

MATHS

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 7

Mathematics Single Choice

1. If
$$\log(x+y)=2xy$$
, then $y'(0)$ is

A. 1

B. - 1

C. 2

D. 0

Answer: A

Watch Video Solution

2. The value of the parameter a such that the area bounded by $y = a^2x^2 + ax + 1$, coordinate axes, and the line x=1 attains its least value is equal to

A.
$$-\frac{1}{4}$$

$$\mathsf{B.}-\frac{1}{2}$$

$$\mathsf{C.}-rac{3}{4}$$

$$D.-1$$

3.
$$\int (\sqrt{\tan x} + \sqrt{\cot x}) dx$$
 is equal to

A.
$$\sqrt{2}\sin^{-1}(\sin x + \cos x) + C$$

B.
$$\sqrt{2}\cos^{-1}(\sin x - \cos x) + C$$

C.
$$\sqrt{2}\sin^{-1}(\sin x - \cos x) + C$$

D.
$$\sqrt{2}\cos^{-1}(\sin x + \cos x) + C$$

Watch Video Solution

4. Digit at the units place of sum of

$$(1!)^2 + (2!)^2 + (3!)^2 \dots + (2008!)^2$$
 is

A. 5

B. 7

C. 9

D. 6

Answer: B

Watch Video Solution

5. Let a,b,c, be any real number. Suppose that there are real numbers x,y,z not all zero such that

$$x = cy + bz$$
, $y = az + cx$ and $z = bx + ay$.

Then

$$a^2+b^2+c^2$$
 +2abc is equal to

A. 1

$$C. -1$$

Answer: A

6. If
$$f(x)=\sinigg(\lim_{t o 0}rac{2x}{\pi}\cot^{-1}igg(rac{x}{t^2}igg)igg)$$
, then $\int_{-rac{\pi}{2}}^{rac{\pi}{2}}f(x)\,\mathrm{d}x$ is equal to (where , $x
eq 0$)

$$A.-2$$

B. - 1

C. 0

D. 2

Answer: B

Watch Video Solution

7. If $p o (extit{-}p ee q)$ is false, then the truth values of p and q are respectively

A. F,T

B. F,F

C. T,T

D. T,F

Answer: D

Watch Video Solution

8. A foot of the normal from the point (4,3) to a circle is (2, 1) and a diameter of the circle has the equation 2x - y - 2 = 0. Then the equation of the circle is:

A.
$$x^2 + y^2 - 4y + 2 = 0$$

B.
$$x^2 + y^2 - 4y + 1 = 0$$

C.
$$x^2 + y^2 - 2x - 1 = 0$$

D.
$$x^2 + y^2 - 2x + 1 = 0$$

Watch Video Solution

9. If
$$x$$
 is rational and $4\left(x^2+rac{1}{x^2}
ight)+16\left(x+rac{1}{x}
ight)-57=0$, then

the product of all possible values of x is

A. 4

- B. 3
- C. 2
- D. 1

Answer: D

Watch Video Solution

10. Mean and variance of 20 observation are 10 and 4. It was found, that in place of 11, 9 was taken by mistake find correct variance.

A. 3.99

B. 4.01

C. 4.02

D. 3.98

Answer: A

Watch Video Solution

11. Sum of first 20 terms of $rac{3}{1^2} + rac{5}{1^2 + 2^2} + rac{7}{1^2 + 2^2 + 3^2}$ +... upto 20 terms is $\frac{k}{21}$, then k is equal to :

A. 240

B. 120

C. 60

D. 80

Answer: B

Watch Video Solution

12. if $tan(k+1)\theta = tan \theta$, then θ belongs to the set

A. $\{n\pi\colon n\in I\}$

 $\mathtt{B.}\left\{\frac{n\pi}{2}\!:\!n\in I\right\}$

C.
$$\left\{ rac{n\pi}{k} \colon n \in I
ight\}$$

D.
$$\left\{rac{n\pi}{4}\!:\!n\in I
ight\}$$

Watch Video Solution

13. If
$$z+rac{1}{z}+1=0$$
, ${
m then}z^{2003}+rac{1}{z^{2003}}$ is equal to

A. 1

B. - 1

C. 0

D. None of these

Answer: B

Watch Video Solution

14. When the elevation of the sun changes from 45° to 30° , the shadow of a tower increases by 60 units then the height of the tower is

A. $30\sqrt{3}$ units

B. $30\sqrt{2}$ units

C. $30(\sqrt{3}+1)$ units

D. $30(\sqrt{2}+1)$ units

Answer: C

15. The value of
$$\lim_{x o\infty}\ \left(\frac{3x-4}{3x+2}\right)^{\left(\frac{x+1}{3}\right)}$$
 is

A.
$$e^{-1/3}$$

B.
$$e^{-2/3}$$

$$\mathsf{C.}\,e^{-1}$$

D.
$$e^{-2}$$

Answer: B

Watch Video Solution

16. If $f(x) = \sin x + \cos x$ and $g(x) = x^2 - 1$, then g(f(x)) is invertible in the domain .

A.
$$\left[0, \frac{\pi}{2}\right]$$

B.
$$\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$$

$$\mathsf{C.}\left[\,-\,\frac{\pi}{2},\,\frac{\pi}{2}\,\right]$$

D.
$$[0, \pi]$$

Answer: B

17. For
$$x \in R, f(x) = \left|\log 2 - \sin x\right| ext{ and } g(x) = f(f(x)),$$

A.
$$g'(0) = -\cos(\log 2)$$

then

B. g is not differentiable at
$$x = 0$$

$$g'(0) = -\sin(\log 2)$$

C. g is not differentiable at
$$x = 0$$

$$\mathsf{D}.\,g^{\,\prime}(0)=\cos(\log)2$$

Answer: D

Watch Video Solution

18. The differential equation obtained bv eliminating the arbitrary constants a and b from

$$xy = ae^x + be^{-x}$$
 is

A.
$$xrac{d^2y}{dx^2}+2rac{dy}{dx}-xy=0$$

B.
$$rac{d^2y}{dx^2}+2rac{dy}{dx}-xy=0$$

C.
$$rac{d^2y}{dx^2}+2rac{dy}{dx}+xy=0$$

D.
$$rac{d^2y}{dx^2}+rac{dy}{dx}-xy=0$$

Answer: A

Watch Video Solution

19. A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : $x R y \Rightarrow x$ is relatively prime to y. Then, domain of R is

- A. $\{2, 3, 5\}$
- B. $\{3, 5\}$
- $\mathsf{C}.\ \{2,\,3,\,4\}$
- D. $\{2, 3, 4, 5\}$

Answer: D

Watch Video Solution

- **20.** Solution set of $\lceil \sin^{-1} x \rceil > \lceil \cos^{-1} x \rceil$. where
- $[\cdot]$ denotes greatest integer function

A.
$$\left[\frac{1}{\sqrt{2}}, 1\right]$$

 $B. (\cos 1, \sin 1)$

C. $[\sin 1, 1]$

D. None of these

Watch Video Solution

Mathematics Subjective Numerical

1. If $f(x) = \cos |x| - 2ax + b$ is a function, which increases for all x, then the maximum value of 2a+1 is

2. Find the distance of the point (-1,-5,-10) from the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and plane x-y+z=5. is 13t, then the value of t equals to

3. The sum of the binomial coefficients in the expansion of $\left(x^{-\frac{3}{4}} + ax^{\frac{5}{4}}\right)^n$ lies between 200 and 400 and the term independent of x equals 448. The value of a is :-

4. A biased coin with probability P, (0 < p, 1) of heads is tossed until a head appear for the first time. If the probability that the number of tosses required is even is $\frac{2}{5}$ then p=

Watch Video Solution

5. If the straight line drawn through the point $P\left(\sqrt{3},2\right)$ and making an angle $\frac{\pi}{6}$ with the x-axis

meets the line $\sqrt{3}x-4y+8=0$ at Q, find the length of PQ.

