© 'doubtnut

MATHS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 2

Mathematics

1. Let z_{1} and z_{2} be $n^{\text {th }}$ roots of unity which subtend a right angle at the origin. Then n must be of the form
A. $4 \mathrm{~K}+1$
B. $4 \mathrm{~K}+2$
C. $4 \mathrm{k}+3$
D. 4 k

Answer: D

- Watch Video Solution

2. In $(0,2 \pi)$, the total number of points where $f(x)=m a x .\{\sin x, \cos x, 1-$ $\cos x\}$ is not differentiable , are equal to
A. 3
B. 4
C. 5
D. 6

Answer: A

- Watch Video Solution

3. The intergral $\int x \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) d x,(x>0)$ is equal to
A. $-x+\left(1+x^{2}\right) \cot ^{-1} x+c$
B. $x-\left(1+x^{2}\right) \cot ^{-1} x+c$
C. $x-\left(1+x^{2}\right) \tan ^{-1} x+c$
D. $-x+\left(1+x^{2}\right) \tan ^{-1} x+c$

Answer: D

D Watch Video Solution

4. The coefficient of x^{n} in the polynomial
$\left(x+{ }^{2 n+1} C_{0}\right)\left(X+{ }^{2 n+1} C_{1}\right)\left(x+{ }^{2 n+1} C_{2}\right) \ldots \ldots\left(X+{ }^{2 n+1} C_{n}\right)$ is
A. 2^{n+1}
B. $2^{2 n+1}-1$
C. $2^{2 n-1}$
D. $2^{2 n}$

Answer: D

- Watch Video Solution

5. The mean of the data set comprising of 16 observations is 16 . If one of the observation valued 16 is deleted and three new observations valued 3,4 and 5 are added to the data, then the mean of the resultant data, is-
A. 14.0
B. 16.8
C. 16.0
D. 15.8

Answer: A

6. The lines represented by the equation
$x^{2}+2 \sqrt{3} x y+3 y^{2}-3 x-3 \sqrt{3} y-4=0$, are
A. perpendicular to each other
B. parallel
C. inclined at 45° to each other
D. None of these

Answer: B

D Watch Video Solution

7. At present, a firm is manufacturing 2000 items. It is estimated that the rate of change of production P w.r.t. additional number of workers x is given by $\frac{d P}{d x}=100-12 \sqrt{x .}$. If the firm employs 25 more workers, then the new level of production of items is
A. 3500
B. 4500
C. 2500
D. 3000

Answer: A

- Watch Video Solution

8. Let $f: R \rightarrow R$ be a periodic function such that $f(T+x)=1$ where T is a $+\left[1-3 f(x)+3(f(x))^{2}-(f(x))^{3}\right]^{\frac{1}{3}}$ fixed positive number, then period of $f(x)$ is
A. T
B. $2 T$
C. $3 T$
D. None of these

Answer: B

- Watch Video Solution

9. $A B$ is vertical tower. The point A is on the ground and C is the middle point of AB. The part CB subtend an angle α at a point P on the ground. If $A P=n A B$, then $\tan \alpha=$
A. $n=\left(n^{2}+1\right) \tan \alpha$
B. $n=\left(2 n^{2}-1\right) \tan \alpha$
C. $n^{2}=\left(2 n^{2}+1\right) \tan \alpha$
D. $n=\left(2 n^{2}+1\right) \tan \alpha$

Answer: D

10. If $f(x)=\left\{\begin{array}{ll}x+1 & x>1 \\ 0, & x=1 \\ 7-3 x, & x<1\end{array}\right.$ then $\mathrm{f}^{\prime}(0)$ equal to
A. -1
B. -2
C. -3
D. -4

Answer: C

- Watch Video Solution

11. If $\mathrm{x}=-1$ and $\mathrm{x}=2$ are extreme points of $\mathrm{f}(\mathrm{x})=\alpha \log |x|+\beta x^{2}+x$, then
A. $\alpha=2, \beta=-\frac{1}{2}$
B. $\alpha=2, \beta=\frac{1}{2}$
C. $\alpha=-6, \beta=\frac{1}{2}$
D. $\alpha=-6, \beta=-\frac{1}{2}$

Answer: A

- Watch Video Solution

12. If x takes negative permissible value then $\sin ^{-1} x=$
A. $-\cos ^{-1} \sqrt{1-x^{2}}$
B. $\cos ^{-1} \sqrt{x^{2}-1}$
C. $\pi-\cos ^{-1} \sqrt{1-x^{2}}$
D. $\cos ^{-1} \sqrt{1-x^{2}}$

Answer: A
13. If $f(x)=\Pi_{k=1}^{999}\left(x^{2}-47 x+k\right)$. then product of all real roots of $f(x)=0$ is
A. 550 !
B. 551 !
C. 552 !
D. 999 !

Answer: C

- Watch Video Solution

14. In a certain town 25% families own a cellphone, 15% families own a scooter and 65% families own neither a cellphone nor a scooter. If 500 families own both a cellphone and scooter, then total number of families in the town is
B. 20000
C. 30000
D. 40000

Answer: C

D Watch Video Solution

15. The number of ways of arranging 8 men and 5 women around a circular table such that no two women can sit together is
A. 8 !
B. 4 !
C. 8 ! 4 !
D. $7!\times 8_{P_{3}}$

Answer: D

16. Let $A=\left[\begin{array}{ccc}-1 & 2 & -3 \\ -2 & 0 & 3 \\ 3 & -3 & 1\end{array}\right]$ be a matrix, then $|A| \operatorname{adj}\left(A^{-1}\right)$ is equal to
A. $O_{3 \times 3}$
B. $\left[\begin{array}{ccc}-1 & 2 & -3 \\ -2 & 0 & 3 \\ 3 & -3 & 1\end{array}\right]$
C. I_{3}
D. $[-3,-3,1),(3,0,-2),(-1,2,-3)]$

Answer: B

- Watch Video Solution

17. If the equation $x^{2}+4+3 \sin (a x+b)-2 x=0$ has at least one real solution, where $a, b \in[0,2 \pi]$ then one possible value of $(a+b)$
can be equal to
A. $\frac{7 \pi}{2}$
B. $\frac{5 \pi}{2}$
C. $\frac{9 \pi}{2}$
D. None of these

Answer: A

- Watch Video Solution

18. Fifteen coupens are numbered $1,2,3, \ldots 15$ respectively. Seven coupons are selected at random one at a time with replacement The Probability that the largest number appearing on a selected coupon is 9 is :
A. $\left(\frac{1}{15}\right)^{7}$
B. $\left(\frac{3}{5}\right)^{7}$
C. $\left(\frac{8}{15}\right)^{7}$
D. $\left(\frac{2}{5}\right)^{7}$

Answer: B

- Watch Video Solution

19. For $x \in R, x \neq 0$ if $y(x)$ is a differentiable function such that $x \int_{1}^{x} y(t) d t=(x+1) \int_{1}^{x} t y(t) d t$, then $y(x)$ equals (where C is a constant)
A. $C x^{3} e^{\frac{1}{x}}$
B. $\frac{C}{x^{2}} e^{-\frac{1}{x}}$
C. $\frac{C}{x} e^{-\frac{1}{x}}$
D. $\frac{C}{x^{3}} e^{-\frac{1}{x}}$

Answer: D

20. If O is the origin and $O P, O Q$ are distinct tangents to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ then the circumcentre of the triangle OPQ is
A. $(-g,-f)$
B. (g, f)
C. $(-f,-g)$
D. None of these

Answer: D

- Watch Video Solution

21. The inradius of the triangle having sides $26,28,30$ units is
22. Let the sum $\sum_{n=1}^{9} \frac{1}{n(n+1)(n+2)}$ written in the rational form be $\frac{p}{q}$ (where p and q are co-prime), then the value of $\left[\frac{q-p}{10}\right]$ is (where
[.] is the greatest integer function)

- Watch Video Solution

23.

In
a
$\triangle A B C$
if
$\angle A=\angle B=\frac{1}{2}\left(\sin ^{-1}\left(\frac{\sqrt{6}+1}{2 \sqrt{3}}\right)+\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)\right)$ and length of
$c=6.3^{\frac{1}{4}}$, then the area of $\triangle A B C$

- Watch Video Solution

24. $\lim _{x \rightarrow 0} \frac{\sin ^{-1} x-\tan ^{-1} x}{x^{3}}$ is equal to

- Watch Video Solution

25. A farmer F_{1} has a land in the shape of a triangle with vertices at $P(0,0), Q(1,1)$ and $R(2,0)$.From this land, a neighbouring farmer F_{2} takes away the region which lies between the side $P Q$ and a curve of the form $y=x^{n},(n>1)$. If the area of the region taken away by the farmer F_{2} is exactly 30% of the area of $\triangle P Q R$, then the value of n is
\qquad .

D Watch Video Solution

26. If the integral
$I=\int x^{\sin x}\left(\cos x \cdot 1 n x+\frac{\sin x}{x}\right) d x,=(f(x))^{g(x)}+c(\forall x>0)$ then the range of $y=g(x)$ is (where, c is an arbitrary constant)
A. $[-1,1]$
B. $[0,1]$
C. $[0,1)$
D. $(-1,1)$

Answer: A

- Watch Video Solution

27. Let P and Q are two points in the $x y$ plane on the curve $y=x^{11}-2 x^{7}+7 x^{3}+11 x+6 \quad$ such that $\overrightarrow{O P} \cdot \hat{i}=5, \overrightarrow{O Q} \cdot \hat{i}=-5$, then the magnitude of $\overrightarrow{O P}+\overrightarrow{O Q}$ is
A. 10
B. 12
C. 14
D. 8

Answer: B

28. If the letters of the word REGULATIONS be arranged at random, find the probability that there will be exactly four letters between the R and the E.
A. $\frac{6}{55}$
B. $\frac{3}{55}$
C. $\frac{5}{11}$
D. $\frac{6}{11}$

Answer: A

(D) Watch Video Solution

29. If the point of intersection of the plane $4 x-5 y+2 z-6=0$ with the line through the origin and perpendicular to the plane $x-2 y-4 z=4$ is P , then the distance of the point P from $(1,2,3)$ is
A. $\sqrt{63}$ units
B. 8 units
C. $\sqrt{65}$ units
D. $\sqrt{72}$ units

Answer: C

- Watch Video Solution

30. The mean and variance of seven observations are 8 and 16 respectively. If five of these are $2,4,10,12$ and 14 , then find the remaining two observations.
A. 5,7
B. 3,5
C. 6,8
D. 4,2

Answer: C

Watch Video Solution

31. Let $\triangle A B C$ is an isosceles trianlge with $A B=A C$. If $B=(0, a), C=(2 a, 0)$ and the equation of AB is $3 x-4 y+4 a=0$, then the equation of side $A C$ is
A. $y=8 x-16 a$
B. $3 y=4 x-8 a$
C. $x=2 a$
D. $y+8 x=16 a$

Answer: C

32. Let $\mathrm{A}(0,3)$ and $\mathrm{B}(0,12)$ be two vertices of a $\triangle A B C$ where $C=(x, 0)$. If the circumcircle of $\triangle A B C$ touches the x-axis, then the value of $\cos 2 \theta$ is (where θ is angle ACB)
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{8}{15}$
D. $\frac{7}{25}$

Answer: D

- Watch Video Solution

33. Consider three statements p : person ' A ' passed in mathematics exam q : Person ' A ' passed in physics exam r : Person 'A' passed in chemistry exam, Then the statement $\sim((\sim(p \Rightarrow q) \Rightarrow r)$ is equivalent to
A. Person A passed only in mathematics \& physics \& chemistry
B. Person A failed only in mathematics \& physics \& chemistry
C. Person A passed in all the three subjects mathematics \& physics \& chemistry
D. Person A passed in chemistry but failed in mathematics \& physics.

Answer: A

D Watch Video Solution

34. In equation $(Z-1)^{n}=Z^{n}=1(\forall n \in N)$ has solution, then n can be
A. 4
B. 12
C. 15
D. 21

Answer: B

- Watch Video Solution

35. The solution of the differential equation
$\left(3 x^{2} \sin \left(\frac{1}{x}\right)+y\right) d x=x \cos \left(\frac{1}{x}\right) d x-x d y$
is (where, c is an arbitrary constant)
A. $\sin \left(\frac{1}{x}\right)=x y+c$
B. $x^{3} \sin \left(\frac{1}{x}\right)+x y=c$
C. $x^{3} \sin \left(\frac{1}{x}\right)=x y+c$
D. $\sin \left(\frac{1}{x}\right)=x^{3} y+c$

Answer: B

$(1-\sin \theta) x^{2}+2(1-\sin \theta) x-3 \sin \theta=0$ has both roots complex for all θ lying in the interval
A. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
B. $\left(0, \frac{3 \pi}{2}\right)$
C. $\left(\frac{\pi}{6}, \frac{7 \pi}{6}\right)$
D. $\left(\frac{7 \pi}{6}, \frac{11 \pi}{6}\right)$

Answer: D

(Watch Video Solution

37. The minimum value of the expression $3 x+2 y(\forall x, y>0)$, where $x y^{2}=10$, occurs when the value of y is equal to
A. $\sqrt{10}$
B. $\sqrt[3]{10}$
C. $\sqrt[3]{30}$
D. $\frac{1}{\sqrt{30}}$

Answer: C

- Watch Video Solution

38. If in the expansion of $(1+x)^{m}(1-x)^{n}$ the coefficient of x and x^{2} are 3 and (-6) respectively, then the value of n is-
A. 6
B. 9
C. 12
D. 24

Answer: B

39. Number of words that can be formed with the letters of the word ALGEBRA so that all the vowels are seperated (or no two vowals come together) is
A. 720
B. 2160
C. 1440
D. 1200

Answer: A

- Watch Video Solution

40. If $f(k-x)+f(x)=\sin x$, then the value of integral
$I=\int_{0}^{k} f(x) d x$ is equal to
A. $\cos k$
B. $2 \cos ^{2}\left(\frac{k}{2}\right)$
C. $\sin ^{2}\left(\frac{k}{2}\right)$
D. $\sin k$

Answer: C

- Watch Video Solution

41. If the difference between the number of subsets of the sets A and B is 120 , then choose the incorrect option.
A. Maximum value of $n(A \cap B)=3$
B. Minimum value of $n(A \cap B)=0$
C. Maximum value of $n(A \cup B)=21$
D. Minimum value of $n(A \cup B)=7$

Answer: C

- Watch Video Solution

42. For the function $f(x)=\sin (\pi[x]) \times \cos ^{-1}([x])$, choose the correct option.
(where [.] represents the greatest integer function)
A. Domain of $f(x)$ in $[-1,1]$
B. Range of $f(x)$ contains exactly two elements
C. $f(x)$ is an identify function
D. $f(x)$ is a constant function

Answer: D

43. The value of $\lim _{x \rightarrow 0} \frac{\sin x}{3}\left[\frac{5}{x}\right]$ is equal to
[where [.] represent the greatest integer function)
A. $\frac{1}{3}$
B. 0
C. $\frac{5}{3}$
D. 1

Answer: C

- Watch Video Solution

44. If $y=\tan ^{-1}\left(\frac{x}{1+6 x^{2}}\right)+\tan ^{-1}\left(\frac{2 x-1}{2 x+1}\right),(\forall x>0)$ then $\frac{d y}{d x}$ is equal to
A. $\frac{3}{1+9 x^{2}}$
B. $\frac{1}{1+6 x^{2}}$
C. $\frac{1}{1+6 x^{2}}+\frac{1}{1+x^{2}}$
D. $\frac{3}{1+6 x^{2}}$

Answer: A

D Watch Video Solution

45. If $|3 x-1|, 3,|x-3|$ are the first three terms of an arithmentic progression, then the sum of the first five terms can be
A. 5
B. 10
C. 20
D. 30

Answer: A
46. If $f(x)= \begin{cases}p x+q & : x \leq 2 \\ x^{2}-5 x+6 & : 2<x<3 \\ a x^{2}+b x+1 & : x \geq 3\end{cases}$
is differentiable everywhere, then $|p|+|q|+\left|\frac{1}{a}\right|+\left|\frac{1}{b}\right|$ is equal to

- Watch Video Solution

47. If the area bounded by $y=\left||x|^{2}-4\right| x|+3| \mid$ and the x-axis from $x=1$ to $x=3$ is $\frac{p}{q}$ (where, $\mathrm{p} \& \mathrm{q}$ are coprime) then the value of $p+q$ is
A. 10
B. 9
C. 8
D. 7

Answer: D
48. Let M be a square matix of order 3 whose elements are real number and $\operatorname{adj}(\operatorname{adjM})=\left[\begin{array}{ccc}36 & 0 & -4 \\ 0 & 6 & 0 \\ 0 & 3 & 6\end{array}\right]$, then the absolute value of $\operatorname{Tr}(M)$ is [Here, adj P denotes adjoint matrix of P and $T_{r}(P)$ denotes trace of matrix P i.e., sum of all principal diagonal elements of matrix P]

- Watch Video Solution

49. If common tangents of $x^{2}+y^{2}=r^{2}$ and $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ forms a square, then the length of diagonal of the square is
A. 9
B. 10
C. 12
D. 1

Answer: B

- Watch Video Solution

50. The angular depression of the top and the foot of the chimney seen from the top of a tower on the same base level as the chimney are $\tan ^{-1}\left(\frac{4}{3}\right)$ and $\tan ^{-1}\left(\frac{5}{2}\right)$ respectively if the height of the tower is 150 m . then the distance between the top of the chimney and the tower is

- Watch Video Solution

51. Let $P_{1}: 2 x+y+z+1=0$
$P_{2}: 2 x-y+z+3=0$ and $P_{3}: 2 x+3 y+z+5=0$ be three planes, then the distance of the line of intersection of planes $P_{1}=0$ and $P_{2}=0$ from the plane $P_{3}=0$ is
A. $\frac{3}{\sqrt{14}}$ units
B. $\frac{6}{\sqrt{14}}$ units
C. $\frac{3}{\sqrt{7}}$ units
D. $\frac{6}{\sqrt{7}}$ units

Answer: B

- Watch Video Solution

52. The parabolas $C_{1}: y^{2}=4 a(x-a)$ and $C_{2}: y^{2}=-4 a(x-k)$ intersect at two distinct points A and B. If the slope of the tangent at A on C_{1} is same as the slope of the normal at B on C_{2}, then the value of k is equal to
A. 3a
B. 2 a
C. a
D. 0

Answer: A

D Watch Video Solution

53. Let p, q and r be three statements, then $(p \rightarrow q) \rightarrow r$ is equivalent to
A. $(p \vee r) \wedge(q \vee r)$
B. $(p \vee r) \wedge(\sim q \vee r)$
C. $(p \wedge r) \vee(q \vee r)$
D. $(p \vee r) \rightarrow r$

Answer: B

- Watch Video Solution

54. Let two sides of a rectangle of area 20 sq. units are along lines $x-y=0$ and $x+y=2$, then the locus of the point of intersection of diagonals is a
A. pair of ellipse
B. pair of straight lines
C. pair of hyperbola having eccentricity 2 and $\frac{2}{\sqrt{3}}$
D. pair of hyperbola each having eccentricity $\sqrt{2}$

Answer: D

(D) Watch Video Solution

55. Let $2 \vec{a}=\vec{b} \times \vec{c}+2 \vec{b}$ where \vec{a}, \vec{b} and \vec{c} are three unit vectors, then sum of all possible values of $|3 \vec{a}+4 \vec{b}+5 \vec{c}|$ is
A. 10
B. 12
C. 14
D. 16

Answer: C

D Watch Video Solution

56. If $f(1+x)=f(1-x)(\forall x \in R)$, then the value of the integral
$I=\int_{-7}^{9} \frac{f(x)}{f(x)+f(2-x)} d x$ is
A. 0
B. 2
C. 8
D. 10

Answer: C

57. If $f(x)$ is a real valued function such that
$f(x+6)-f(x+3)+f(x)=0, \forall x \in R$, then period of $f(x)$ is
A. 6
B. 12
C. 18
D. 24

Answer: C

58. The value of $\lim _{x \rightarrow 0} \frac{\tan ^{2} 3 x}{\sqrt{5}-\sqrt{4+\sec x}}$ is equal to
A. $2 \sqrt{5}$
B. $-9 \sqrt{5}$
C. $9 \sqrt{5}$
D. $-36 \sqrt{5}$

Answer: D

- Watch Video Solution

59. If $-\pi<\theta<\pi$, the equation
$(\cos 3 \theta+1) x^{2}+2(\cos 2 \theta-1) x+(1-2 \cos \theta)=0$
has more than two roots for
A. no value of θ
B. one value of θ
C. two value of θ
D. all value of θ

Answer: A

- Watch Video Solution

60. If $\operatorname{In}\left(2 x^{2}-5\right), \operatorname{In}\left(x^{2}-1\right)$ and $\operatorname{In}\left(x^{2}-3\right)$ are the first three terms of an arithmetic progression, then its fourth term is
A. $\ln 8-\ln 3$
B. $\ln 3-\ln 8$
C. In 24
D. $2 \ln 6$

Answer: A

61. Image of line $\frac{x-2}{3}=\frac{y-1}{1}=\frac{z-1}{-4}$ in the plane $x+y+z=7$ is
A. $\frac{x-4}{1}=\frac{y-3}{1}=\frac{z-3}{1}$
B. $\frac{x-3}{1}=\frac{y-4}{1}=\frac{z-3}{1}$
c. $\frac{x-4}{3}=\frac{y-3}{1}=\frac{z-3}{-4}$
D. $\frac{x-3}{1}=\frac{y-4}{1}=\frac{z-3}{-4}$

Answer: C

Watch Video Solution

62. If $\pi<\theta<\frac{3 \pi}{2}$ and $\cos \theta=-\frac{3}{5}$, then $\tan \left(\frac{\theta}{4}\right)$ is equal to
A. $\frac{\sqrt{5}-1}{2}$
B. $\frac{\sqrt{5}+1}{2}$
C. $\frac{-\sqrt{5}-1}{4}$
D. $\frac{-\sqrt{5}+1}{4}$

Answer: B

D Watch Video Solution

63. If the value of integral
$\int\left(x+\sqrt{x^{2}-1}\right)^{2} d x=a x^{3}-x+b\left(x^{2}-1\right)^{\frac{1}{b}},+C$
(where, C is the constant of integration), then $a \times b$ is equal to
A. 1
B. $\frac{4}{9}$
C. 2
D. $\frac{9}{4}$

Answer: B

64. The range of the function $\sin ^{-1}\left(\frac{x^{2}}{1+x^{2}}\right)$ is
A. $[-\pi / 2, \pi / 2]$
B. $[0, \pi / 2)$
C. $(0, \pi / 2]$
D. $(-\pi / 2, \pi / 2)$

Answer: B

65. The solution of the differential equation
$\frac{1}{x^{2}}\left(\frac{d y}{d x}\right)^{2}+6=\left(\frac{5}{x}\right) \frac{d y}{d x}$ is $y=\lambda x^{2}+c$
(where, c is an arbitary constant). The sum of all the possible value of λ is
A. $\frac{3}{2}$
B. $\frac{5}{2}$
C. $\frac{2}{5}$
D. 2

Answer: B

- Watch Video Solution

66. The number of tangents with positive slope that can be drawn from the origin to the curve $y=\sin x$ is
A. 0
B. 2
C. 4
D. infinitely many

Answer: D

67. A complex number z is said to be unimodular if. Suppose z_{1} and z_{2} are complex numbers such that $\frac{z_{1}-2 z_{2}}{2-z_{1} z_{2}}$ is unimodular and z_{2} is not unimodular. Then the point z_{1} lies on a: (1) straight line parallel to x axis (2) straight line parallel to y-axis (3) circle of radius 2 (4) circle of radius $\sqrt{2}$
A. circle of radius $\sqrt{2}$
B. straight line parallel to x-axis
C. straight line parallel to y-axis
D. circle of radius 2

Answer: D

68. Equation of the straight line which meets the circle $x^{2}+y^{2}=8$ at two points where these points are at a distance of 2 units from the point $A(2,2)$ is
A. $x+y=2$
B. $x+y=3$
C. $x+y=1$
D. $x+y=0$

Answer: B

- Watch Video Solution

69. If $x_{1}, x_{2}, \ldots . x_{n}$ are n observations such that $\sum_{i=1}^{n}\left(x_{i}\right)^{2}=400$ and $\sum_{i=1}^{n} x_{i}=100$ then possible values of n among the following is
A. 18
B. 20
C. 24
D. 27

Answer: D

- Watch Video Solution

70. If the system of equation $x-2 y+5 z=3$
$2 x-y+z=1$ and $11 x-7 y+p z=q$ has infinitely many solution, then
A. $p+q=2$
B. $p+q=10$
C. $p-q=2$
D. $p-q=5$

Answer: C

- Watch Video Solution

71. A term of randomly chosen from the expansion of $\left(\sqrt[6]{4}+\frac{1}{\sqrt[4]{5}}\right)^{20}$. If the probability that it is a rational term is P, then 420P is euqal to

(D) Watch Video Solution

72. If a tangent of slope 2 of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{1}=1$ passes through the point $(-2,0)$, then the value of a^{2} is equal to

- Watch Video Solution

73. The number obtained after dividing the number formed by the last three digits of 17^{256} by 100 is
74. The area (in sq. units) bounded by $y=2-|x-2|$ and the x-axis is

- Watch Video Solution

75. Let $y=x^{3}-6 x^{2}+9 x+1$ be an equation of a curve, then the $x-$ intercept of the tangent to this curve whose slope is least, is

- Watch Video Solution

76. Two intersecting lines lying in plane P_{1} have equations $\frac{x-1}{1}=\frac{y-3}{2}=\frac{z-4}{3}$ and $\frac{x-1}{2}=\frac{y-3}{3}=\frac{z-4}{1}$. If the equation of plane P_{2} is $7 x-5 y+z-6=0$, then the distance between planes P_{1} and P_{2} is
A. $\frac{11}{5 \sqrt{3}}$
B. $\frac{2}{\sqrt{3}}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{7}{5 \sqrt{3}}$

Answer: B

- Watch Video Solution

77. If t is real and $\lambda=\frac{t^{2}-3 t+4}{t^{2}+3 t+4}$ then find number of the solution of the systems of equation $3 x-y+4 z=0, x+2 y-3 z=-2.6 x+5 y+\lambda z=-3$ for a particular value of λ.
A. a unique solution
B. infinite solutions
C. no solution
D. 2 solutions

Answer: A

D Watch Video Solution

78. The solution of the differential equation $2 y d x+x d y=2 x \sqrt{y} d x$ is (where, C is an arbitrary constant)
A. $x \sqrt{y}=x+C$
B. $x \sqrt{y}=\frac{x^{2}}{2}+C$
C. $\frac{x}{\sqrt{y}}=x+C$
D. $x y=C$

Answer: B

- Watch Video Solution

79. The mean and variance of 10 observation are found to be 10 and 4 respectively. On rechecking it was found that an observation 8 was incorrect. If it is replaced by 18 , then the correct variance is
A. 7
B. 8
C. 9
D. $\frac{55}{6}$

Answer: C

- Watch Video Solution

80. The sum of the series
$3+8+16+27+41 . \ldots$. upto 20 terms is equal to
A. 4230
B. 4430
C. 4330
D. 4500

Answer: B

- Watch Video Solution

81. The greatest integer less than or equal to $(\sqrt{2}+1)^{6}$ is
A. 196
B. 197
C. 198
D. 199

Answer: B
82. If $\cos x-\sin x=-\frac{5}{4}$, where $\frac{\pi}{2}<x<\frac{3 \pi}{4}$, then $\cot \left(\frac{x}{2}\right)$ is equal to
A. $\frac{4-\sqrt{7}}{9}$
B. 8
C. -8
D. $\frac{4+\sqrt{7}}{9}$

Answer: D

- Watch Video Solution

83. In $\triangle P Q R$, the equation of the internal angle bisector of angle Q is $\mathrm{y}=\mathrm{x}$ and the equation of side PR is $3 x-y=2$. If coordinates of P are $(3,2)$ and $2 P Q=R Q$, then the coordinates of Q are
B. $(7,7)$
C. $(-2,-2)$
D. $(5,5)$

Answer: B

- Watch Video Solution

84. Let the lines l_{1} and l_{2} be normals to $y^{2}=4 x$ and tangents to $x^{2}=-12 y$ (where l_{1} and l_{2} are not x - axis). The absolute value of the difference of slopes of l_{1} and l_{2} is
A. 3
B. 2
C. 1
D. $\frac{1}{2}$

Answer: C

Watch Video Solution
85. The value of $\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{2+3 x^{2}}$ is equal to
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. 1
D. 0

Answer: D

- Watch Video Solution

86. The value of $\lim _{n \rightarrow \infty} \Sigma_{r=1}^{n}\left(\frac{2 r}{n^{2}}\right) e^{\frac{r^{2}}{n^{2}}}$ is equal to
A.e
B. 2 e
C. $e-2$
D. $e-1$

Answer: D

- Watch Video Solution

87. The direction cosines I, m and n of two lines are connected by the relations $l+m+n=0$ and $l m=0$, then the angle between the lines is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. 0

Answer: A

D Watch Video Solution

88. The function $f(x)=x^{3}-a x$ has a local minimum at $x=k$, where $k \geq 2$, then a possible value of a is
A. 9
B. 11
C. 13
D. 8

Answer: C

89. Let two circles having radii r_{1} and r_{2} are orthogonal to each other. If the length of their common chord is k times the square root of harmonic mean between the squares of their radii, then k^{4} is equal to
A. 13
B. 7
C. 4
D. 2

Answer: C

- Watch Video Solution

90. The value of $\int_{0}^{\frac{\pi}{2}}\left(\cos 2 x \cos 2^{2} x \cos 2^{3} x \cos 2^{4} x\right) d x$ is equal to
A. 0
B. $\frac{1}{2}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: A

- Watch Video Solution

91. Let A be a matrix of order 3×3 such that $|A|=3$. Let $B=3 A^{-1}$ and $C=\frac{a d j A}{2}$, then the value of $\left|A^{2} B^{3} C^{4}\right|$ is
A. $\frac{3^{16}}{2^{12}}$
B. $\left(\frac{3}{2}\right)^{12}$
C. $\frac{3^{10}}{2^{8}}$
D. $\frac{3^{12}}{2^{14}}$
92.

$(\hat{p} \times \vec{q}) \times \hat{p}+(\hat{p} \cdot \vec{q}) \vec{q}=\left(x^{2}+y^{2}\right) \vec{q}+(14-4 x-6 y) \hat{p}$
where \hat{p} and \vec{q} are non-collinear vectors \hat{p} is a unit vector) and x, y are scalars, then the value of $x^{2}+y^{2}$ is equal to
A. 10
B. 11
C. 12
D. 13

Answer: D

- Watch Video Solution

93. If p and q are two statements, then which of the following statement is a tautology
A. $p \Rightarrow(p \vee \sim q)$
B. $(p \vee q) \Rightarrow p$
C. $p \Rightarrow(p \wedge q)$
D. $p \Leftrightarrow(p \Rightarrow q)$

Answer: A

(D) Watch Video Solution

94. In an equilateral triangle $A B C$, equation of the sides $B C$ is $x+y-2=0$ and the centroid of $\Delta A B C$ is $(0,0)$. If points A, B and C are in anticlockwise order, then the equation of side $A C$ is

$$
\text { A. }(y+2)=(2-\sqrt{3})(x+2)
$$

B. $(y+2)=(2+\sqrt{3})(x+2)$
C. $(y+1)=(2+\sqrt{3})(x+1)$
D. $x+2=0$

Answer: B

- Watch Video Solution

$$
\begin{aligned}
& \text { 95. The minimum distance between the } \\
& y=\tan x, \forall x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \text { and }\left(x-2-\frac{\pi}{4}\right)^{2}+y^{2}=1 \text { is }
\end{aligned}
$$

A. $\sqrt{2}-1$
B. $\sqrt{5}-1$
C. $\sqrt{5}+1$
D. 2
96. A fair die is thrown n number of times. If the probability of always getting a number greater than the previous number is $\frac{5}{54}$, then the value of n is equal to ($n \leq 6$).

- Watch Video Solution

97. How many 4 letter words can be formed from the word "MATHEMATICS" ?
A. 2500
B. 2454
C. 2400
D. 2254

Answer: B

98. If $f(x)=\left\{\begin{array}{ll}(1+|\sin x|)^{\frac{p}{|\sin x|}} & ,-\frac{\pi}{6}<x<0 \\ q & : x=0 \\ e^{\tan 3 x \cdot \cot 5 x} & : 0<x<\frac{\pi}{6}\end{array}\right.$ is continuous at $\mathrm{x}=0$, then the value of $2 p+10 \ln q$ is equal to

- Watch Video Solution

99. If $f(x)=\sin x, g(x)=\cos x$ and $h(x)=\cos (\cos x)$, then the integral $\quad I=\int f(g(x)) \cdot f(x) \cdot h(x) d x \quad$ simplifies to $-\lambda \sin ^{2}(\cos x)+C$ (where, C is the constant of integration). The value of λ is equal to

- Watch Video Solution

100. If numerically greatest term in the expansion of $(3-5 x)^{11}$, where $x=\frac{1}{5}$, is 729λ, then the value of $\frac{\lambda}{150}$ is
101. If a tower subtends equal angles at four points P, Q, R and S that lie in a plane containing the foot of the tower, the which fo the following statements is always true (here, the tower is perpendicular to the plane containing the points $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S})$
A. $\angle P Q S=\angle P R S$
B. $\angle P Q R+\angle P S R=180^{\circ}$
C. $\angle P Q S=90^{\circ} \Rightarrow \angle P R S=90^{\circ}$
D. $(P Q)(R S)+(P S)(R Q)=(P R)(Q S)$

Answer: C

- Watch Video Solution

102. The values of λ for which one root of the equation $x^{2}+(1-2 \lambda) x+\left(\lambda^{2}-\lambda-2\right)=0$ is greater than 3 and the other smaller than 2 are given by
A. $2<\lambda<5$
B. $1<\lambda<4$
C. $1<\lambda<5$
D. $2<\lambda<4$

Answer: D

- Watch Video Solution

103. Let a function $f:(2, \infty) \rightarrow[0, \infty)$ defined as $f(x)=\frac{|x-3|}{|x-2|}$, then f is
A. injective \& surjective
B. not injective but surjective
C. injective but not surjective
D. neither injective nor surjective

Answer: B

D Watch Video Solution

104. Let n be a positive integer and a complex number with unit modulus is a solution of the equation $Z^{n}+Z+1=0$, then the value of n can be
A. 87
B. 97
C. 104
D. 222

Answer: C

Watch Video Solution

105. The value of $\lim _{x \rightarrow 0} \frac{e^{-\left(\frac{x^{2}}{2}\right)}-\cos x}{x^{3} \tan x}$ is equal to
A. $\frac{1}{4}$
B. $\frac{1}{8}$
C. $\frac{1}{12}$
D. $\frac{1}{16}$

Answer: C

Watch Video Solution

106. The value of $\int \frac{(x-4)}{x^{2} \sqrt{x-2}} \mathrm{dx}$ is equal to (where, C is the constant of integration)
A. $2 x \sqrt{x-2}+C$
B. $-\frac{2}{x} \sqrt{x-2}+C$
C. $\frac{\sqrt{x-2}}{x}+C$
D. $\frac{x}{\sqrt{x-2}}+C$

Answer: B

- Watch Video Solution

107. The equation of the curve passing through the point $(1,1)$ and satisfying the differential equation $\frac{d y}{d x}=\frac{x+2 y-3}{y-2 x+1}$ is
A. $x^{2}-4 x y-y^{2}+6 x+2 y-4=0$
B. $x^{2}+4 x y-y^{2}-6 x+2 y+4=0$
C. $x^{2}+4 x y-y^{2}-6 x-2 y+4=0$
D. $x^{2}+4 x y+y^{2}-6 x-2 y-4=0$

Answer: C

D Watch Video Solution

108. Five different games are to be distributed among 4 children randomly. The probability that each child get at least one game is
A. $\frac{1}{4}$
B. $\frac{15}{64}$
C. $\frac{21}{64}$
D. $\frac{17}{632}$

Answer: B
109. Let the focus S of the parabola $y^{2}=8 x$ lies on the focal chord PQ of the same parabola. If PS $=6$, then the square of the slope of the chord PQ is
A. $\frac{2}{\sqrt{5}}$
B. $\frac{4}{5}$
C. $\frac{5}{4}$
D. $\frac{9}{4}$

Answer: B

(D) Watch Video Solution

110. If $p \rightarrow(q \vee r)$ is false, then the truth values of $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are respectively
A. TFF
B. FFF
C. FTT
D. TTF

Answer: A

(Watch Video Solution

111. $\frac{5}{3^{2} 7^{2}}+\frac{9}{7^{2} 11^{2}}+\frac{13}{11^{2} 15^{2}}+\ldots . \infty$
A. $\frac{1}{8}$
B. $\frac{1}{36}$
C. $\frac{1}{54}$
D. $\frac{1}{72}$

Answer: D
112. If $13^{99}-19^{93}$ is divided by 162 , then the remainder is
A. 3
B. 6
C. 5
D. 0

Answer: D

- Watch Video Solution

113. The $\int_{0}^{\pi / 2} \operatorname{sgn}\left(\sin ^{2} x-\sin x+\frac{1}{2}\right) \mathrm{dx}$ is equal to, (where, sgn
(x) denotes the sigum function of x)
A. 0
B. 1
C. π
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

114. If $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{a} \cdot \vec{b}=2$ and $\vec{a} \times \vec{b}=2 \hat{i}-\hat{k}$, then \vec{b} is
A. $(\hat{i}-2 \hat{j}+\hat{k})$
B. $(4 \hat{i}-4 \hat{j}+2 \hat{k})$
C. $\frac{1}{2}(3 \hat{i}+7 \hat{j}+9 \hat{k})$
D. $\frac{1}{29}(7 \hat{i}-4 \hat{j}+14 \hat{k})$

Answer: D

115. Equation of the plane passing through the point of intersection of lines $\quad \frac{x-1}{3}=\frac{y-2}{1}=\frac{z-3}{2} \& \frac{x-3}{1}=\frac{y-1}{2}=\frac{z-2}{3} \quad$ and perpendicular to the line $\frac{x+5}{2}=\frac{y-3}{3}=\frac{z+1}{1}$ is
A. $2 x+3 y+z+7=0$
B. $2 x-3 y-z+22=0$
C. $2 x+3 y+z-22=0$
D. $2 x+3 y+z+13=0$

Answer: C

- Watch Video Solution

116. The equation of the tangent to the parabola $y^{2}=4 x$ whose slope is positive and which also touches $x^{2}+y^{2}=\frac{1}{2}$ is

$$
\text { A. } y=x+1
$$

B. $y=2 x+1$
C. $x+y=2$
D. $y=4 x+\frac{1}{2}$

Answer: A

(Watch Video Solution

the trace of the matrix is the sum of all principal diagonal elements of the matrix)
A. 1
B. 0
C. 2
D. 5

- Watch Video Solution

118. consider the planes $P_{1}: 2 x-y+z=6$ and $P_{2}: x+2 y-z=4$ having normal \vec{N}_{1} and \vec{N}_{2} respectively. The distance of the origin from the plane passing through the point $(1,1,1)$ and whose normal is perpendicular to N_{1} and N_{2} is
A. $\frac{7}{\sqrt{5}}$ units
B. $\sqrt{\frac{7}{5}}$ units
C. $\sqrt{\frac{3}{5}}$ units
D. $\frac{14}{\sqrt{35}}$ units

Answer: B

119. Let $I_{1}=\int_{0}^{\frac{\pi}{2}} \frac{d t}{1+t^{6}}$ and $I_{2}=\int_{0}^{\frac{\pi}{2}} \frac{x \cos x d x}{1+(x \sin x+\cos x)^{6}}$, then
A. $2 I_{1}=I_{2}$
B. $I_{1}=2 I_{2}$
C. $I_{1}=I_{2}$
D. $I_{1}=I_{2}=0$

Answer: C

- Watch Video Solution

120. A wire of length 28 cm is bent to form a circular sector, then the radius (in cm) of the circular sector such that the area of the circular sector is maximum is equal to
A. 5
B. 6
C. 7
D. 8

Answer: C

- Watch Video Solution

121. Let $x^{2}+y^{2}=r^{2}$ and $x y=1$ intersect at $A \& B$ in first quadrant, If $A B=\sqrt{14}$ then find the value of r.

- Watch Video Solution

122. If $\left.f(x)=\left\{\frac{a+b \cos x+c \sin x}{x^{2}},, x>0\right),(9,, x \geq 0)\right\}$ is continuous at $\mathrm{x}=0$, then the value of $\frac{|a|+|b|}{5}$ is
123. Let p and q be the length of two chords of a circle which subtend angles 36° and 60° respectively at the centre of the circle. Then , the angle (in radian) subtended by the chord of length $p+q$ at the centre of the circle is (use $\pi=3.1$)

- Watch Video Solution

124.

$a_{r}=r^{4} C_{r}, b_{r}=(4-r)^{4} C_{r}, A_{r}=\left[\begin{array}{ll}a_{r} & 2 \\ 3 & b_{r}\end{array}\right]$ and $A=\sum_{r=0}^{4} A_{r}$ then the value of $|\mathrm{A}|$ is equal to

D Watch Video Solution

125. The product of all the values of $|\lambda|$, such that the lines
$x+2 y-3=0,3 x-y-1=0$ and $\lambda x+y-2=0$ cannot form a triangle, is equal to

Maths

1. The integral value of m for which the quadratic equation $(2 m-3) x^{2}-4 x+2 m-3=0$ has both the roots negative is given by

- Watch Video Solution

2. Let from a point $A(h, k)$ chord of contacts are drawn to the ellipse $x^{2}+2 y^{2}=6$ such that all these chords touch the ellipse $x^{2}+4 y^{2}=4$, then locus of the point A is
A. $4 x^{2}+9 y^{2}=36$
B. $x^{2}+y^{2}=4$
C. $x^{2}-y^{2}=9$
D. $x^{2}+y^{2}=9$

Answer: D

- Watch Video Solution

3. If $y(x)$ is the solution of the differential equation $\frac{d y}{d x}=-2 x(y-1)$ with $y(0)=1$, then $\lim _{x \rightarrow \infty} y(x)$ equals

- Watch Video Solution

4. $\int \frac{\sin ^{2} x \cdot \sec ^{2} x+2 \tan x \cdot \sin ^{-1} x \cdot \sqrt{1-x^{2}}}{\sqrt{1-x^{2}}\left(1+\tan ^{2} x\right)} d x$
A. $\left(\sin ^{-1} x\right)\left(\cos ^{2} x\right)+C$
B. $\left(\sin ^{-1} x\right)\left(\sin ^{2} x\right)+C$
C. $\left(\cos ^{-1} x\right)\left(\sin ^{2} x\right)+C$
D. $-\sin ^{-1} x\left(\sin ^{2} x\right)+C$

Answer: B

- Watch Video Solution

5. The value of $\lim _{x \rightarrow 0} \frac{x \cot (4 x)}{\tan ^{2}(3 x) \cot ^{2}(6 x)}$ is equal to
A. 0
B. 4
C. $\frac{2}{9}$
D. 1

Answer: D

- Watch Video Solution

6. If n objects are arrange in a row, then the number of ways of selecting three of these objects so that no two of them are next to
each other is
A. ${ }^{n-3} C_{3}$
B. . ${ }^{n-3} C_{2}$
C. . ${ }^{n-2} C_{2}$
D. . ${ }^{n-2} C_{3}$

Answer: D

(D) Watch Video Solution

7. Solve $\sin ^{-1}(1-x)-2 s \epsilon^{-1} x=\frac{\pi}{2}$
A. 0
B. $\frac{1}{2}$
C. $0, \frac{1}{2}$
D. $-\frac{1}{2}$

Answer: A

- Watch Video Solution

8. If $1, a, b$ and 4 are in harmonic progression, then the value of $a+b$ is equal to
A. $\frac{5}{4}$
B. $\frac{10}{3}$
C. $\frac{3}{10}$
D. $\frac{4}{5}$

Answer: B

- Watch Video Solution

9. fractional part of $\frac{2^{78}}{31}$ is:
A. $\frac{2}{31}$
B. $\frac{4}{31}$
C. $\frac{6}{31}$
D. $\frac{8}{31}$

Answer: D

- Watch Video Solution

10. Let $\mathrm{f}(\mathrm{x})=10-|\mathrm{x}-5|, x \in R$, then the set of all values of x at which f
$(f(x))$ is not differentiable is
A. $\{0,5,10\}$
B. $\{5,10\}$
C. $\{0,5,10,15\}$
D. $\{5,10,15\}$

- Watch Video Solution

11. If two tangents drawn from the point $\mathrm{P}(\mathrm{h}, \mathrm{k})$ to the parabola $y^{2}=8 x$ are such that the slope of one of the tangent is 3 times the slope of the other, then the locus of point P is
A. $3 y^{2}=16 x$
B. $3 y^{2}=8 x$
C. $y^{2}=32 x$
D. $3 y^{2}=32 x$

Answer: D

12. If $I_{1}=\int_{1-x}^{k} x \sin \{x(1-x)\} d x$ and $I_{2}=\int_{1-x}^{k} \sin \{x(1-x)\} d x$, then
A. 2
B. $\frac{1}{2}$
C. 1
D. $\frac{1}{3}$

Answer: B

- Watch Video Solution

13. Let A is a matrix of order 3×3 defined as $A=\left[a_{i j}\right] 3 \times 3$, where $a_{i j}=\lim _{x \rightarrow 0} \frac{1-\cos (i x)}{\sin (i x) \tan (j x)}(\forall 1 \leq i, j, \leq 3)$, then A^{2} is equal to
A. A
B. $\frac{3}{2} A$
C. $\frac{2}{3} A$
D. $\frac{1}{4} \mathrm{~A}$

Answer: B

- Watch Video Solution

14.

$[(\vec{a}+2 \vec{b}+3 \vec{c}) \times(\vec{b}+2 \vec{c}+3 \vec{a})], .(\vec{c}+2 \vec{a}+3 \vec{b})]=54$ where \vec{a}, \vec{b} and \vec{c} are 3 non -coplanar vectors, then the values of

$$
\left|\begin{array}{lll}
\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\
\vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\
\vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}
\end{array}\right| \text { is equal to }
$$

A. 9
B. 3
C. 6
D. 12

Answer: A

- Watch Video Solution

15. Let A be the point $(1,2,3)$ and B be a point on the line $\frac{x-1}{-2}=\frac{y+1}{3}=\frac{z-5}{4}=k$ Then value of k such that line AB is perpendicular to the plane $4 x+9 y-18 z=6$ is
A. $-\frac{2}{5}$
B. $\frac{1}{5}$
C. $\frac{2}{5}$
D. no such value of k is possible

Answer: C

16. Let the circumcentre of $\triangle A B C$ is $\mathrm{S}(-1,0)$ and the midpoints of sides $A B$ and $A C$ are $E(1,-2)$ and $F(-2,1)$ respectively , then the equation of the circumcircle of $\triangle A B C$ us
A. $(x+1)^{2}+y^{2}=5$
B. $(x+1)^{2}+y^{2}=10$
C. $(x+1)^{2}+y^{2}=15$
D. $(x+1)^{2}+y^{2}=1$

Answer: B

(D) Watch Video Solution

17. If p and q are two statements, then which of the following statements is not equivalent to $p \Leftrightarrow(p \Rightarrow q)$?

$$
\text { A. } p \wedge q
$$

B. $(p \Leftrightarrow q) \wedge(p \vee q)$
C. $(p \Rightarrow q) \Leftrightarrow q$
D. $(-p \Rightarrow q) \wedge(p \vee \sim q)$

Answer: D

- Watch Video Solution

18. Let $F(n)=(\sin 1) \times(\sin 2) \times \ldots \sin (n), \forall \mathrm{n} \in \mathrm{N}$ then number of elements in the set $A=\{f(1), f(2), \ldots \ldots \ldots, f(6)\}$ that are positive are

- Watch Video Solution

19. $a, b, c, \in N$ and $d=\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$, then the least positive value of D is
A. 4
B. 6
C. 3
D. 8

Answer: A

- Watch Video Solution

20. $F: R \rightarrow R, F(x)=\lambda x+\sin x$ is onto if λ is an element of the set P and $f(x)$ is one- one if λ is an element of the set Q, then (given , λ is a real number)
A. $P=Q$
B. $P \subset Q$
C. $P-Q=\{0\}$
D. $Q \subset P$

Answer: D

- Watch Video Solution

21. Consider circles $C_{1} \& C_{2}$ touching both the axes and passing through $(4,4)$, then the product of radii of these circles is

- Watch Video Solution

22. If $P(z)$ is a variable point in the complex plane such that $I M$ $\left(-\frac{1}{z}\right)=\frac{1}{4}$, then the value of the perimeter of the locus of $\mathrm{P}(\mathrm{z})$ is (use $\pi=3.14$)

- Watch Video Solution

23. The probability of India winning a test match against Australia is 1 $\frac{1}{4}$. Assuming the matches to be independent events, the probability
that in a 7 match series India's second win occurs at $4^{\text {th }}$ test is P, then
256 P is equal to
A. 15
B. 12
C. 27
D. 40

Answer: C

Watch Video Solution
24. The number of solutions of the equation $|\cot x|=\cot x+\operatorname{cosec} x$ in $[0,10 \pi]$ is /are

- Watch Video Solution

25. If α is the only real root of $x^{3}+b x^{2}+c x+1=0(b<c)$, then the value of $|[\alpha]|$ is (where,[.] represents the greatest integer function)

(D) Watch Video Solution

