electronegativity. An atom in a molecule can be assigned positive, negative or zero oxidation number by considering its environment. In few cases, oxidation number can evenn be fractional.

Oxidation number of oxygen in $K_2O,\,K_2O_2,\,KO_2,\,KO_3$ are in the order:

A.
$$KO_3 < KO_3 < K_2O_2 < K_2O$$

$$\mathsf{B.}\, KO_2 < KO_3 < K_2O < K_2O_2$$

$$\mathsf{C.}\, K_2 O < K_2 O_2 < K O_2 < K O_3$$

D.
$$KO_3 < K_2O < KO_2 < K_2O_2$$

Answer: C

3. The oxidation number of an element in a compound decides its nature to acts as oxidant or reductant. Oxidation number is defined and the residual charge which an atom has or appears to have in a molecule whenal other atoms are removed from the molecule as ions. Oxidation number is frequently used interchangebly with oxidation state. The stock notations of oxidation number are based on the periodic property-electronegativity. An atom in a molecule can be assigned positive, negative or zero oxidation number by considering its environment. In few cases, oxidation number can evenn be fractional.

Oxidation number of Y in $YBa_{2}Cu_{2}O_{7}$ is +3, then oxidation number of Cu is:

$$A. + 7/3$$

$$B. + 5/3$$

$$\mathsf{C.} + 2$$

$$D. + 1$$

4. Oxidation is de-electronation whereas reduction is electronation. Oxidants are the substances which oxidise others and reduced themselves. On the other hand reductants are the substances which reduce others and oxidised themselves. The oxidation number of an element in a compound decides its nature to act as oxidant or reductant. Oxidation-reduction occur simultaneously and the overall chemical change is called redox reaction. Redox reactions are of three types: (i) Intermolecular redox reactions, (ii) Autoredox or disproportionation reaction, and (iii) Intramolecular redox reactions.

Select the species which can act as oxidant and reductant both:

(1)
$$H_2SO_3(II)H_2O_2(III)O_3(IV)HNO_3(V)CI_2$$

A. I,II,III, IV

B. I,II,III, V

C. II,IH,IV, V

D. III,IV,V

Watch Video Solution

5. Oxidation is de-electronation whereas reduction is electronation. Oxidants are the substances which oxidise others and reduced themselves. On the other hand reductants are the substances which reduce others and oxidised themselves. The oxidation number of an element in a compound decides its nature to act as oxidant or reductant. Oxidation-reduction occur simultaneously and the overall chemical change is called redox reaction. Redox reactions are of three types: (i) Intermolecular redox reactions, (ii) Autoredox or disproportionation reaction, and (iii) Intramolecular redox reactions.

Which of the following show intramolecular redox change:

(I)
$$2KClO_3 \rightarrow 2KCI + 3O_2 \tag{II}$$

$$(NH_4)_2Cr_2O_7 o N_2 + Cr_2O_3 + 4H_2O$$

(III)
$$NH_4NO_2
ightarrow N_2+2H_2O$$
 (IV) $2Cu^+
ightarrow Cu^{2+}Cu$

B. I, IV

C. II, III

D. II, IV

Answer: A

Watch Video Solution

6. Oxidation is de-electronation whereas reduction is electronation. Oxidants are the substances which oxidise others and reduced themselves. On the other hand reductants are the substances which reduce others and oxidised themselves. The oxidation number of an element in a compound decides its nature to act as oxidant or reductant. Oxidation-reduction occur simultaneously and the overall chemical change is called redox reaction. Redox reactions are of three types: (i) Intermolecular redox reactions, (ii) Autoredox or disproportionation reaction, and (iii) Intramolecular redox reactions.

Which of the following shows auto-redox change:

(I)
$$2HCHQ + NaOH
ightarrow HCOONa + H_2O$$

(II)
$$Cl_2 + H_2O
ightarrow HCI + HCIO$$

(III)
$$2Cu^+ o Cu^{2+}+Cu$$

(IV)
$$Cr+2H_2O+3OCl^-
ightarrow Cr^{3+}+3Cl^-+6OH^-$$

A. I, II, III

B. I, IV

C. II, IV

D. II, III

Answer: A

Watch Video Solution

Practice Sheet Exercise I Level Ii Advanced Matrix Matching Type Questions

Column-I

- A) $2H_2O \xrightarrow{\Delta} 2H_2 + O_2$
- 11) 21120
- B) $CuSO_4 + Zn \rightarrow Cu + ZnSO_4$
- C) $Cl_2 + 6OH^- \xrightarrow{\Delta} 5Cl^- + ClO_3^- + 3H_2O$
- D) $Zn + 2HCl \rightarrow ZnCl_2 + H_2$

Column-II

- P) Disproportionation reaction
- O) Non-metal displacement reaction
- R) Decomposition reaction
- S) Metal displacement reaction

Practice Sheet Exercise I Level Ii Advanced Integer Type Questions

- 1. The oxidation number of carbon in Glucose is _____
 - Watch Video Solution

- **2.** Oxidation number of Cr in K_3CrO_8 is
 - Watch Video Solution

- **3.** What is the value of n in the following half equation, $Cr(OH)_4^- + OH^- o CrO_4^{2-} + H_2O + \mathrm{ne}^-$
 - Watch Video Solution

4. $MnO_4^- + 8H^+ + ne^-
ightarrow Mn^{2+} + 4H_2O$

The value of n is

Watch Video Solution

5. In the equation, $NO_2^- + H_2O o NO_3^- + 2H^+ + \mathrm{ne}^-$.n. stands for

Watch Video Solution

Practice Sheet Exercise Ii Level I Main Straight Objective Type Questions

1. In the equation, $NO_2^- + H_2O o NO_3^- + 2H^+ + \mathrm{ne}^-$.n. stands for

A. H^+

B. e^-

C. $2e^-$

D. $3e^-$

Answer: C

Watch Video Solution

2. In which is transfer of five electrons takes place?

A. a. $MnO_4^- o Mn^{2+}$

B. b. $CrO_4^{-2} o Cr^{3+}$

C. c. $MnO_4
ightarrow MnO_2$

D. d. $Cr_2O_7^{2-}
ightarrow 2Cr^{3+}$

Answer: A

Watch Video Solution

3. The number of electrons lost or gained during the change,

$$Fe + H_2O
ightarrow Fe_3O_4 + H_2$$

- A. 2
 - B. 4
 - C. 6

D. 8

Answer: D

View Text Solution

4. $MnO_4^- + 8H^+ + ne^-
ightarrow Mn^{2+} + 4H_2O$ The value of n is

....

D 4

A. 5

- B. 4
- C. 3

D. 2

Answer: A

5.	Same amount o	f metal	combines	with	0.1g	of	oxygen	and	lg	of	а
hal	ogen. Hence the ϵ	equivale	nt mass of	halog	en is	:					

A. 9

B. 35.5

C. 80

D. 127

Answer: C

Watch Video Solution

6. The normality of 0.3 H_3PO_3 is

A. 0.1

B. 0.9

C. 0.3
D. 0.6
Answer: D
Watch Video Solution
7. 0.32 g of metal on treatment with acid gave 112mL of hydrogen at NTP. The equivalent weight of metal is
A. 58
B. 32

C. 11.2

D. 24

Answer: B

8. The eq. mass of $Fe_2(SO_4)_3$ the salt to be used as an oxidant in an acid solution is

A. M/1

B. M/2

C. M/3

D. M/5

Answer: B

9.

Watch Video Solution

The eq. mass of $KMnO_4$ in the $MnO_4^- + Mn^{2\,+} + H_2O
ightarrow MnO_2 + H^{\,+}$ (unbalanced) is

reaction,

- A. 52.7
- B. 158
- C. 31.6

D. 105.4

Answer: A

Watch Video Solution

10. The eq, mass of iodine in, $I_2 + S_4 O_6^{2\,-} + 2 I^{\,-}$. The e.q mass of

A. M

 $Na_2S_2O_3$ is equal to its

B. M/2

C. M/4

D. M/3

Answer: B

11. In the redox reaction $2S_2O_3^{2-}+I_2
ightarrow S_4O_6^{2-}+2I^-$

A. M

B. M/2

C. M/4

D. M/3

Answer: A

12. 1 mole of chlorine combines with a certain mass of a metal giving 111g of its chloride. The atomic mass of the metal (assuming its valency to be 2) is

A. 40

B. 20

C. 80

D.	60

Answer: C

Watch Video Solution

- **13.** The number of mole of oxalate ions oxidised by one mole of MnO_4^- is
 - A. 1/5
 - $\mathsf{B.}\,2/5$
 - $\mathsf{C.}\,5/2$
 - D. 5

Answer: A

14. What mass of MnO_2 is reduced by 35mL of 0.16N oxalic acid in acid solution ? The skeleton equation is,

 $MnO_2 + H^+ + H_2C_2O_4
ightarrow CO_2 + H_2O + Mn^{2+}$

- A. 8.7 g
- B. 0.24 g
- C. 0.84 g
- D. 43.5 g

Answer: B

15. How many milli-gram of iron $\left(Fe^{2+}
ight)$ are equal to 1mL of 0.1055N $K_2Cr_2O_7$ equivalent ?

- A. 5.9 mg
- B. 0.59 mg

D. $59 imes 10^{-3} mg$

C. 59 mg

Answer: A

Watch Video Solution

Practice Sheet Exercise Ii Level Ii Advanced Straight Objective Type **Questions**

1. The n-factor of FeS_2 during its oxidation as $Fes_2
ightarrow Fe_2O_3 + SO_2$

A. 10

B. 11

C. 2

D. 8

Answer: B

2. n-factor of H_3PO_2 during its diproportionation is $3H_3PO_2 o PH_3 + 2H_3PO_3$

B. 2

C.4/3

D. 3/4

Answer: C

- **3.** What is equivalent mass of $(NH2_4)_2Cr_2O_7$ in the change $(NH_4)_2Cr_2O_7 o N_2+Cr_2O_3+4H_2O$?
 - A. $\frac{M}{2}$
 - B. $\frac{M}{3}$

C.
$$\frac{M}{4}$$
D. $\frac{M}{6}$

Answer: D

4.

Watch Video Solution

The

- - A. X = 5, Y = 2

reaction

 $5H_2O_2 + XClO_2 + 2OH^-
ightarrow XCl^-YO_2 + 6H_2O$

balanced

is

if,

- B. X = 2, Y = 5
- C. X = 4, Y = 10
- D. X = 5, Y = 5

Answer: B

5. The values of X and Y in the following redox reaction are

$$XCl_2 + 6OH
ightarrow ClO_3^- + YCl^- + 3H_2O$$

A.
$$X=2, Y=4$$

$$\mathtt{B.}\,X=5,Y=3$$

$$\mathsf{C.}\,X=3,Y=5$$

D.
$$X = 4, Y = 2$$

Answer: C

Watch Video Solution

Consider the following reaction 6. $xMnO_4^- + yC_2O_4^{2-} + zH^-
ightarrow xMn^{2+} + 2yCO_2 + rac{z}{2}H_2O$

D. 2, 5 and 8

Answer: A

Watch Video Solution

7. The equivalent mass of $Na_2S_2O_3$ as reductant in the reaction,

 $Na_2S_2O_3 + 5H_2O + 4Cl_2 \rightarrow 2NaHSO_4 + 8HCl$

A. (molar mass)/1

B. (molar mass)/2

C. (molar mass)/6

D. (molar mass)/8

Answer: D

8. What mass of NHO_3 is needed to convert 5g of iodine into iodic acid according to the reaction ?

A. 12.4 g

B. 24.8 g

C. 0.248 g

D. 49.6 g

Answer: A

- **9.** What volume of 3 molar HNO_3 is needed to oxidize 8g of Fe^{2+} to Fe^{+3} ? HNO_3 , gets converted to NO
 - A. 8 mL
 - B. 16 mL
 - C. 32 mL

_		_	
\Box	<i>C 1</i>	ml	
D.	04	IIIL	_

Answer: B

Watch Video Solution

10. What mass of HNO_3 is required to make llitre of 2N solution to be used as an oxidizing agent in the reaction ?

$$3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$$

A. 63 g

B. 21 g

C. 42 g

D. 84 g

Answer: C

11. 0.2g of a sample of H_2O_2 required 10mL of N $KMnO_4$ in a titration in the presence of H_2SO_4 Purity of H_2O_2 is

- A. 0.25
- B. 0.85
- C. 0.65
- D. 0.95

Answer: B

- **12.** In the following change, $3Fe+4H_2O \to Fe_3O_4+4H_2$ If the atomic mass of iron is 56, then its equivalent mass will be :
 - A. 42
 - B. 21
 - C. 63

Answer: B

Watch Video Solution

- **13.** An element A in a compound AB has oxidation number -n. IT is oxidized by $Cr_2O_7^{2-}$ in acid medium. In the experiment 1.68×10^{-3} moles of $K_2Cr_2O_7$ was used for 3.36×10^{-3} moles of AB. The new oxidation number of A after oxidation is
 - A. 3
 - B. 3 n
 - C. n 3
 - D. + n

Answer: B

14. For the reaction, $N_2+3H_2 o 2NH_3$ if E_1 and E_2 equivalent masses of NH_3 and N_2 respectively then E_1-E_2 is

A. 1

B. 2

C. 3

D. 4

Answer: A

15. The anion nitrate is converted into ammonium ion. The equivalent mass of nitrate ion in the reaction would be

A. 6.20

B. 7.75

C. 10.5

D. 21.0

Answer: B

View Text Solution

16. Equivalent masses of NH_{3} in the reactions are

(i)
$$4NH_3+5O_3
ightarrow4NO+6H_2O$$

A. 5:6

B.6:5

C. 5:3

D. 3:5

Answer: D

View Text Solution

17. Why is HCl not used to make the medium acidic in redox titrations of

 $KMnO_4$ in acidic medium ?

A. Both HCl and $KMnO_4$ act as oxidising agents.

B. $KMnO_4$ also oxidised HCl into Cl_2

C. $KMnO_4$ is a weaker oxidising agent than HCl

D. $KMnO_4$ acts as a reducing agent in the presence of HCl

Answer: B

18. Brine is electrolysed by using inert electrodes. The reaction at anode is

A.
$$Cl^-_{\,(aq)}\,
ightarrow\,rac{1}{2}Cl_{2\,(\,g\,)}\,+e^-, E^\circ\,=1.36V$$

B.
$$2H_2O_{\,(\,l\,)}\,
ightarrow\,O_{2\,(\,g\,)}\,+4H^{\,+}\,+4e^{\,-}\,,E^{\,\circ}\,=1.23V$$

C.
$$Na^{\,+}_{\,(\,aq\,)} + e^{\,-}
ightarrow Na_{\,(\,s\,)}\,, E^{\,\circ} = 2.71 V$$

D.
$$H_{(aq)}^{\,+}
ightarrowrac{1}{2}H_{2(\,g\,)}$$
 , $E^{\,\circ}=0.00V$

Answer: A

Watch Video Solution

19. In estimation of Fe^{2+} by $KMnO_4HNO_3$ cannot be used in place of

H,SO, because

- A. HNO_3 oxidised Fe^{2+}
- B. HNO_3 reduces MnO_4^-
- C. HNO_3 reduces Fe^{2+}
- D. HNO_3 oxidised Mn^{2+}

Answer: A

Watch Video Solution

Practice Sheet Exercise Ii Level Ii Advanced More Than One Correct Answer Type Questions

1. In the chemical change : $aN_2H_4+bBrO_3^ightarrow aN_2+bBr^-+6H_2O$,

answer the following questions:

The equivalent weight of N,H, in the above reaction is:

A. The element oxidised is N and element reduced is Br.

B. Oxidizing agent is BrO_3^-

C. Reducing agent is N_2H_4

D. The element oxidised is Br and element reduced is N.

Answer: A::B::C

2. The number of moles of $KMnO_4$ that will be needed to react completely with one mole of ferrous oxalate in acidic solution is

A. 2/5

B.3/5

C. 4/5

D. 1

Answer: A

Watch Video Solution

- **3.** For the balanced chemical reaction $HNO_3 + H_2S
 ightarrow NO + H_2O + S$
- . The correct statements are:-
 - A. a. The stoichiometric coefficient of HNO_3 is 2
 - B. b. The stoichiometric coefficient of H_2S is 3
 - C. c. The stoichiometric coefficient of NO is 2
 - D. d. The stoichiometric coeffecient of H_2O is 4

Answer: A::B::C::D

4. When a mixture of Cu_2S and CuS is titrated with $Al(MnO_4)_3$ in acidic medium, the oxidation product of Cu_2S and CuS are Cu^{+2} and SO_2 . If the molecular weight of Cu_2S , CuS and $Al(MnO_4)_3$, be M_1 , M_2 and M_3 respectively, then which of the following statement are correct?

A. Equivalent weight of Cu_2S is $M_1\,/\,8$

B. Equivalent weight of Cus is $M_2\,/\,5$

C. Equivalent weight of $Al(Mn_4)_3$ is $M_3\,/\,5$

D. Equivalent weight of $Al(MnO_4)_3$, is $M_3\,/\,15$

Answer: A::D

View Text Solution

5. When FeS_2 is oxidized with sufficient O_2 then its oxidation product is found to be Fe_2O_3 and SO_2 if the molecular weight of

 FeS_2, Fe_2O_3 and SO_2 are M. Ma and Mc, then which of the following statements are correct?

A. equivalent wt. of FeS_2 is M/11

B. the molar ratio of FeS_2 to O_2 is 4:11

C. the molar ratio of FeS_2 to O_2 is 11:4

D. The molar ratio of $Fe_2O \; {
m and} \; SO_2$ is 1:4

Answer: A::B

View Text Solution

- **6.** For decolourisation of 1 mol of $KMnO_4$ the number of moles of H_2O_2 used is
- A. $\frac{1}{2}$

D.
$$\frac{7}{2}$$

Answer: C

View Text Solution

Practice Sheet Exercise Ii Level Ii Advanced Linked Comprehension Type Questions

1. The equivalent weight of a species if acts as oxidant or reductant should be derived by: Eq. weight Mol.wt. of oxidant or reductant = Mol.w.t of oxidant or reductant

Number of electrons lost or gained by onemclecule of oxidant or reductant . During chemical reactions, equal all equivalents of one species react with same number of equivalents of other species giving same number of equivalent of products. However this is not true for reactants if they react in terms of moles. Also Molarity can be converted to normality by multiplying the molarity with valence factor or .n. factor

Equivalent weight of Fe_2O_3 in terms of its molecular weight in the change $Fe_3O_4 o Fe_2O_3$ is :

- A. M
- B. M/2
- C. M/3
- D.3M/2

Answer: D

View Text Solution

2. The equivalent weight of a species if acts as oxidant or reductant should be derived by: Eq. weight Mol.wt. of oxidant or reductant =

Mol.w.t of oxidant or reductant

Number of electrons lost or gained by onemclecule of oxidant or reductant

. During chemical reactions, equal all equivalents of one species react with same number of equivalents of other species giving same number of equivalent of products. However this is not true for reactants if they react in terms of moles. Also Molarity can be converted to normality by multiplying the molarity with valence factor or .n. factor

The equivalent weight of an element is 13.16. It forms an acidic oxide

which with KOH forms a salt isomorphous with K_2SO_4 The atomic weight of element is:

A. 78.96

B. 52.64

C. 26.32

D. 39.48

Answer: A

Watch Video Solution

should be derived by: Eq. weight Mol.wt. of oxidant or reductant = Mol.w.t of oxidant or reductant

3. The equivalent weight of a species if acts as oxidant or reductant

Number of electrons lost or gained by onemclecule of oxidant or reductant . During chemical reactions, equal all equivalents of one species react

with same number of equivalents of other species giving same number of equivalent of products. However this is not true for reactants if they react in terms of moles. Also Molarity can be converted to normality by

multiplying the molarity with valence factor or .n. factor

One mole of As_2S_3 is oxidised by HNO_3 to H_2AsO_4 and $H_2SO_4HNO_3$ is converted into NO. The moles of HNO_3 required are:

A. 3

B. 28

C. 14

D. 9.33

Answer: D

4. All titration which involves the direct titration of lodine with a reducing agent are grouped under lodimetry. Iodimetry is employed to determine the strength of reducing agent such as sodium thio sulphate $I_2+2Na_2S_2O_3 \rightarrow 2I^- + S_4O_6^-$

If iodine is liberated as a result of chemical reaction involving oxidation of an idodide ion by a strong oxidizing agent in neutral or acidic medium the liberated iodine is then titrated with reducing agent. This titration is called lodometry. Todometry is used to estimate the strength of oxidizing agent. For example the estimation of $Cu^{\,+\,+}$ with thiosulphate.

$$Cu^{+\,+} + I^{\,-}Cu_2I_2 + I_2, I_2 + S_2O_3^{\,-}
ightarrow S_4O_6^{\,-} + I^{\,-}$$

Starch used as indicator near the end point which form blue colour complex with $I_3^{\,-}$. The blue colour disappears when

In the reaction, $2CuSO_4+4KI\to Cu_2I_2+2K_2SO_4+I_2$ the ratio of equivalent weight of $CuSO_4$ to its molecular weight is:

- A. 1/8
- B.1/4
- $\mathsf{C}.\,1/2$
- D. 1

Answer: D

5. All titration which involves the direct titration of lodine with a reducing agent are grouped under lodimetry. lodimetry is employed to determine the strength of reducing agent such as sodium thio sulphate $I_2+2Na_2S_2O_3\to 2I^-+S_4O_6^-$

If iodine is liberated as a result of chemical reaction involving oxidation of an idodide ion by a strong oxidizing agent in neutral or acidic medium the liberated iodine is then titrated with reducing agent. This titration is called lodometry. Todometry is used to estimate the strength of oxidizing agent. For example the estimation of $Cu^{+\,+}$ with thiosulphate.

$$Cu^{+\,+} + I^{-}Cu_{2}I_{2} + I_{2}, I_{2} + S_{2}O_{3}^{-}
ightarrow S_{4}O_{6}^{-} + I^{-}$$

Starch used as indicator near the end point which form blue colour complex with $I_3^{\,-}$. The blue colour disappears when

When 159.50g of $CuSO_4$ in a solution is reacted with KI, then the liberated iodine required 100 ml 1 M $Na_2S_2O_3$ for complete reaction, then what is the percentage purity of sample used in making the solution.

A. $10\,\%$

 $\mathsf{C.}\,5\,\%$

D. 30~%

Answer: A

Watch Video Solution

6. All titration which involves the direct titration of lodine with a reducing agent are grouped under lodimetry. Iodimetry is employed to determine the strength of reducing agent such as sodium thio sulphate $I_2+2Na_2S_2O_3\to 2I^-+S_4O_6^-$

If iodine is liberated as a result of chemical reaction involving oxidation of an idodide ion by a strong oxidizing agent in neutral or acidic medium the liberated iodine is then titrated with reducing agent. This titration is called lodometry. Todometry is used to estimate the strength of oxidizing agent. For example the estimation of $Cu^{\,+\,+}$ with thiosulphate.

$$Cu^{+\,+} + I^{\,-}Cu_2I_2 + I_2, I_2 + S_2O_3^{\,-} \,
ightarrow S_4O_6^{\,-} + I^{\,-}$$

Starch used as indicator near the end point which form blue colour complex with $I_3^{\,-}$. The blue colour disappears when

A. 1 N B. 5.6 volume

required 10 mL of 1 N hypo . Thus H_2O_2 is :

D. All are correct

C. $17qL^{-1}$

Answer: D

Column - I (Reaction)

Practice Sheet Exercise Ii Level Ii Advanced Matrix Matching Type Questions

Column-II(Eq wt)

10 mL of H_2O_2 solution on treatment with KI and titration of liberated I_2

- A) $NH_3 \rightarrow NO_3^-$ P)M/3
 - B) $FeC_2O_4 o Fe^{3+} + 2CO_3^{2-}$ Q)M/6C) $H_2SO_5 \rightarrow S_8$ R)M/8
 - D) $KMnO_4 \rightarrow Mn^{2+}$ S)M/5T) reducing agent

Column - I (Reaction)

Column-II(Eq wt)

A) $KMnO_4 \xrightarrow{H^+} Mn^{+2}$ P)M/2

2. B) $MgC_2O_4
ightarrow Mg^{2+} + CO_2$ Q)M/5

C) $K_2Cr_2O_7 \to Cr^{3+}$ R)M/6

D) $CrO_5 \rightarrow Cr_2O^3$ S)M/3

T) Oxidising agent

Watch Video Solution

Match following 3. the columns

Column-I

Column-II

- A) Equivalent w.t $=\frac{\text{Mol.w.t}}{33}$
- B) Equivalent w.t = $\frac{\text{Mol.w.t}}{27}$
- C) Equivalent w.t = $\frac{\text{Mol.w.t}}{28}$
- D) Equivalent w.t = $\frac{\text{Mol.w.t}}{24}$

- P) When CrI₃ oxidies into Cr₂O₇²⁻ and IO₄⁻
- Q) When Fe(SCN)2 oxidies in to Fe+3, SO4-2, CO32- and NO3-
- R) When NH₄ SCN oxidies into SO₄⁻²,CO₃⁻²,NO₃
- S) When As₂S₃ oxidies into AsO₃⁻ and SO₄²

4. Calculate the number of electrons lost in the following change :

 $Fe + H_2O
ightarrow Fe_3O_4 + H_2$

5. Calculate the number of moles of Sn^{2+} ion oxidise by 1 mole of $K_2Cr_2O_7$ in acidic medium.

6. For the reaction, $M^{x+}+MnO_4^-\to MO_3^-+Mn^{2+}+1/2O_2$ if one mole of MnO_4^- oxidises 1.67 moles of M^{x+} to MO_3^- then the value of x in the reaction is?

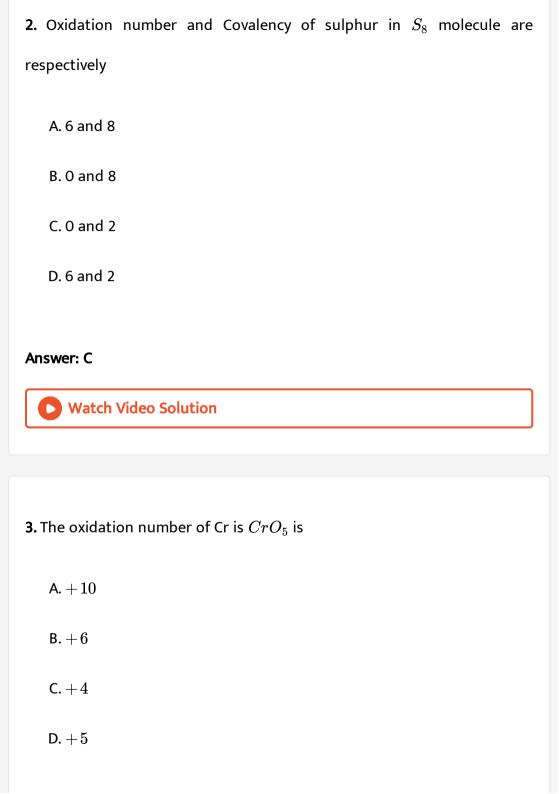
7. If $K_2Cr_2O_7$ is source of $Cr_2O_7^{2-}$, what is the normality of solution containing 4.9 g of $K_2Cr_2O_7$ in 0.1 litre of solution ?

Watch Video Solution

Additional Practice Exercise Level I Main Straight Objective Type Questions

1. If three electrons are lost by Mn^{3+} , its final oxidation state would be

A. 0


B. + 6

 $\mathsf{C.} + 2$

D.+4

Answer: B

Answer: B

Watch Video Solution

- **4.** Oxidation number of iron in $Na_2igl[Fe(CN)_5NOigr]$
 - A. + 2
 - B.+3
 - C. + 1
 - D. 0

Answer: A

- 5. Sum of the oxidation numbers of carbon in acetaldehyde is
 - A.-2

7. The compound formed in the brown ring test has the formula $\left[Fe(H_2O)_5NO\right]SO_4$. The oxidation state of iron in it is

A. + 1

B. + 2

 $\mathsf{C.} + 3$

D. zero

Answer: A

- **8.** In the reaction of chlorine with dry slaked lime, the oxidation number of chlorine changes
- i) from -1 to +1
- ii) from +1 to -1
- iii) from zero to -1

iv) from zero to +1

The correct combination i

A. ii & iii are correct

B. iii & iv are correct

C. i & ii are correct

D. All are correct

Answer: B

Watch Video Solution

9. Oxidation numbers of sodium, mercury in sodium amalgam are

A. zero, zero

B. +1. -1

C. -2, +2

D. 0, +1

Answer: A

Watch Video Solution

10. Chlorine is passed into dilute cold KOH solution. What are the oxidation numbers of chlorine in the products formed ?

A.
$$-1, +5$$

$$B.-1, +3$$

$$C. +1, +7$$

$$D. +1, -1$$

Answer: D

Watch Video Solution

11. What is the oxidation number of sulphur in $Na_2S_4O_6$?

12. The oxidation number of nitrogen in NCI_3 is A. + 3B.-3C. +3, +6D. -2, +2**Answer: B Watch Video Solution**

A. 3/2

B.2/3

C.5/2

D.2/5

Answer: C

13. What are the oxidation numbers of 'N' in NH_4NO_3 ?

A.
$$+3, -5$$

$$B. -3, +5$$

$$C. +3, +6$$

$$D. -2, +2$$

Answer: B

Watch Video Solution

14. Iron has the lowest oxidation state in

A.
$$FeSO_4$$

$$\operatorname{B.}K_{4}\big[Fe(CN)_{6}$$

$$\mathsf{C.}\,Fe(CO)_5$$

D. Feo

Answer: C

Watch Video Solution

- 15. The oxidation number of phosphorus in sodium hypophosphite is
 - $\mathsf{A.} + 3$
 - B.+2
 - C. + 1
 - D.-1

Answer: C

A. oxidation

B. reduction

C. both

D. can.t be predicted

Answer: A

Watch Video Solution

17. $MnO_2 + 4HCl
ightarrow MnCl_2 + Cl_2 + 2H_2O$, In the reaction MnO_2 acts as

A. oxidant

B. reductant

C. both

D. can.t be predicted In the reaction P, + 3OH- + 3H,O + 3H,PO, + PH,

phosphorus is undergoing 1) oxidation

Answer: A

Watch Video Solution

18. In the reaction

$$P_4 + 3OH^- + 3H_2O
ightarrow 3H_2PO_2^- + PH_3$$

phosphorus is undergoing

- A. oxidation
- B. reduction
- C. disproportionation
- D. hydrolysis

Answer: C

19. Among the following ion the one that cannot undergo disproportionation

A.
$$ClO^-$$

B. ClO_2^-

C. ClO_3^-

D. ClO_4^-

Answer: D

20. The reaction is Decomposition but it's not redox reaction

A.
$$2HgO
ightarrow 2H_2 + O_2$$

B.
$$2H_2O
ightarrow 2H_2 + O_2$$

C.
$$MgCO_3
ightarrow MgO + CO_2$$

D.
$$2KCIO_3
ightarrow 2KCI + 3O_2$$

Answer: C

Watch Video Solution

21. Which of the following is redox reaction

- A. H_2SO_4 with NaOH
- B. In atmosphere, ${\cal O}_3$ from ${\cal O}_2$ by lightning
- C. Evaporation of H_2O
- D. Nitrogen oxide from nitrogen and oxygen by lightning

Answer: D

Watch Video Solution

22. Which of the following is metal displacement reaction

A. $Zn + CuSO_4
ightarrow ZnSO_4 + Cu$

B. $2Na + 2H_2O
ightarrow 2NaOH + H_2$

C. $Ca+2H_2O
ightarrow Ca(OH)_2+H_2$

D. $2HgO
ightarrow 2Hg + O_2$

Answer: A

Watch Video Solution

23. Which of the following is a redox reaction?

A. $NaCI + KNO_3
ightarrow NaNO_3 + KCI$

B. $CaC_2O_4 + 2HCl
ightarrow CaCl_2 + H_2C_2O_4$

C. $Mg(OH)_2 + 2NH_4CI
ightarrow MgCl_2 + 2NH_4OH$

D. $Zn+2AgCN
ightarrow2Ag+Zn(CN)_2$

Answer: D

24. Which of the following is not an example of disproportionation reaction?

A.
$$Cl_2 + 2NaOH
ightarrow NaCl + NaOCI + H_2O$$

$${\rm B.}\,P_4+3NaOH+3H_2O\rightarrow PH_3+3NaH_2PO_2$$

C.
$$2NaOH + 2F_2
ightarrow 2NaF + OF_2 + H_2O$$

D.
$$2H_2O_2
ightarrow 2H_2O+O_2$$

Answer: C

Watch Video Solution

25. In the reaction $3Mg+N_2 o Mg_3N_2$

A. Magnesium is reduced

B. Magnesium is oxidized

C. Nitrogen is oxidized

D. Nitrogen is reduced

Answer: B

26. Which one of the halogn is prepared by only electrolysis method

- A. Cl_2
- B. Br_2
- $\mathsf{C}.\,F_2$
- D. I_2

Answer: C

Watch Video Solution

27. Which of the following statement is correct for a galvanic cell?

A. Reduction occurs at cathode

- B. Oxidation occurs at anode
- C. Electrons flow from anode to cathode
- D. All the statements are correct

Answer: D

Watch Video Solution

28. In Cu - Zn cell

- A. Reduction occurs at the copper cathode
- B. Oxidation occurs at the copper cathode
- C. Reduction occurs at the anode
- D. Chemical energy is converted to light energy

Answer: A

29. In a electrochemical cell

- A. Potential energy changes into kinetic energy
- B. Kinetic energy changes into potential energy
- C. Chemical energy changes into electrical energy
- D. Electrical energy changes into chemical energy

Answer: C

Watch Video Solution

- **30.** The electrode potential of an electrode is
 - A. The potential applied to the electrode
 - B. The ionization potential of the material of the electrode
 - C. The tendency of the electrode to loose or gain electrons when it is

in contact with its ions

D. The potential energy of the electrons in an electrode.

Answer: C

Watch Video Solution

31. Daniel cell is shown as

A.
$$Zn(s)$$
 $/$ Zn^{2+} (aq) $/$ $/$ Cu^{2+} (aq)

B.
$$Zn(s)$$
 / Zn^{2+} (aq) / C^{2+} (aq) / $Cu(s)$

C.
$$Cu(s)$$
 $/$ Cu^{2+} (aq) $/$ Zn^{2+} (aq) $/$ $Cu(s)$

D.
$$Cu^{2+}(aq)$$
 / $Cu(s)$ // $Zn^{2+}(aq)$ / $Zn(s)$

Answer: B

Watch Video Solution

32. Which of the following metals will not react with solution of $CuSO_4$?

A. Fe B. Zn C. Mg D. Ag Answer: D **Watch Video Solution** 33. Equal quantities of zinc are separately treated with caustic soda solution and dilute sulphuric acid. Then A. more hydrogen is liberated in the first case B. more hydrogen is liberated in the second case C. equal amount of hydrogen is liberated in both cases D. no reaction takes places **Answer: C**

34. The oxidation number of ..V.. in $Rb_4Na[HV_{10}O_{28}]$ is

A. + 3

B.+5

C. + 7

D. + 6

Answer: B

Watch Video Solution

35. A solution of 0.1M $KMnO_4$ is used for the reaction $S_2O_3^{-2}+2MnO_4^-+H_2O o MnO_2+SO_4^{2-}+OH^-$. The volume of

 $KMnO_4$ required to react 0.158gm of Na,s,o, is (MW = 158)

A. 13.33 ml

- B. 6.66 ml
- C. 3.33 ml
- D. 26.67 ml

Answer: D

Watch Video Solution

36. 0.5 g mixture of oxalic acid $(H_2C_2O_4)$ and some sodium oxalate $(Na_2C_2O_4)$ with some impurities requires 40 ml of 0.1M NaOH for complete neutralization and 6ml of 0.2 M $KMnO_4$ for complete oxidation. Calculate the % of $Na_2C_2O_4$ in the mixture

- A. 90~%
- $\mathsf{B.}\ 26.8\ \%$
- $\mathsf{C.}\,40\,\%$
- D. $50\,\%$

Answer: B

Watch Video Solution

37. A solution contains mixture of H_2SO_4 , $H_2C_2O_4$ 20 ml of this solution requires 40 ml of M/10 NaOH for neutralization and 20 ml of N/10 $KMnO_4$ for oxidation. The molarity of $H_2C_2O_4$, H_2SO_4 are

- A. 0.1, 0.1
- B. 0.1, 0.05
- C. 0.05, 0.1
- D.0.05, 0.05

Answer: D

38. 100 ml of 0.1M aqueous ferric alum solution is completely reduced with Iron to give Ferrous Ions. The volume of 0.1M acidified $KMnO_4$ solution required for complete reaction with ferrous Ions in the solution will be

- A. 60 ml
- B. 30 ml
- C. 40 ml
- D. 100 ml

Answer: C

Watch Video Solution

39. What volume of 0.2 M $Ba(MnO_4)_2$ solution is required for complete oxidation of 25 gm of 89.6% pure Fe Co, in acidic medium according to the reaction $MnO_4^- + FeCr_2O_4 \to Fe^{+3} + Cr_2O_7^{2-} + Mn^{+2}$

- A. 700 ml
- B. 175 ml
- C. 350 ml
- D. 200 ml

Answer: C

Watch Video Solution

40. A 1.0g sample of pyrolusite ore containing MnO_2 (MW = 87) was dissolved in a concentrated HCI solution and liberated Cl_2 (g) was passed through a concentrated KI solution releasing I_2 . If the liberated iodine required 16mL of 1.25 M sodium thiosulphate $(Na_2S_2O_3)$ solution, mass percentage of MnO_2 in the given sample is

- A. 43.5~%
- B. $87\,\%$
- C. 21.75~%

Answer: B

Watch Video Solution

- **41.** An equimolar mixture of ferrous oxalate & stannous chloride is treated with decinormal acidic $KMnO_4$ giving ferric, stannic & chlorate ions along with CO_2 gas. If the titre value is 225 ml. Numbers of millimoles of chlorate ions produced are
 - A. 1.5 m moles
 - B. 7.5 m moles
 - C. 3 m moles
 - D. 2.64 m moles

Answer: D

42. A 0.518 g sample of lime stone is dissolved in HCl and then the calcium is precipitated as CaC_2O_4 After filtering and washing the precipitate, it requires 40.0 mL of 0.250 N $KMnO_4$ solution acidified with H_2SO_4 to titrate it as, $MnO_4^- + H^+ + C_2O_4^{2-} \to Mn^{2+} + CO_2 + 2H_2O$ The percentage of CaO in the sample is:

- A. $54.0\,\%$
- B. 27.1~%
- C. $42\,\%$
- D. $84\,\%$

Answer: A

Watch Video Solution

43. A bottle of H_2O_2 is labelled as 10 vol H_2O_2 112ml of this H_2O_2 solution is completely titrated with 0.04M acidified $KMnO_4$ solution.

The volume of $KMnO_4$ consumed in litres is

- A. 13.6 V & 41.285 g/l
- B. 11.2 V & 0.68 g/l
- C. 5.6 V & 0.68 g/l
- D. 5.6 V & 41.285 g/l

Answer: A

Watch Video Solution

44. 10mL of a solution of H_2O_2 of 10 volume strength decolourises 100mL of $KMnO_4$ solution acidified with dil H_2SO_4 The amount of $KMnO_4$ in the given solution is

- A. 0.282g
- B. 0.564g
- C. 1.128g
- D. 0.155g

Answer: B

Watch Video Solution

45. A 5.0 mL solution of H_2O_2 libearates 0.508g of iodine from an acidified KI solution. Calculate the strength of H_2O_2 solution in terms of volume strength at STP.

A. 2.24 .V.

B. 4.48 .V.

C. 8.96 .V.

D. 5.6 .V.

Answer: B

46. When KI in acidic medium were mixed in 50ml H_2O_2 liberated I_2 requires 20ml of 0.1N hypo. What is strength of H_2O_2 .

A. 6.8 g/litre

B. 0.68 g/litre

C. 680 g/litre

D. 68.0 g/litre

Answer: B

Additional Practice Exercise Level Ii Lecture Sheet Advanced More Than One Correct Answer Type Questions

1. Which of the following are disproportionation redox changes?

A.
$$(NH_4)_2Cr_2O_7
ightarrow N_2+Cr_2O_3+4H_2O$$

B. $5H_2O_2+2ClO_2+2OH^-
ightarrow 2Cl^-+5O_2+6H_2O$

 $\mathsf{C.}\,3ClO^ightarrow ClO_3^-$

D. $2HCuCl_2 \xrightarrow{ ext{Dilution with}} Cu + Cu^{2+} + 4CI^{-} + \ + 2H^{+}$

Answer: C::D

Watch Video Solution

reaction? 2. Which correct about the one are $HgS + HCI + HNO_3 \rightarrow H_2HgCl_4 + NO + S + H_2O$

A. Hg is reduced

B. Sulphide is oxidised

C. N is reduced

D. HNO_3 is oxidant

Answer: B::C::D

3. Which of the following disproportionation reaction

A.
$$2O_3
ightarrow 3O_2$$

B.
$$4KCIO_3
ightarrow 3KCIO_4 + KCI$$

C.
$$2H_2O_2
ightarrow 2H_2O+O_2$$

D.
$$2KO_2 + 2H_2O
ightarrow 4KOH + 3O_2$$

Answer: B::C::D

Watch Video Solution

4. Which is correct about tailing of Hg?

A. It is due to Hg_2O

B. It is due to HgO

C. It is removed by $H_2 O_2$

D. It is removed by O_3

Answer: A::C

Watch Video Solution

5. 100 ml of 0.1 M NaCl and 100 ml of 0.2 MNaOH are mixed. What is the change in pH of NaCl solution ?

A. Some $KMnO_4$ is left unreacted

B. 0.02 M $Mn^{2\,+}$ ions are present in the solutions

C. K_2SO_3 is partially left unreacted

D. Newly formed $SO_4^{2\,-}\,$ has 0.05 M cocentration

Answer: A::B::D

Watch Video Solution

6. In which of the following oxidation no. of nitrogen atom is correctly matched:

A.
$$HC\underline{N}$$
 -3

B. HNC - 3

C. HOCN - 3

D. $(C_{N})_{2}$ - 2

Answer: A::B::C

Watch Video Solution

A. $H_2S_2O_7$ oleum

B. $H_2S_2O_8$ Marshall.s acid

7. Which of the following species have + 6 state with sulphur?

D. H_2SO_5 Caro.s acid

C. $Na_2S_2O_3$ hypo

Answer: A::B::D

8.	Which of the	he following	ions will	not undergo	disproportionation?

A. Cl^-

 $B. ClO_3^-.$

 $\mathsf{C.}\,ClO_4^-.$

D. ClO^-

Answer: A::B::C

Watch Video Solution

9. 150 mL $\frac{M}{10}$ $Ba(MnO_4)_2$, in acidic medium can oxidize completely

A. 150 mL 1M Fe^{+2}

B. 50 mL IM FeC_2O_4

C. 75 mL 1M $C_2 O_4^{\,-\,2}$

D. 25 mL 1M $K_2Cr_2O_7$ solution

Answer: A::B::D

Watch Video Solution

- 10. $\begin{vmatrix} COOH \\ | & and \\ COOH \end{vmatrix}$ behave is acids as well as reduing agents. Then which of the following are correct statements?
 - A. When behaves as reducing agent, then its equivalent weights are equal to half of its molecular weight respectively
 - B. 1000 ml of 1N solution of each is neutralized by 1000 mL 1N $Ca(OH)_2$
 - C. 1000 mL of 1M solution is neutralized by 1000 mL of IM $Ca(OH)_2$
 - D. 1000 mL of 1M solution is neutralized by 200 mL 2M of $KMnO_4$ in acidic medium.

Answer: B::C::D

11. Which of the following is /are correct about redox reactio?

$$\mathit{MnO_4^{\,\varTheta}} + \mathit{H^{\,\varTheta}} o \mathit{Mn^{+2}} + \mathit{S}_4\mathit{O}_6^{-2}$$

A. 1 mol of $S_2O_3^{2\,-}$ is oxidised by 8 mol of $MnO_4^{\,-}$

B. The above redox reaction with the change of pH from 4 to 10 will

have an effect on the stiochiometry of the reaction.

C. Change of pH from 4 to 7 will change the nature of the product.

D. At pH=7 $S_2 O_3^{2\,-}$ ions are oxidised to HSO_4^-

Answer: D

Watch Video Solution

Additional Practice Exercise Level Ii Lecture Sheet Advanced Linked Comprehension Type Questions

1. A redox reaction involves oxidation of reductant liberating electrons, which are then consumed by an oxidant. The sum of two half reactions give rise to net redox change. In half reaction charge and atoms are always conserved.

In the reaction: $As_2S_3 + HNO_3
ightarrow H_2AsO_4 + H_2SO_4, \ +NO$ the element oxidised is:

A.
$$Fe^{+8/3}
ightarrow Fe^{+3}+rac{1}{3}e$$

B.
$$Fe^{+8/3}
ightarrow Fe^{+2}-rac{2}{3}e$$

C.
$$\left(Fe^{+8/3}
ight)_3
ightarrow 3Fe^{+2} + 2e$$

D.
$$2{\left(Fe^{+8/3}
ight)_3}
ightarrow 3{\left(Fe^{+3}
ight)_2}+2e$$

Answer: D

Watch Video Solution

2. A redox reaction involves oxidation of reductant liberating electrons, which are then consumed by an oxidant. The sum of two half reactions

give rise to net redox change. In half reaction charge and atoms are always conserved.

In the reaction: $As_2S_3 + HNO_3
ightarrow H_2AsO_4 + H_2SO_4, \ +NO$ the element oxidised is:

- A. As only
- B. S only
- C. N only
- D. As and S both

Answer: D

3. A redox reaction involves oxidation of reductant liberating electrons, which are then consumed by an oxidant. The sum of two half reactions give rise to net redox change. In half reaction charge and atoms are always conserved.

In the reaction: $As_2S_3 + HNO_3
ightarrow H_2AsO_4 + H_2SO_4, \ +NO$ the element oxidised is:

- A. 1
- B. 2
- C. 3
- D. 4

Answer: B

- **4.** Iodine titrations: Compounds containing iodine are widely used in titrations, commonly known as iodine titration. It is of two kinds:
- (i) lodometric titrations (ii) lodimetric titrations.
- (i) lodometric titrations: It is nothing but an indirect method of estimating the iodine. In this type of titration, an oxidising agent is made to react with excess of KI, in acidic medium or, basic medium in which I_2

oxidises into L. Now the liberated I_2 can be titrated with $Na_2S_2O_3$.

solution.

$$KI \xrightarrow{ ext{Oxidising Agent}} I_2 \xrightarrow{Na_2.S_2O_3\,/\,H^{\,+}} I^{\,-} + Na_2S_4O_6$$

Although solid I_2 is black and insoluble in water, but it converts into soluble I_3 ions

$$I_2(s) + I \Leftrightarrow I_3^- \ _{ ext{Black}}$$

Starch is used as indicator near the end point or equivalence point. Even small amount of I_2 molecules, gives blue colour with starch. The completion of the reaction can be detected when blue colour disappears at the and point. In iodimetric titration, the strength of reducing agent is determined by reacting it with I_2

When 79.75 g of $CuSO_4$ sample containing inert impurity is reacted with KI, the liberated I, is reacted with 50 mL (1M) $Na_2S_2O_3$ in basic medium, where it oxidises into SO_4^{2-} ions, and I_2 reduces into I^- then what will be the % purity of $CuSO_4$ in sample ? <

A. $60\,\%$

 $\mathsf{B.}~80~\%$

C. $50\,\%$

D. 95%

Answer: B

- **5.** Iodine titrations: Compounds containing iodine are widely used in titrations, commonly known as iodine titration. It is of two kinds:
- (i) lodometric titrations (ii) lodimetric titrations.
- (i) lodometric titrations : It is nothing but an indirect method of estimating the iodine. In this type of titration, an oxidising agent is made to react with excess of KI, in acidic medium or, basic medium in which I_2 oxidises into L. Now the liberated I_2 can be titrated with $Na_2S_2O_3$. solution.

$$KI \xrightarrow{ ext{Oxidising Agent}} I_2 \xrightarrow{Na_2 \cdot S_2O_3 \, / \, H^+} I^- + Na_2S_4O_6$$

Although solid I_2 is black and insoluble in water, but it converts into soluble I_3 ions

$$I_2(s) + I \Leftrightarrow I_3^- \ _{
m Dark \ brown}$$

Starch is used as indicator near the end point or equivalence point. Even small amount of I_2 molecules, gives blue colour with starch. The

completion of the reaction can be detected when blue colour disappears at the and point. In iodimetric titration, the strength of reducing agent is determined by reacting it with I_2

When 214 g of KIO_3 reacts with excess of KI in presence of H^+ then it produces I_2 Now I_2 is completely reacted with 1 M $Na_2S_2O_3$ solution in basic medium, where it converts into SO_4^{-2} ions. Then what volume of $Na_2S_2O_3$ is needed to react the end point of the reaction?

- A. 500 ml
- B. 800 ml
- C. 1500 ml
- D. 750ml

Answer: D

View Text Solution

6. Iodine titrations: Compounds containing iodine are widely used in titrations, commonly known as iodine titration. It is of two kinds:

- (i) lodometric titrations (ii) lodimetric titrations.
- (i) lodometric titrations : It is nothing but an indirect method of estimating the iodine. In this type of titration, an oxidising agent is made to react with excess of KI, in acidic medium or, basic medium in which I_2 oxidises into L. Now the liberated I_2 can be titrated with $Na_2S_2O_3$. solution.

$$KI \xrightarrow{ ext{Oxidising Agent}} I_2 \xrightarrow{Na_2 \cdot S_2O_3 \, / \, H^+} I^- + Na_2S_4O_6$$

Although solid I_2 is black and insoluble in water, but it converts into soluble I_3 ions

$$I_2(s) + I \Leftrightarrow I_3^- \ _{
m Dark\ brown}$$

Starch is used as indicator near the end point or equivalence point. Even small amount of I_2 molecules, gives blue colour with starch. The completion of the reaction can be detected when blue colour disappears at the and point. In iodimetric titration, the strength of reducing agent is determined by reacting it with I_2

A solution containing Cu^{+2} and $C_2O_4^{-2}$ ions M which on titration with M/10 $KMnO_4$ requires 50 mL. The resulting solution is neutralized with K_2CO_3 then treated with excess of KI. M The liberated I_2 required 25 mL

M/10 $Na_2S_2O_3$ in acidic solution, then what is the difference of the number of m mole of $Cu^{+2} \,$ and $\, C_2O_4^{-2}$ ions in the solution ?

A. 40

B. 10

C. 30

D. 50

Answer: B

View Text Solution

Additional Practice Exercise Level Ii Lecture Sheet Advanced Matrix Matching **Type Questions**

1. Match the following:

Column-I

A) CH₄

B) CO

Column-II i) E. Wt. = M/8

ii) E. Wt. = M/2

 $Q) C^{-4} \longrightarrow C^{4+}$

R) $C^{3+} \longrightarrow C^{4+}$

Column-III

P) $C^{2+} \longrightarrow C^{4+}$

C) C₂O₄²⁻

 $D) C_2H_4$

iii) E. Wt = M/12

S) $C^{-2} \longrightarrow C^{4+}$

2. Match the n - factor of following reactant:

Column-H

A) $As_2S_3 \longrightarrow AsO_4^{3-} + SO_4^{2-}$ (half reaction)

P) 10 Q) 4

B) $Bi_2S_3 \longrightarrow Bi^{+5} + S$ (half reaction)

C) $Mn(NO_3)_2 \longrightarrow MnO_4^{2-} + NO_3^-$ (half reaction) R) 2/3 D) $5P_2H_4 \longrightarrow 6PH_3 + P_4H_3$

S) 6/5

E) $MnO_4^{2-} + H_2O \longrightarrow MnO_2 + MnO_4^{-} + OH^{-}$

Column-L

T) 28

Watch Video Solution

Additional Practice Exercise Level Ii Lecture Sheet Advanced Integer Type Questions

- **1.** A^{n+1} is maximum oxidised by acidified $KMnO_4$ solution into AO_3^- If 2.68 mmoles of $A^{+\,(\,n\,+\,1\,)}$ requires 32.16 mL of a 0.05 M acidified $KMnO_4$ solution for complete oxidation, value of n is
 - **Watch Video Solution**

2. 2 mole, equimolar mixture of $Na_2C_2O_4$ and $H_2C_2O_4$ required V_1L of 0.1 M $KMnO_4$ in acidic medium for complete oxidation. The same amount of the mixture required V_2L of 0.1 M NaOH for neutralization. The ratio of V_1 to V_2 is x:y, then the value of x + y is (x and y are integers)

Watch Video Solution

3. 0.01 mole of FeS_n (iron (II) sulphide) required 0.06 mole of AO_4^{3-} for complete oxidation. The species formed are FeO, SO_2 and A^{2+} . Calculate the value of n.

4. A solution containing 2.68×10^{-3} mol of A^{n+} ions requires 1.61×10^{-3} mol of MnO_4^- for the complete oxidation of A^{n+} to AO_3^- in acidic medium. What is the value of n ?

5.1 mole of IO_3^- ions is heated with excess of I^- ions in the presence of acidic conditions as per the following equation $IO_3^- + I^- \to I_2$. How many moles of acidified hypo solution will be required toreact completley with I_2 thus produced ?

6. 1 lit of M/10 $Ba(MnO_4)_2$, in acidic medium can be oxidised completely with 1/6 lit of x M ferric oxalate. The value of x is

7. A bottle of H_2O_2 is labelled as 10 vol H_2O_2 112ml of this H_2O_2 solution is completely titrated with 0.04M acidified $KMnO_4$ solution. The volume of $KMnO_4$ consumed in litres is

8. A metal oxide has the fomula M_2O_3 . It can be reduced by hydrogen to give free metal and water. 0.16g of the metal requires 6mg of H_2 for complete reduction. The atomic mass of the metal is .n? times the atomic number of calcium. The value of .n. is

Watch Video Solution

Additional Practice Exercise Practice Sheet Advanced More Than One Correct **Answer Type Questions**

- reaction, $KO_2 + H_2O + CO_2 \rightarrow KHCO_3 + O_2$ For the mechanism of reaction suggests that:
 - A. Acid-base reaction
 - B. Disproportionation reaction
 - C. Hydrolysis
 - D. Redox change

Answer: A::B::C::D

2. Which of the following can be	e used as oxidant and	reductant both?
----------------------------------	-----------------------	-----------------

- A. HNO_2
- $\mathsf{B.}\,SO_2$
- $\mathsf{C}.\,O_2$
- D. *CO*

Answer: A::B::C::D

3. Which molecules represented by the bold atoms show their highest oxidation state?

- A. $H_2 \underline{S}_2 O_8$
- B. $\underline{P_4}O_{10}$

$\boldsymbol{\mathcal{C}}$	F_{\sim}	\cap
C.	\mathbf{r}_2	$\boldsymbol{\smile}$

D. $\underline{Mn_2}O_7$

Answer: A::B::D

Watch Video Solution

- **4.** Which one are not correct about $CH_2=\mathrm{CC}l_2$?
 - A. Both carbon are in +2 oxidation state
 - B. Both carbon are in -2 oxidation state
 - C. One carbon has +2 and other has -2 oxidation state
 - D. The average oxidation number of carbon is zero

Answer: A::B

Watch Video Solution

5. LiA/H_4 is used as :

A. an oxidant

B. a reductant

C. a mordant

D. water softner

Answer: B

Watch Video Solution

6. Which of the following disproportionation reaction

A.
$$F_2 + H_2O
ightarrow HOF + HF$$

$${\tt B.}\,2HCHO+NaOH\rightarrow HCOONa+CH_3OH$$

C.
$$P_{4\,(\,s\,)}\,+3NaOH+3H_2O
ightarrow PH_3+3NaH_2PO_2$$

D.
$$2NO_2 + 2KOH
ightarrow KNO_2 + KNO_3 + HH_2O$$

Answer: B::C::D

Watch Video Solution

7. Select the correct statements:

- A. Oxidation number of oxygen in O_2^+ is + $\frac{1}{2}$
- B. Oxidation number of oxygen in O_2^- is $-rac{1}{2}$
- C. Oxidation number of Cr in K_3CrO_8 is +5
- D. Average oxidation number of Br in tribromooctaoxide (Br_3O_8) is

$$+\frac{18}{3}$$

Answer: A::B::C

Watch Video Solution

8. Which molecules represented by the bold atoms show their highest oxidation state?

A. F_2O

B. H_2S

C. PH_3

D. N_2H_4

Answer: B::C

Watch Video Solution

9. Identify the species in which iron has lowest oxidation state?

- A. $Fe(CO)_5$
 - B. $Fe_2(CO)_{q}$
 - C. $Fe_{0.94}O_1$

D. $K_4igl[Fe(CN)_6igr]$

Answer: A::B

Watch Video Solution

10. The metal undergoing disproportionation are: Which of the following
species have peroxide ion or peroxy linkage?
A. Sn
B. Na
C. Cu
D. Ca
Answer: A::C
Answer: A::C
Answer: A::C Watch Video Solution
Watch Video Solution
Watch Video Solution 11. Which of the following species have peroxide ion peroxy linkage?

D. $H_2S_2O_8$

Answer: A::B::D

Watch Video Solution

12. Which of the following statements are not true about the following decomposition reaction?

$$2KCl_{3(s)}
ightarrow 2KCl_{(s)} + 3O_{2(g)} \uparrow$$

- A. Potassium is undergoing oxidation
- B. Chlorine is undergoing oxidation
- C. Oxygen is reduced
- D. None of the species are undergoing oxidation or reduction

Answer: A::B::C::D

Watch Video Solution

13. In the chemical change $aN_2H_4+bBrO_3^- o aN_2+bBr^-+6H_2O$, answer the following questions:

The element oxidised and reduced in the reaction are respectively:

A. N_2H_4, BrO_3^-

B. N,Br

C. H,Br

D. $BrO_3^-\,,N_2H_4$

Answer: B

answer the following questions:

14. In the chemical change $aN_2H_4+bBrO_3^ightarrow aN_2+bBr^-+6H_2O$,

Thenumber of electrons lost or gained during the redox change are:

A. 8

B. 10

C. 12

D. 6

Answer: C::D

Watch Video Solution

15. In the chemical change : $aN_2H_4 + bBrO_3^-
ightarrow aN_2 + bBr^- + 6H_2O$

, answer the following questions:

The equivalent weight of N,H, in the above reaction is:

A. 8

B. 10.6

C. 16

D. 6.4

Answer: A

Watch Video Solution

16. Some amount of ..20V.. H_2O_2 is mixed with excess of acidifeid solution KI. The iodine so liberated required 200ml of 0.IN $Na_2S_2O_3$ for tritration. The volume of H_2O_2 solution is

- A. 11.2 ml
- B. 37.2 ml
- C. 5.6ml
- D. 22.4 ml

Answer: C::D

solution:

Watch Video Solution

17. Some amount of ..20V.. H_2O_2 is mixed with excess of acidifeid solution KI. The iodine so liberated required 200ml of 0.IN $Na_2S_2O_3$ for tritration. The mass of $K_2Cr_2O_7$ needed to oxidises the above volume of H_2O_2

A. 3.6 g
B. 0.8 g
C. 4.2 g
D. 0.98 g
Answer: D
Watch Video Solution
18. Some amount of20V $H_2 {\cal O}_2$ is mixed with excess of acidifeid solution
KI. The iodine so liberated required 200ml of 0.IN $Na_2S_2O_3$ for tritration.
The volume of ${\cal O}_2$ at STP that would be linerated above ${\cal H}_2{\cal O}_2$ solution :
A. 56 ml
B. 112 ml
C. 168 ml
D. 224 ml

Answer: B

Watch Video Solution

Match

19.

Column-I A) $(NH_4)_2Cr_2O_7 \rightarrow N_2 + Cr_2O_3 + 4H_2O_4$

B) $PbO_2 + H_2O \rightarrow PbO + H_2O_2$

C) $Cr_2O_3 + 2AI \rightarrow Al_2O_3 + 2Cr$

D) $Cl_2 + 2OH^- \rightarrow ClO^- + Cl^- + H_2O$

the

Column-II

following

columns

P) Intermolecular redox reaction

Q) Disproportionation

R) Intramolecular redox reaction

S) Metal displacement

Watch Video Solution

20. Match the following.

Column-I Redox change Column-II Equivalent weight

A) $MnO_2 \rightarrow Mn_2O_3$

i) $E_{MnO_2} = M/2$

B) $MnO_2 \rightarrow MnSO_4$

ii) $E_{MnO_2} = M/4$

C) $MnO_2 \rightarrow Mn$

iii) $E_{MnO_2} = M/1$

D) $KMnO_4 \rightarrow Mn_2O_3$

 $E_{MnO_{a}^{-}} = M/4$

Column-III

Number of electrons involvedin change

P) 4

Q) 2

R) 3

S) 8

Watch Video Solution

21. The formula of a hydrated salt of barium is $BaCl_2$. xH_2O If 1.936g of this compound gives 1.846 g of anhydrous $BaSO_4$ upon treatment with H_2SO_4 calculate x.

22. Consider a titration of potassium dichromate solution with acidified Mohr.s salt. The number of moles of Mohr.s salt required per mole of dichromate is:

23. How many moles of Mg can reduce one mole of dil. HNO_3 into NH_4^+

ions?

24. Number of per oxide bonds in per xenate ion $\left[XeO_6\right]^{4-}$ is :

25.
$$aH_2S+bHNO_3 o cS+dNO+eH_2O.$$
 The value of $\dfrac{[(c imes d)-e]}{(a-b)}=$ _____

27. Number of electrons taken up by nitrogen atom when a NO^+ ion is

26. Oxidation number of .S. in $\left(CH_3\right)_2$ SO is:

Niew Text Solution

reduced to NH_2OH is:

29. The number of electrons lost during the oxidation of Cr^{3+} to $Cr_2O_7^{2-}$ are

30. $KMnO_4$ oxidizes X^{n+} to XO_3^- and it self changing to Mn+2is acid medium 2.68×10^{-3} moles of requires mole of. The value of .n. is

31. The coefficient of PH, in the following balanced equation will be:

$$P_{4\,(\,s\,)}\,+OH^{\,-}\, o PH_{3\,(g)}\,+HPO_{2\,(\,ag\,)}^{\,-}$$

Watch Video Solution

thionate ion) are

Watch Video Solution

33. Oxidation number of chlorine in $NOClO_4$ is:

35. How many species will have multiples of .2. in the following equation after balancing? Balanced equation must contain least integral multiples.

34. The value of 'n' in the molecular formula $Be_nAl_2Si_6O_{18}$ is

32. Oxidation state of terminal sulphur atoms in $S_4 O_6^{2-}$ 02 (tetra

 $CrSCN^{2+} + BrO^{-} + OH^{-}
ightarrow Br^{-} + NO_{3}^{-1} + CO_{3}^{2-} + SO_{4}^{2-} + CrO_{3}^{2-}$

