

MATHS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 4

Mathemetic Single Choice

- 1. The relation less than in the set of natural numbers is
 - A. only symmetric
 - B. only transitive
 - C. only reflexive
 - D. an equivalence relation

Answer: B

Watch Video Solution

- **2.** If $I_1=\int_0^\pi rac{x\sin x}{1+\cos^2 x}dx,\,I_2=\int_0^\pi x\sin^4 xdx$ then, $I_1\!:\!I_2$ is equal to
 - A. 3:4
 - B. 1: 2
 - C. 4:3
 - D. 2:3

Answer: C

3. The roots of the equation $x^2-2\sqrt{3}x+2=0$ represent two sides of a triangle. If the angle between them is $\frac{\pi}{3}$. , then the perimeter of the triangle is

- A. $2\sqrt{3}$ units
- B. $\sqrt{6}$ units
- C. $2\sqrt{3} + \sqrt{6}$ units
- D. $2(\sqrt{3}+\sqrt{6})$ units

Answer: C

Watch Video Solution

4. At an election a voter may vote for any number of candidates, not greater than the number to be elected. There are 10

candidates and 4 are to be elected. If a voter for atleast one candidates, then the number of ways in which he can vote is

- A. 6210
- B. 385
- C. 1110
- D. 5040

Answer: B

Watch Video Solution

5. For any natural number m, evaulate,

$$\int \!\! \left(x^{3m}+x^{2m}+x^m
ight)\! \left(2x^{2m}+3x^m+6
ight)^{rac{1}{m}}\! dx, x>0$$

A.
$$\dfrac{1}{6(m+1)}ig\{2x^{3m}+3x^{2m}+6x^mig\}^{(\,1\,/\,m\,)\,+\,1}+C$$

B.
$$rac{1}{6m}ig\{2x^{3m}+3x^{2m}+6x^mig\}^{(1/m)+1}+C$$

C.
$$\frac{1}{6m} ig\{ 2x^{3m} + 3x^{2m} + 6x^m ig\}^{1/m} + C$$

D. None of the above

Answer: A

- **6.** If 2(y-a) is the H.M. between y-x and y-z then x-a,y-a,z-a are in
 - A. arithmetic progression
 - B. geometri progression
 - C. harmonic progression
 - D. none of these

Answer: B

Watch Video Solution

7. Find the number of quadratic equations, which are unchanged by squaring their roots.

A. 2

B. 4

C. 6

D. 8

Answer: B

8. If $\frac{1+3p}{3}$, $\frac{1-p}{4}$, $\frac{1-2p}{2}$ are the probabilities of 3 mutually exclusive events then find the set of all values of p.

A.
$$rac{1}{3} \leq p \leq rac{1}{2}$$

B.
$$rac{1}{4} \leq p \leq rac{1}{2}$$

C.
$$\dfrac{1}{3} \leq p \leq \dfrac{2}{3}$$
D. $\dfrac{1}{3} \leq p \leq \dfrac{2}{5}$

Answer: A

Watch Video Solution

9. The function $f(x) = \sec \Bigl[\log \Bigl(x + \sqrt{1+x^2} \Bigr) \Bigr]$ is

A. an odd function

B. an even function

C. neither an odd nor an even function

D. a constant function

Answer: B

Watch Video Solution

10. The equation of the bisectors of the angles between the lines represented by the equation

$$2(x+2)^2 + 3(x+2)(y-2) - 2(y-2)^2 = 0$$
 is

A.
$$3x^2 - 8xy - 3y^2 - 28x + 4y + 32 = 0$$

B.
$$3x^2 + 8xy - 3y^2 + 28x - 4y + 32 = 0$$

$$\mathsf{C.}\, 3x^2 - 8xy - 3y^2 + 28x - 4y + 32 = 0$$

D.
$$3x^2 - 8xy - 3y^2 + 28x - 4y - 32 = 0$$

Watch Video Solution

11. Let $\phi(x)$ be the inverse of the function f(x) and $f'=rac{1}{1+x^5},$ then $rac{d}{dx}\phi(x)$ is

A.
$$\dfrac{1}{1+\left[\phi(x)
ight]^5}$$

$$\text{B.}\ \frac{1}{1+\left[f(x)\right]^5}$$

$$\mathsf{C.}\,1+\left[\phi(x)\right]^{5}$$

D.
$$1 + f(x)$$

Answer: C

12. The possible values of scalar k such that the matrix

$$A^{-1}-kI$$
 is singular where $A=egin{bmatrix}1&0&2\0&2&1\1&0&0\end{bmatrix}$, are

A.
$$\frac{-1}{2}$$
, 2

B.
$$-1, \frac{1}{2}$$

$$\mathsf{C.}\,\frac{1}{2},\frac{-1}{2}$$

$$D. -1, 1$$

Answer: B

Watch Video Solution

13. The negation of $p \wedge (q o extstyle r)$ is

A.
$$p \wedge (q \wedge r)$$

C.
$$pee (q\wedge r)$$

B. $p \vee (q \vee r)$

D. ~
$$pee(q\wedge r)$$

Answer: D

Watch Video Solution

If

14.

14. If
$$1+\sin\theta+\sin^2\theta+\sin^3\theta+\ldots\infty=4+2\sqrt{3}, 0<\theta<\pi, \theta\neq\frac{\pi}{2}$$

$$+\sin heta +$$
en

A.
$$heta=rac{\pi}{3}$$

B.
$$heta=rac{\pi}{6}$$

B.
$$\theta = \frac{\pi}{6}$$
C. $\theta = \frac{\pi}{3}$ or $\frac{\pi}{6}$

C.
$$heta=rac{\pi}{3} ext{ or } rac{\pi}{6}$$
D. $heta=rac{\pi}{3} ext{ or } rac{2\pi}{3}$

Watch Video Solution

15. The function $f(x)=rac{1-\sin x+\cos x}{1+\sin x+\cos x}$ is not defined at $x=\pi.$ The value of $f(\pi)$, so that f(x) is continuous at $x=\pi,$ is

$$\mathsf{A.}-\frac{1}{2}$$

$$\mathsf{B.}\,\frac{1}{2}$$

$$C. -1$$

D. 1

Answer: C

16. If $f(x) = 3x^4 + 4x^3 - 12x^2 + 12$, then f(x) is

A. increasing in $(-\infty,\ -2)\cup(0,1)$

B. increasing in $(\,-2,0)\cup(1,\infty)$

C. decreasing in $(\,-2,0)\cup(0,1)$

D. decreasing in $(-\infty, -2) \cup (1, \infty)$

The complete solution set of the inequality

Answer: B

17.

Watch Video Solution

 $\cos^{-1}(\cos 4)>3x^2-4x$ is

A.
$$\left(0, \frac{2+\sqrt{6\pi-8}}{3}\right)$$

$$\mathsf{B.}\left(\frac{2-\sqrt{6\pi-8}}{3},0\right)$$

$$\mathsf{C.}\,(\,-2,2)$$

D.
$$\left(\frac{2-\sqrt{6\pi-8}}{3}, \frac{2+\sqrt{6\pi-8}}{3}\right)$$

Answer: D

Watch Video Solution

18. A ladder 5 m long leans against a vertical wall. The bottom of the ladder is 3m from the wall. If the bottom of the ladder is pulled 1 m farther from the wall, how much does the top of the ladder slide down the wall

A. 1 m

B. 4 m

C. 2 m

Answer: A

Watch Video Solution

- **19.** The area bounded by the curve $y=\frac{1}{2}x^2$, the X-axis and the lines x = 2 is
 - A. $\frac{1}{3}$ sq unit
 - B. $\frac{2}{3}$ unit
 - C. 1 sq unit
 - D. $\frac{4}{3}$ sq unit

Answer: D

20. If
$$\left(1+x-2x^2\right)^6=1+a_1x+a_2x^{12}+......+a_{12}x^{12},$$

then find the value of $a_2+a_4+a_6+....$. + $a_{12}\cdot$

- A. 31
- B. 32
- C. 64
- D. 1024

Answer: A

Watch Video Solution

Mathemetic Subjective Numerical

1. Evaluate $\lim_{x \to 2} \frac{3^x + 3^{3-x} - 12}{3^{\frac{-x}{2}} - 3^{1-x}}$

A.6

B. 18

C.24

D. 36

Answer: D

Watch Video Solution

2. Consider a family of circles passing through two fixed points S(3,7) and B(6,5). If the common chords of the circle $x^2+y^2-4x-6y-3=0$ and the members of the family of

circles pass through a fixed point (a,b), then find the values of a

A.
$$a = 2, b = \frac{22}{3}$$

$$\operatorname{B.} a = 3, b = \frac{22}{3}$$

C.
$$a = 2, b = \frac{25}{3}$$

D.
$$a = 1, b = \frac{17}{3}$$

Answer: A

& b.

Watch Video Solution

3. P is a point on the parabola whose ordinate equals its abscissa. A normal is drawn to the parabola at P to meet it again at Q. If S is the focus of the parabola, then the product of the slopes of SP and SQ is

4. If
$$z=rac{1}{2}ig(\sqrt{3}-iig)$$
 and the least positive integral value of n such that $ig(z^{101}+i^{109}ig)^{106}=z^n$ is k, then the value of $rac{2}{5}k$ is equal to

5. Find the angle between the pair of tangents from the point

(1,2) to the ellipse
$$3x^2+2y^2=5$$
 from the point $(1,2)$ is

$$\left|\tan^{-1}\left(\frac{12}{\sqrt{\lambda}}\right)\right|$$
, then the value of λ is

