

MATHS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 23

Mathematics

1. Two intersecting lines lying in plane P_1 have equations $\frac{x-1}{1} = \frac{y-3}{2} = \frac{z-4}{3}$ and $\frac{x-1}{2} = \frac{y-3}{3} = \frac{z-4}{1}$. If the equation of plane P_2 is 7x - 5y + z - 6 = 0, then the distance between planes P_1 and P_2 is

A.
$$\frac{11}{5\sqrt{3}}$$

B.
$$\frac{2}{\sqrt{3}}$$

C. $\frac{1}{\sqrt{3}}$
D. $\frac{7}{5\sqrt{3}}$

Answer: B

2. If t is real and $\lambda = \frac{t^2 - 3t + 4}{t^2 + 3t + 4}$ then find number of the solution of the systems of equation $3x - y + 4z = 0, x + 2y - 3z = -2.6x + 5y + \lambda z = -3$

for a particular value of λ .

A. a unique solution

B. infinite solutions

C. no solution

D. 2 solutions

Answer: A

3. The solution of the differential equation $2ydx + xdy = 2x\sqrt{y}dx$ is (where, C is an arbitrary constant)

A.
$$x\sqrt{y}=x+C$$

B. $x\sqrt{y}=rac{x^2}{2}+C$
C. $rac{x}{\sqrt{y}}=x+C$

 $\mathsf{D}.\, xy = C$

Answer: B

Watch Video Solution

4. The mean and variance of 10 observation are found to be 10 and 4 respectively. On rechecking it was found that an observation 8 was incorrect. If it is replaced by 18, then the correct variance is

A. 7

B. 8

C. 9

D.
$$\frac{55}{6}$$

Answer: C

5. The sum of the series
3+8+16+27+41 upto 20 terms is equal to
A. 4230
B. 4430
C. 4330

D. 4500

6. The greatest integer less than or equal to $\left(\sqrt{2}+1
ight)^6$ is

A. 196

B. 197

C. 198

D. 199

7. If
$$\cos x - \sin x = -\frac{5}{4}$$
, where $\frac{\pi}{2} < x < \frac{3\pi}{4}$, then $\cot\left(\frac{x}{2}\right)$ is equal to
A. $\frac{4-\sqrt{7}}{9}$
B. 8
C. -8

D.
$$\frac{4+\sqrt{7}}{9}$$

Answer: D

8. In ΔPQR , the equation of the internal angle bisector of angle Q is y = x and the equation of side PR is 3x - y = 2. If coordinates of P are (3, 2) and 2PQ = RQ, then the coordinates of Q are

A. (3, 3)

B. (7, 7)

C. (-2, -2)

D. (5, 5)

Answer: B

Watch Video Solution

9. Let the lines l_1 and l_2 be normals to $y^2 = 4x$ and tangents to $x^2 = -12y$ (where l_1 and l_2 are not x - axis). The absolute value of the difference of slopes of l_1 and l_2 is

A. 3

B. 2

C. 1

D.
$$\frac{1}{2}$$

Answer: C

Answer: D

B. 2e

C.e-2

D.e-1

Answer: D

12. The direction cosines I, m and n of two lines are connected by the relations l + m + n = 0 and lm = 0, then the angle between the lines is

A.
$$\frac{\pi}{3}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$

Answer: A

Watch Video Solution

13. The function $f(x) = x^3 - ax$ has a local minimum at x = k, where $k \geq 2$, then a possible value of a is

A. 9

B. 11

C. 13

D. 8

Answer: C

14. Let two circles having radii r_1 and r_2 are orthogonal to each other. If the length of their common chord is k times the square root of harmonic mean between the squares of their radii, then k^4 is equal to

A. 13

B. 7

C. 4

D. 2

Answer: C

Watch Video Solution

15. The value of
$$\int_0^{\frac{\pi}{2}} \left(\cos 2x \cos 2^2 x \cos 2^3 x \cos 2^4 x\right) dx$$
 is

equal to

A. 0
B.
$$\frac{1}{2}$$

C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: A

16. Let A be a matrix of order 3 imes 3 such that |A|=3. Let

 $B=3A^{-1}\,\,{
m and}\,\,C=rac{adjA}{2}$, then the value of $\left|A^2B^3C^4
ight|$ is

A.
$$rac{3^{16}}{2^{12}}$$

B.
$$\left(\frac{3}{2}\right)^{12}$$

C. $\frac{3^{10}}{2^8}$
D. $\frac{3^{12}}{2^{14}}$

Answer: A

17. Let $(\hat{p} \times \overrightarrow{q}) \times \hat{p} + (\hat{p}, \overrightarrow{q}) \overrightarrow{q} = (x^2 + y^2) \overrightarrow{q} + (14 - 4x - 6y) \hat{p}$ where \hat{p} and \overrightarrow{q} are non - collinear vectors \hat{p} is a unit vector) and x, y are scalars, then the value of $x^2 + y^2$ is equal to

A. 10

B. 11

C. 12

D. 13

Answer: D

Watch Video Solution

18. If p and q are two statements, then which of the following statement is a tautology

A.
$$p \Rightarrow (p \lor {\mathsf{\neg}} q)$$

- $\mathsf{B.}\,(p\vee q)\Rightarrow p$
- $\mathsf{C}.\,p \Rightarrow (p \wedge q)$

D. $p \Leftrightarrow (p \Rightarrow q)$

Answer: A

19. In an equilateral triangle ABC, equation of the sides BC is x + y - 2 = 0 and the centroid of ΔABC is (0, 0). If points A, B and C are in anticlockwise order, then the equation of side AC is

A.
$$(y+2) = (2-\sqrt{3})(x+2)$$

B. $(y+2) = (2+\sqrt{3})(x+2)$
C. $(y+1) = (2+\sqrt{3})(x+1)$
D. $x+2 = 0$

20. The minimum distance between the curves $y= an x,\ orall x\in \left(-rac{\pi}{2},rac{\pi}{2}
ight) ext{ and } \left(x-2-rac{\pi}{4}
ight)^2+y^2=1$ is

- A. $\sqrt{2}-1$
- B. $\sqrt{5} 1$
- $\mathsf{C}.\sqrt{5}+1$
- D. 2

Answer: B

Watch Video Solution

21. A fair die is thrown n number of times. If the probability of always getting a number greater than the previous number is $\frac{5}{54}$, then the value of n is equal to $(n \le 6)$.

Watch Video Solution

22. How many 4 letter words can be formed from the word

"MATHEMATICS" ?

A. 2500

B. 2454

C. 2400

D. 2254

$$\textbf{23.} \quad \mathsf{lf} \quad f(x) = \begin{cases} \left. (1 + |\sin x| \right)^{\frac{p}{|\sin x|}} &, \quad -\frac{\pi}{6} < x < 0 \\ q & : \quad x = 0 \\ e^{\tan 3x \cdot \cot 5x} & : \quad 0 < x < \frac{\pi}{6} \end{cases} \qquad \text{is}$$

continuous at x = 0, then the value of $2p + 10 \ln q$ is equal to

24. If $f(x) = \sin x$, $g(x) = \cos x$ and $h(x) = \cos(\cos x)$, then the integral $I = \int f(g(x)) \cdot f(x) \cdot h(x) dx$ simplifies to $-\lambda \sin^2(\cos x) + C$ (where, C is the constant of integration). The value of λ is equal to

25. If numerically greatest term in the expansion of $(3-5x)^{11}$, where $x=rac{1}{5}$, is 729λ , then the value of $rac{\lambda}{150}$ is

Watch Video Solution