

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 12

Mathemetic Single Choice

1. $f(x)=\max\Big\{\frac{x}{n},|\sin\pi x|\Big\}, n\in N$. has maximum points of non-differentiability for $x\in(0,4)$, Then n cannot be (A) 4 (B) 2 (C) 5 (D) 6

2. The value of the expression

$$rac{2(\sin 1^{\circ} + \sin 2^{\circ} + \sin 3^{\circ} + + \sin 89^{\circ})}{2(\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + + \cos 44^{\circ}) + 1}$$

is equal to

- A. $\sqrt{2}$
- $\mathsf{B.}\;\frac{1}{\sqrt{2}}$
- c. $\frac{1}{2}$

D.0

Answer: A

3. The sum of all real values of x satisfying the equation

$$\left(x^2 - 5x + 5\right)^{x^2 + 4x - 60} = 1$$
 is:

- A. 6
- B. 5
- C. 3
- D.-4

Answer: C

4. If $C_0, C_1, C_2, \ldots, C_n$ are binomial coefficients, (where $C_r = \cdot^n C_r$), then the value of

$$C_0 - C_1 + C_2 - C_3 + \ + (\,-1)^n C_n$$
 is equal to

A.
$$2^{n-1}$$

$$B. 2^n$$

Answer: C

5. If $f(x) = \cos x \cos 2x \cos 4x \cos(8x)$. $\cos 16x$ then

find
$$f'\left(\frac{\pi}{4}\right)$$

A.
$$\sqrt{2}$$

$$\mathsf{B.}\;\frac{1}{\sqrt{2}}$$

C. 1

D. none of these

Answer: A

Watch Video Solution

6. $(p
ightarrow q) \wedge (q
ightarrow - p)$ is equivalent to

C.
$$\sim p$$

Answer: C

Watch Video Solution

|Re(z)|+|Im(z)|=4 then |z| can't be

A.
$$\sqrt{\frac{1}{3}}$$

$$\sqrt{10}$$

C. $\sqrt{7}$

D. $\sqrt{8}$

Answer: C

8.
$$\int \frac{\ln\left(\frac{x-1}{x+1}\right)}{x^2-1} dx$$
 is equal to

A.
$$rac{1}{2}igg(\lnigg(rac{x-1}{x+1}igg)igg)^2+C$$

B.
$$\frac{1}{2} \left(\ln \left(\frac{x+1}{x-1} \right) \right)^2 + C$$

C.
$$\frac{1}{4} \left(\ln \left(\frac{x-1}{x+1} \right) \right)^2 + C$$

D.
$$\frac{1}{4} \left(\ln \left(\frac{x+1}{x-1} \right) \right)^2 + C$$

Answer: C

- **9.** A circle of radius 2 units is touching both the axes and a circle with centre at (6,5). The distance between their centres is
 - A. 8 units
 - B. 5 units
 - C. 7 units
 - D. none of these

Answer: B

10. The value of the expression
$$\cot^{-1}\left(\frac{1}{2}\right) + \cot^{-1}\left(\frac{9}{2}\right) + \cot^{-1}\left(\frac{25}{2}\right) + \cot^{-1}\left(\frac{49}{2}\right)$$

upto +n terms is

A.
$$\tan^{-1} 2n$$

$$\mathsf{B.}\tan^{-1}(2n-1)$$

C.
$$\tan^{-1} n$$

D.
$$\tan^{-1} 2n - \tan^{-1} 1$$

Answer: A

11. If
$$egin{array}{c|ccc} x-4 & 2x & 2x \ 2x & x-4 & 2x \ 2x & 2x & x-4 \ \end{array} = (A+Bx)(x-A)^2$$

then the ordered pair (A,B) is equal to

A.
$$(4, 5)$$

B.
$$(-4, -5)$$

$$\mathsf{C.}\,(\,-4,3)$$

D.
$$(-4, 5)$$

Answer: D

12. A rectangle with sides of lengths (2n-1) and (2m-1) units is divided into squares of unit length. The number of rectangles which can be formed with sides of odd length, is

A.
$$m^2n^2$$

B.
$$mn(m + 1)(n + 1)$$

C.
$$4(m+n)-1$$

D. none of these

Answer: A

13. For a group of 50 male workers, the mean and the standard deviation of their daily wages are Rs. 630 and Rs. 90 respectively and for a group of 40 female workers these are Rs. 540, and Rs. 60 respectively. Then, the standard deviation of all these 90 workers is

- A. 60
- B. 70
- C. 80
- D. 90

Answer: D

14. If
$$\lim_{x\to 0} \frac{\{(a-n)nx-\tan x\}\sin nx}{x^2}=0$$
, where n

is non-zero real number, then a is equal to

A. 0

B.
$$\frac{n+1}{n}$$

 $\mathsf{C}.\,n$

$$D. n + \frac{1}{n}$$

Answer: D

Watch Video Solution

15. Find the point at which the slope of the tangent of the function $f(x) = e^x \cos x$ attains minima, when

$$x\in [0,2\pi]$$

A.
$$x=\pi$$

$$\mathrm{B.}\,x=\frac{\pi}{4}$$

$$\operatorname{C.} x = \frac{3\pi}{4}$$

$$\mathrm{D.}\,x=\frac{3\pi}{2}$$

Answer: A

Watch Video Solution

16. There are 5 machines. Probability of a machine being faulted is $\frac{1}{4}$. Probability of atmost two machines is faulted, is $\left(\frac{3}{4}\right)^3 k$, then value of k is

A.
$$\frac{17}{8}$$

B.
$$\frac{17}{4}$$

c.
$$\frac{17}{2}$$

D. 4

Answer: A

Watch Video Solution

 $\overrightarrow{r}=7\hat{i}+10\hat{j}+13\hat{k}+\overrightarrow{s}\left(2\hat{i}+3\hat{j}+4\hat{k}
ight)$

and

 $\overrightarrow{r}=3\hat{i}+5\hat{j}+7\hat{k}+tig(\hat{i}+2\hat{j}+3\hat{k}ig)$ is

A.
$$\hat{i}+\hat{j}-\hat{k}$$

B.
$$2\hat{i}-\hat{j}+4\hat{k}$$

C.
$$\hat{i}-\hat{j}+\hat{k}$$

D.
$$\hat{i}+\hat{j}+\hat{k}$$

Answer: D

Watch Video Solution

18. The solution of the differential equation

$$rac{dy}{dx} + x(2x+y) = x^3(2x+y)^3 - 2$$
 is (C being an arbitrary constant)

A.
$$\dfrac{1}{2x+xy}=x^2+1+Ce^x$$

B.
$$\frac{1}{(2x+y)^2} = x^2 + 1 + Ce^{x^2}$$

C.
$$rac{1}{2x+y} = x^2 + 1 + Ce^{-x^2}$$

D.
$$\dfrac{1}{\left(2x+y\right)^2}=x^2+1+Ce$$

Answer: B

19. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are mutually perpendicular vectors

having magnitudes 1,2,3 respectively, then
$$\left[\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \quad \overrightarrow{b}-\overrightarrow{a}\overrightarrow{c}\right]=$$

Answer: C

Watch Video Solution

20. The length of the chord of the parabola $x^2=4y$ having equations $x-\sqrt{2}y+4\sqrt{2}=0$ is

- A. $6\sqrt{3}$ units
- B. $8\sqrt{2}$ units
- C. $2\sqrt{11}$ units
- D. $3\sqrt{2}$ units

Answer: A

Watch Video Solution

Mathemetic Subjective Numerical

1. The area bounded by the curves $y=\ln x$, $y=\ln |x|$, $y=\ln x$ and $y=\ln |x|$ is

Watch Video Solution

2. The number of elements in the set $ig\{(a,b)\!:\!a^2+b^2=50,a,b\in Zig\}$ where Z is the set of all integers, is

$$\int_{0}^{rac{1}{2}} rac{1+\sqrt{3}}{\left(\left(x+1
ight)^{2}\left(1-x
ight)^{6}
ight)^{rac{1}{4}}} dx$$
 is _____.

4. If
$$\sum_{k=1}^{\infty} rac{1}{(k+2)\sqrt{k}+k\sqrt{k+2}} = rac{\sqrt{a}+\sqrt{b}}{\sqrt{c}}$$
, where

 $a,b,c\in N$ and $a,b,c\in [1,15]$, then a + b + c is equal

to

5. Consider the equation

 $\log_{\sqrt{2}\sin x}(1+\cos x)=2,$ $x\in\left[-rac{\pi}{2},rac{3\pi}{2}
ight]$.If the sum of the roots is $rac{p\pi}{q}$, where G.C.D (p,q) = 1 then the value of p^2+q^2 is

