

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 3

Mathematics

1. The probability distribution of a random variable X is given as

Then, the value of p is

A.
$$\frac{1}{72}$$

B.
$$\frac{3}{73}$$

$$\mathsf{C.}\,\frac{5}{72}$$

D.
$$\frac{1}{74}$$

Answer: A

Watch Video Solution

- **2.** The lengths of two adjacent sides of a cyclic quadrilateral are 2 units and 5 units and the angle between them is 60° . If the area of the quadrilateral is $4\sqrt{3}$ sq. units, then the perimeter of the quadrilateral is
 - A. 12.5 units
 - B. 13 units
 - C. 13.2 units
 - D. 12 units

Answer: D

Watch Video Solution

3. If $f(x) = \cos(\log x)$, then $f(x)f(y) - rac{1}{2} \left[f \left(rac{x}{y}
ight) + f(xy)
ight] =$

A.
$$-1$$

B.
$$\frac{1}{2}$$

$$\mathsf{C.}-2$$

D. 0

Answer: D

Watch Video Solution

- **4.** The coefficient of the term independent of x in $\left[\sqrt{\left(\frac{x}{3}\right)} + \frac{\sqrt{3}}{x^2}\right]^{10}$ is $\mathsf{A.} \; \frac{5}{3}$
 - B. $\frac{4}{5}$
 - C. 6
 - D. $\frac{1}{2}$

Answer: A

5. The area bounded by
$$y=xe^{\,|x\,|}$$
 and the lines $|x|=1,y=0$ is

- A. 4 sq units
- B. 6 sq units
- C. 1 sq units
- D. 2 sq units

Answer: D

- **6.** Minimum distance between the curves $y^2=x-1$ and $x^2=y-1$ is equal to:
 - A. $\frac{3\sqrt{2}}{4}$ units
 - B. $\frac{5\sqrt{2}}{4}$ units

C.
$$\frac{7\sqrt{2}}{4}$$
 units
D. $\frac{\sqrt{2}}{4}$ units

Answer: A

Watch Video Solution

- **7.** The integral $\int_{-\frac{1}{2}}^{\frac{1}{2}} \left([x] + \log \left(\frac{1+x}{1-x} \right) \right) dx$ equals to ([x] is the greatest integer $\leq x$)
 - A. $-\frac{1}{2}$
 - B. 1
 - C. $2\ln\left(\frac{1}{2}\right)$
 - D. 0

Answer: A

8. How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?

- A. 360
- B. 350
- C. 400
- D. 390

Answer: A

- **9.** If f(x+y,x-y)=xy, then the arithmetic mean of f(x,y) and f(y,x) is
 - A. x
 - B. y

D.
$$\frac{x^2-y^2}{2}$$

Answer: C

Watch Video Solution

10. Find the real values of x and y satisfying the equation :

$$\frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i$$

A.
$$x = -1, y = 3$$

B.
$$x = 3, y = -1$$

$$C. x = 0, y = 1$$

D.
$$x = 1, y = 0$$

Answer: B

11. Tangent to a curve intercepts the y-axis at a point P. A line perpendicular to this tangent through P passes through another point (1,0). The differential equation of the curve is

A.
$$yrac{dy}{dx}-xigg(rac{dy}{dx}igg)^2=1$$
B. $xrac{d^2y}{dx^2}+igg(rac{dy}{dx}igg)^2=1$
C. $yrac{dx}{dy}+x=1$

D. None of these

Answer: A

12. If
$$m$$
 is a positive integer and

$$\Delta_r=egin{array}{cccc} 2r-1 & m_{C_r} & 1\ m^2-1 & 2^m & m+1\ \sin^2ig(m^2ig) & \sin^2(m) & \sin^2(m+1) \end{array}$$
 , then the value of $\sum_{r=0}^m\Delta_r$ is

B. 3

D. 0

Answer: D

Watch Video Solution

If

$$\alpha = \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) + \sin^{-1}\left(\frac{1}{3}\right), \beta = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) + \cos^{-1}\left(\frac{1}{3}\right)$$

then

13.

A. $\alpha > \beta$

 $B. \alpha = \beta$

C.
$$lpha < eta$$

D.
$$lpha + eta = 2\pi$$

14. The logically equivalent proposition of $p \leftrightarrow q$ is

A.
$$(p \wedge q) ee (p \wedge q)$$

B.
$$(p o q)\wedge (q o p)$$

$$\mathsf{C.}\left(p\wedge q\right)\vee\left(q\rightarrow p\right)$$

D.
$$(p \wedge q) o (q ee p)$$

Answer: B

15. If
$$\log_{10}\!\left(rac{x^3-y^3}{x^3+y^3}
ight)=$$
 2, then $rac{dy}{dx}=$

A.
$$\frac{x}{y}$$

$$\mathsf{B.}-rac{y}{x}$$

$$C. - \frac{2}{3}$$

D. $\frac{y}{x}$

Answer: D

Watch Video Solution

16. If A is the set of even natural number less than 8 and B is the set of prime numbers less then 7, then the number of relations from A to B is

- A. 2^{9}
- $B. 9^2$
- $C. 3^2$
- D. 2^{9-1}

Answer: A

17. For real x, the function $\dfrac{(x-a)(x-b)}{x-c}$ will assume all real values provided

A.
$$a>b>c$$

$$\mathtt{B.}\, a < b < c$$

$$\mathsf{C.}\, a > c > b$$

D.
$$a \leq c \leq b$$

Answer: D

- **18.** OPQR is a square and M,N are the middle points of the sides PQ and QR respectively. Then the ratio of the area of the square to that of triangle OMN is
 - **A.** 4:1
 - B. 2:1

C. 8:3

D.7:3

Answer: C

Watch Video Solution

$$19. \int \frac{\sin^4 x}{\cos^8 x} dx$$

$$\mathsf{A.}\left(\frac{1+\tan^5 x}{5}\right)+\frac{\tan^5 x}{7}+C$$

$$\mathsf{B.}\ \frac{\tan^5 x}{5} + \frac{\tan^7 x}{7} + C$$

$$\mathsf{C.}\ \frac{\tan^7 x}{5} + \frac{\tan^5 x}{7} + C$$

D. None of these

Answer: B

20. If x=3 is the chord of the contact of the circle $x^2+y^2=81$, then the equation of the corresponding pair of tangents, is

$$A. x^2 + 8y^2 + 54x + 729 = 0$$

$$B. x^2 - 8y^2 - 54x + 729 = 0$$

$$\mathsf{C.}\,x^2 - 8y^2 - 54x - 729 = 0$$

D.
$$x^2 - 8y^2 = 729$$

Answer: B

21. The number of solutions, the equation $\sin^4 x + \cos^4 x = \sin x \cos x$ has, in $[\pi, 5\pi]$ is/are

22. A tower subtends angles lpha, 2lpha, 3lpha respectively, at point A, B, and C

all lying on a horizontal line through the foot of the tower. If

23.

 $y=\sin^{-1}(\sin 8)-\tan^{-1}(\tan 10)+\cos^{-1}(\cos 12)-\sec^{-1}(\sec 9)+\cot^{-1}$. If y simplifies to $a\pi+b$, then find (a-b).

Let

these numbers exceeds the smaller lpha by 12 and the arithmetic mean of the same number is smaller by 24 than the larger number eta , then the value of |eta-lpha| is

24. Let α and β be two number where $\alpha < \beta$ The geometric mean of

25. The value of f(0), so that the function

$$f(x) = rac{1-\cos(1-\cos x)}{x^4}$$
 is continuous everywhere is k, then value of

10k is

