©゙’ doubtnut

MATHS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 23

Mathematics

1. Two intersecting lines lying in plane P_{1} have equations

$$
\frac{x-1}{1}=\frac{y-3}{2}=\frac{z-4}{3} \text { and } \frac{x-1}{2}=\frac{y-3}{3}=\frac{z-4}{1}
$$

If the equation of plane P_{2} is $7 x-5 y+z-6=0$, then the distance between planes P_{1} and P_{2} is
A. $\frac{11}{5 \sqrt{3}}$
B. $\frac{2}{\sqrt{3}}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{7}{5 \sqrt{3}}$

Answer: B

- Watch Video Solution

2. If t is real and $\lambda=\frac{t^{2}-3 t+4}{t^{2}+3 t+4}$ then find number of the solution of the systems of equation
$3 x-y+4 z=0, x+2 y-3 z=-2.6 x+5 y+\lambda z=-3$
for a particular value of λ.
A. a unique solution
B. infinite solutions
C. no solution
D. 2 solutions

Answer: A

(Watch Video Solution

3. The solution of the differential equation
$2 y d x+x d y=2 x \sqrt{y} d x$ is (where, C is an arbitrary constant)
A. $x \sqrt{y}=x+C$
B. $x \sqrt{y}=\frac{x^{2}}{2}+C$
C. $\frac{x}{\sqrt{y}}=x+C$
D. $x y=C$

Answer: B

- Watch Video Solution

4. The mean and variance of 10 observation are found to be 10 and 4 respectively. On rechecking it was found that an observation 8 was incorrect. If it is replaced by 18 , then the correct variance is
A. 7
B. 8
C. 9
D. $\frac{55}{6}$

Answer: C
5. The sum of the series
$3+8+16+27+41 \ldots \ldots$. upto 20 terms is equal to
A. 4230
B. 4430
C. 4330
D. 4500

Answer: B

D Watch Video Solution

6. The greatest integer less than or equal to $(\sqrt{2}+1)^{6}$ is
A. 196
B. 197
C. 198
D. 199

Answer: B

D Watch Video Solution

7. If $\cos x-\sin x=-\frac{5}{4}$, where $\frac{\pi}{2}<x<\frac{3 \pi}{4}$, then $\cot \left(\frac{x}{2}\right)$ is equal to
A. $\frac{4-\sqrt{7}}{9}$
B. 8
C. -8
D. $\frac{4+\sqrt{7}}{9}$

Answer: D

D Watch Video Solution

8. In $\triangle P Q R$, the equation of the internal angle bisector of angle Q is $\mathrm{y}=\mathrm{x}$ and the equation of side PR is $3 x-y=2$. If coordinates of P are $(3,2)$ and $2 P Q=R Q$, then the coordinates of Q are
A. $(3,3)$
B. $(7,7)$
C. $(-2,-2)$
D. $(5,5)$

Answer: B

(D) Watch Video Solution

9. Let the lines l_{1} and l_{2} be normals to $y^{2}=4 x$ and tangents to $x^{2}=-12 y$ (where l_{1} and l_{2} are not $\mathrm{x}-\mathrm{axis}$). The absolute value of the difference of slopes of l_{1} and l_{2} is
A. 3
B. 2
C. 1
D. $\frac{1}{2}$

Answer: C
(Watch Video Solution
10. The value of $\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{2+3 x^{2}}$ is equal to
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. 1
D. 0

Answer: D

D Watch Video Solution
11. The value of $\lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left(\frac{2 r}{n^{2}}\right) e^{\frac{r^{2}}{n^{2}}}$ is equal to
A. e
B. 2 e
C. $e-2$
D. $e-1$

Answer: D

D Watch Video Solution

12. The direction cosines I, m and n of two lines are connected by the relations $l+m+n=0$ and $l m=0$, then the angle between the lines is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. 0

Answer: A

D Watch Video Solution

13. The function $f(x)=x^{3}-a x$ has a local minimum at $x=k$, where $k \geq 2$, then a possible value of a is
A. 9
B. 11
C. 13
D. 8

Answer: C
14. Let two circles having radii r_{1} and r_{2} are orthogonal to each other. If the length of their common chord is k times the square root of harmonic mean between the squares of their radii, then k^{4} is equal to
A. 13
B. 7
C. 4
D. 2

Answer: C

15. The value of $\int_{0}^{\frac{\pi}{2}}\left(\cos 2 x \cos 2^{2} x \cos 2^{3} x \cos 2^{4} x\right) d x$ is equal to
A. 0
B. $\frac{1}{2}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: A

- Watch Video Solution

16. Let A be a matrix of order 3×3 such that $|A|=3$. Let $B=3 A^{-1}$ and $C=\frac{a d j A}{2}$, then the value of $\left|A^{2} B^{3} C^{4}\right|$ is
A. $\frac{3^{16}}{2^{12}}$
B. $\left(\frac{3}{2}\right)^{12}$
C. $\frac{3^{10}}{2^{8}}$
D. $\frac{3^{12}}{2^{14}}$

Answer: A

D Watch Video Solution

$(\hat{p} \times \vec{q}) \times \hat{p}+(\hat{p} \cdot \vec{q}) \vec{q}=\left(x^{2}+y^{2}\right) \vec{q}+(14-4 x-6 y) \hat{p}$
where \hat{p} and \vec{q} are non-collinear vectors \hat{p} is a unit vector)
and x, y are scalars, then the value of $x^{2}+y^{2}$ is equal to
A. 10
B. 11
C. 12
D. 13

Answer: D

D Watch Video Solution

18. If p and q are two statements, then which of the following statement is a tautology
A. $p \Rightarrow(p \vee \sim q)$
B. $(p \vee q) \Rightarrow p$
C. $p \Rightarrow(p \wedge q)$
D. $p \Leftrightarrow(p \Rightarrow q)$

Answer: A

(D) Watch Video Solution

19. In an equilateral triangle $A B C$, equation of the sides $B C$ is $x+y-2=0$ and the centroid of $\Delta A B C$ is (0, 0). If points A, B and C are in anticlockwise order, then the equation of side $A C$ is
A. $(y+2)=(2-\sqrt{3})(x+2)$
B. $(y+2)=(2+\sqrt{3})(x+2)$
C. $(y+1)=(2+\sqrt{3})(x+1)$
D. $x+2=0$
20. The minimum distance between the curves
$y=\tan x, \forall x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\left(x-2-\frac{\pi}{4}\right)^{2}+y^{2}=1$
is
A. $\sqrt{2}-1$
B. $\sqrt{5}-1$
C. $\sqrt{5}+1$
D. 2

Answer: B
21. A fair die is thrown n number of times. If the probability
of always getting a number greater than the previous number is $\frac{5}{54}$, then the value of n is equal to $(n \leq 6)$.

D Watch Video Solution

22. How many 4 letter words can be formed from the word "MATHEMATICS" ?
A. 2500
B. 2454
C. 2400
D. 2254

Answer: B

(D) Watch Video Solution

23. If $f(x)=\left\{\begin{array}{ll}(1+|\sin x|)^{\frac{p}{|\sin x|}} & ,-\frac{\pi}{6}<x<0 \\ q & : x=0 \\ e^{\tan 3 x \cdot \cot 5 x} & : 0<x<\frac{\pi}{6}\end{array}\right.$ is
continuous at $\mathrm{x}=0$, then the value of $2 p+10 \ln q$ is equal to

(Watch Video Solution

24. If $f(x)=\sin x, g(x)=\cos x$ and $h(x)=\cos (\cos x)$, then the integral $I=\int f(g(x)) \cdot f(x) \cdot h(x) d x$ simplifies to $-\lambda \sin ^{2}(\cos x)+C$ (where, C is the constant of integration). The value of λ is equal to

- Watch Video Solution

25. If numerically greatest term in the expansion of $(3-5 x)^{11}$, where $x=\frac{1}{5}$, is 729λ, then the value of $\frac{\lambda}{150}$ is
