

MATHS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 13

Mathematics

1. If the 2^{nd} , 5^{th} and 9^{th} terms of a non-constant arithmetic progression are in geometric progression, then the common ratio of this geometric progression is

- A. 1
- B. $\frac{7}{4}$
- C. $\frac{8}{5}$ D. $\frac{4}{3}$

Answer: D

Watch Video Solution

2. All possible numbers are formed using the digits 1, 1, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is:

- A. 175
- B. 162
- C. 180
- D. 160

Answer: C

Watch Video Solution

3. Let w denote the words in the english dictionary.

Define the relation R by: R = $\{(x,y) \in W imes W \mid$

words x and y have at least one letter in common).

Then R is: (1) reflexive, symmetric and not transitive (2)

reflexive, symmetric and transitive (3) reflexive, not symmetric and transitive (4) not reflexive, symmetric and transitive

A. reflexive, symmetric and not transitive

B. reflexive, symmetric and transitive

C. reflexive, not symmetric and transitive

D. not reflexive, symmetric and transitive

Answer: A

4. The value of a for which

$$ax^{2} + \sin^{-1}(x^{2} - 2x + 2) + \cos^{-1}(x^{2} - 2x + 2) = 1$$

has a real solution is

A.
$$-rac{2}{\pi}$$

B.
$$\frac{2}{\pi}$$

$$\mathsf{C.}-\frac{\pi}{2}$$

D.
$$\frac{\pi}{2}$$

Answer: C

5. The general solution of the differential equation

$$(2x-y+1)dx + (2y-x+1)dy = 0$$
 is -

A.
$$x^2 + y^2 + xy - x + y = c$$

B.
$$x^2 + y^2 - xy + x + y = c$$

C.
$$x^2 - y^2 + 2xy - x + y = c$$

D.
$$x^2 - y^2 - 2xy + x - y = c$$

Answer: B

6. The mean of five numbers is 0 and their variance is 2 .If three of those numbers are -1,1 and 2, then the other two numbers are

- A.-5 and 3
- B.-4 and 2
- $\mathsf{C.} 3 \; \mathsf{and} \; \mathsf{1}$
- $\mathsf{D.}-2$ and O

Answer: D

7. The first integral term in the expansion of $\left(\sqrt{3}+2^{\frac{1}{3}}\right)^9$, is

A.
$$2^{nd}$$
term

$${\sf B.}~3^{rd}~{\sf term}$$

C.
$$4^{th}$$
 term

D.
$$5^{th}$$
 term

Answer: C

8. If

$$\cos lpha + \cos eta = a, \sin lpha + \sin eta = b \ ext{ and } \ lpha - eta = 2 heta,$$

then
$$\frac{\cos 3\theta}{\cos \theta} =$$

A.
$$a^2 + b^2 - 2$$

B.
$$a^2 + b^2 - 3$$

C.
$$3 - a^2 - 3$$

D.
$$\frac{a^2+b^2}{4}$$

Answer: B

9. If the image of the point (1,-2,3) in the plane $2x+3y-z=7 \text{ is the point } (\alpha,\beta,\gamma) \text{, then the value}$ of $\alpha+\beta+\gamma$ is equal to

$$A.-6$$

B. 10

C. 8

D.-4

Answer: A

10. The value of
$$\int \frac{dx}{x(x^n+1)}$$
 is equal to

A.
$$\frac{1}{n}\log_e\left(\frac{x^n}{x^n+1}\right)+c$$

$$\mathsf{B.} \; \frac{1}{n} \log_e \left(\frac{x^n + 1}{x^n} \right) + c$$

$$\mathsf{C.}\log_e\!\left(rac{x^n}{x^n+1}
ight)+c$$

D. None of these

Answer: A

Watch Video Solution

11. If f is a function defined as

$$f(x)=x^2-x+5, f\!:\!\left(rac{1}{2},\infty
ight) o \left(rac{19}{4},\infty
ight)$$
, and

g(x) is its inverse function, then g'(7) is equal to

A.
$$-\frac{1}{13}$$

B.
$$\frac{1}{13}$$

$$\mathsf{C.}\;\frac{1}{3}$$

D.
$$-\frac{1}{3}$$

Answer: C

Watch Video Solution

12. Let α and β be two roots of the equation

 $x^2+2x+2=0$. Then $lpha^{15}+eta^{15}$ is equal to

A.
$$-512$$

B. 128

C. 512

D. - 256

Answer: D

13. The value of f (0), such that
$$f(x)=rac{1}{x^2}(1-\cos(\sin x))$$
 can be made continuous at x=0 , is

B. 2

c. $\frac{1}{4}$

D. 4

Answer: A

Watch Video Solution

14. The locus of the centre of the circle which cuts the circle $\,x^2+y^2-20x+4=0\,$ orthogonally and touches the line x=2 is

A.
$$y^2 = 16x + 4$$

$$B. x^2 = 16y$$

C.
$$x^2 = 16y + 4$$

D.
$$y^2 = 16x$$

Answer: D

Watch Video Solution

15. The parabolas $y^2=4x$ and $x^2=4y$ divide the square region bounded by the lines x=4, y=4 and the coordinate axes. If $S_1,\,S_2,\,S_3$ are the areas of these parts numbered from top to bottom, respectively, then

A. 2:1:2

B. 1:1:1

C. 1: 2: 1

D. 1:2:3

Answer: B

Watch Video Solution

16. The value of

$$\lim_{x o\infty}\,rac{2x^{1/2}+3x^{1/3}+4x^{1/4}+....\,nx^{1/n}}{\left(2x-3
ight)^{1/2}+\left(2x-3
ight)^{1/3}+....\,+\left(2x-3
ight)^{1/n}}$$
 is

A. $\sqrt{2}$

B. 2

$$\mathsf{C.} \; \frac{1}{\sqrt{3}}$$

D. 0

Answer: A

Watch Video Solution

17. If $f(x)=x^3+4x^2+ax+5$ is a monotonically decreasing function of x in the largest possible interval `(-2,-2//3), then the value of a is

A.
$$\lambda=4$$

B.
$$\lambda=2$$

$$C.\lambda = -1$$

D. λ has no real value

Answer: A

Watch Video Solution

18. If the angles of elevation of the top of tower from three collinear points A,B and C, on a line leading to the foot of the tower, are 30° , 45° and 60° respectively, then the ratio , AB:BC is

A. 2:3

B. $\sqrt{3}:1$

C.
$$\sqrt{3}$$
: $\sqrt{2}$

D. 1:
$$\sqrt{3}$$

Answer: B

Watch Video Solution

19. A unit vector in the xy-plane that makes an angle of $\frac{\pi}{4}$ with the vector $\hat{i}+\hat{j}$ and an angle of with the vector $3\hat{i}-4\hat{j}$ is

A.
$$\dfrac{\hat{i}+\hat{j}}{\sqrt{2}}$$
B. $\dfrac{\hat{i}-\hat{j}}{\sqrt{2}}$
C. $\dfrac{2\hat{i}-\hat{j}}{\sqrt{2}}$

D. None of these

Answer: D

Watch Video Solution

20. If $x=\dfrac{1-t^2}{1+t^2}$ and $y=\dfrac{2t}{1+t^2}$, then $\dfrac{dy}{dx}$ is equal to

A.
$$-\frac{y}{x}$$

B.
$$\frac{y}{x}$$

$$\mathsf{C.} - \frac{x}{y}$$

D.
$$\frac{x}{y}$$

Answer: C

Watch Video Solution

- **21.** Let A be a matrix of order 3×3 such that det (A)=
- 2 , $B=2A^{-1}$ and $C=\dfrac{(adjA)}{\sqrt[3]{16}}$,then the value of $\det\left(A^3B^2C^3\right)$ is

Watch Video Solution

22. Given f(x) where

$$= egin{cases} x|x| & ext{for} x \leq -1 \ [x+1] + [1-x] & ext{for} -1 < x < 1, ext{ [.] denotes} \ -x|x| & ext{for} x \geq 1 \end{cases}$$

the greatest integer function. If $I=\int_{-2}^2 f(x)dx$,then |31| =

Watch Video Solution

Watch Video Solution

23. The line 3x + 2y = 24 meets the y-axis at A and the x-axis at B. The perpendicular bisector of ABmeets the line through $(0,\ -1)$ parallel to the x-axis at C_{\cdot} If the area of triangle ABC is A , then the value of $\frac{A}{13}$ is_____

24. The minimum number of times a fair coin needs to be tossed, so that the probability of getting at least two heads is at least 0.96, is _____.

Watch Video Solution

25. Consider the equation $x^2+2x-n=0$ where $n\in N$ and $n\in [5,100].$ The total number of different values of n so that the given equation has integral roots is

