

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 100

Mathematics

1. The value of x for which for fourth term in the

expansion of
$$\left(5^{\left(\frac{2}{5}\right)\log_5\sqrt{4^x+44}}+\frac{1}{5^{\log_5\sqrt[3]{2^{x-1}+7}}}\right)^8$$
 is

336 can be equal to

A.
$$\frac{1}{2}$$

B. 1

C. 2

D. 3

Answer: A

Watch Video Solution

 $\lim_{x
ightarrow 0} \, rac{\sin 2x}{ an \Big(rac{x}{k}\Big)} = L_1 \, ext{ and } \, \lim_{x
ightarrow 0} \, rac{e^{2x}-1}{x} = L_2,$

Let

and the value of L_1L_2 is 8, then k is

- A. 4
- B. 8
- C. 6
- D. 2

Answer: D

x=0 to $x=\pi$ is

Watch Video Solution

3. The area (in sq. units) bounded between $y = 6 \sin x \, ext{ and } y + 8 \sin^3 x = 0$ from

A.
$$10\pi$$

$$\mathrm{B.}~\frac{34\pi}{3}$$

C. 8

$$\text{D.}\ \frac{68}{3}$$

Answer: D

Watch Video Solution

4. If $an 25^\circ = a$, then the value of $rac{ an 205^{\circ} - an 115^{\circ}}{ an 245^{\circ} + an 335^{\circ}}$ in terms of a is

A.
$$\frac{1-a^2}{1+a^2}$$

$$B. \frac{1-a}{2a}$$

$$\mathsf{C.}\,\frac{2a}{1+a^2}$$

D.
$$\frac{1+a^2}{1-a^2}$$

Answer: D

5. The equation of the line which intersect each of the two lines
$$2x+y-1=0=x-2y+3z$$
 and $3x-y+z+2=0=4x+5y-2z-3=0$ and is parallel to $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ is

A.
$$4x + 7y - 6z - 1 = 0 = 2x - 7y + 4z + 3$$

B. 4x + 7y - 6z - 4 = 0 = 2x - 7y + 4z + 2

C. 4x + 7y - 6z - 3 = 0 = 2x - 7y + 4z + 7

D. 4x + 7y - 6z + 7 = 0 = 2x - 7y + 4z - 3

Answer: C

Watch Video Solution

6. The locus of mid - points of all chords of parabola $y^2=4x,\,\,$ for which all cirlces drawn taking them as diameters passes through the vertex of the parabola is a conic whose length of the smallest focal chord is equal to

- A. 1 units
- B. 2 units
- C. 3 units
- D. 4 units

Answer: B

Watch Video Solution

7. An exam consists of 3 problems selected randomly from a collection of 10 problems. For a student to pass, he needs to solve correctly at least two of three problems. If the student knows to solve exactly

5 problems, then the probability that the students

pass the exam is

A.
$$\frac{1}{2}$$

A.
$$\frac{1}{2}$$
B. $\frac{1}{3}$
C. $\frac{3}{4}$
D. $\frac{5}{6}$

$$\cdot \frac{3}{4}$$

D.
$$\frac{5}{6}$$

Answer: A

8. If the matrix
$$A=\begin{bmatrix}2&5\\1&3\end{bmatrix}$$
, then the value of

$$rac{\left|A^{100}+A^{98}
ight|}{\left|A^{20}+A^{18}
ight|}$$
 is equal to

- A. 0
- B. 1
- C. 2
- D. 3

Answer: B

9. Let
$$f(x)=rac{x(3^x-1)}{1-\cos x}$$
 for $x
eq 0$. Then value of $f(0)$, which make f(x) continuous at x = 0, is

A.
$$\log 3$$

$$\mathsf{B.}\;\frac{1}{2}\!\log 3$$

$$\mathsf{C.}\,\frac{1}{2\log 3}$$

D.
$$2 \log 3$$

Answer: D

10. The total number of divisors of the number

$$N=2^5.3^4.5^{10}.7^6$$
 that are of the form

 $4K+2,\ orall K\in N$ is equal to

A. 385

B. 384

C. 96

D. 77

Answer: B

11. The value of $\sin^{-1}\sin 17 + \cos^{-1}\cos 10$ is equal

A. 27

to

 ${\rm B.}-27$

C. $17-5\pi$

D. $9\pi-27$

Answer: D

12. For any two sets A and B, the values of $\left[(A-B)\cup B\right]^C$ is equal to

A.
$$A^C \cap B^C$$

$$\operatorname{B.}A\cup B$$

$$\mathsf{C}.A-B$$

$$\operatorname{D.}B-A$$

Answer: A

13. Tangents are drawn to a unit circle with centre at the origin from each point on the line 2x+y=4. Then the equation to the locus of the middle point of the chord of contact is

A.
$$\frac{\pi}{4}$$

B.
$$\frac{\pi}{16}$$

C.
$$\frac{\pi}{8}$$

D.
$$\frac{\sqrt{2}\pi}{8}$$

Answer: C

14. A straight line L cuts the sides AB, AC, AD of a parallelogram ABCD at B_1, C_1, d_1 respectively. If $\overrightarrow{AB_1} = \lambda_1 \overrightarrow{AB}, \overrightarrow{AD_1} = \lambda_2 \overrightarrow{AD}$ and $\overrightarrow{AC_1} = \lambda_3 \overrightarrow{AC},$ then $\frac{1}{\lambda_2}$ equal to

A.
$$\frac{1}{\lambda_1} + \frac{1}{\lambda_2}$$

B.
$$\frac{1}{\lambda_1} - \frac{1}{\lambda_2}$$

$$\mathsf{C.} - \lambda_1 + \lambda_2$$

D.
$$\lambda_1 + \lambda_2$$

Answer: A

15. If eccentricity of the ellipse

$$rac{x^2}{a^2+1}+rac{y^2}{a^2+2}=1$$
 is $rac{1}{\sqrt{6}}$, then the ratio of the length of the latus rectum to the length of the major axis is

- A. $\frac{5}{6}$
- B. $\frac{3}{\sqrt{6}}$ C. $\frac{2}{3}$
- D. $\frac{2}{\sqrt{6}}$

Answer: A

16. If the cubic equation

 $z^3+az^2+bz+c=0\,orall a, b,c\in R,c
eq 0$ has a purely imaginary root, then (where $i^2=-1$)

A.
$$c = ab$$

$$B.b = ac$$

C. the imaginary root is equal to $\pm ic$

D. the imaginary root is equal to $\pm ia$

Answer: A

17. If the integral $I_n=\int_0^{rac{\pi}{2}}rac{\sin(2n-1)x}{\sin x}dx$. Then the value of $\left[I_{20}
ight]^3-\left[I_{19}
ight]^3$ is

B. 200

C. 361

D. 0

Answer: D

18. In an arithmetic progression the $(p+1)^{ ext{th}}$ term is twice the $(q+1)^{ ext{th}}$ term. If its $(3p+1)^{ ext{th}}$ term is λ times the $(p+q+1)^{ ext{th}}$ term, then λ is equal to

- A. 2
- B. $\frac{1}{2}$
- C. 3
- D. $\frac{1}{3}$

Answer: A

19. If f(x) is a differentiable function satisfying

 $|f'(x)| \leq 4\, orall x \in [0,4]$ and f(0)=0, then

A. f(x)=18 has no solution in $x\in[0,4]$

 ${
m B.}\,f(x)=18$ has nore than 2 solutions in

 $x \in [0, 4]$

C. f(x)=14 has no solution in $x\in[0,4]$

D. f(x)=20 has 2 solution in $x\in[0,4]$

Answer: A

20. The equation of the curve satisfying the differential equation $\frac{dy}{dx}+2\frac{y}{x^2}=\frac{2}{x^2}$ and passing through $\left(\frac{1}{2},e^4+1\right)$ is

A.
$$y = e^{2x} + 1$$

$$\mathsf{B.}\, y = e^{\frac{2}{x}} - 1$$

$$\mathsf{C.}\, y = 1 + e^{\frac{2}{x}}$$

D.
$$y = 1 + e^{-x}$$

Answer: C

21. The product of a 9×4 matrix and a 4×9 matrix contains a variable x in exactly two places. If D(x) is the determinant of the matrix product such that D(0) = 1, D(-1) = 1 and D(2) = 7,then D(-2) is equal to

Watch Video Solution

22. If the mean of 50 observation is 25 and their standard deviation is 4 and the sum of the squares of all the observations is λ , then $\frac{\lambda}{1000}$ is

23. If the point M(h,k) lie on the line 2x+3y=5 such that |MA-MB| is maximum where (1, 2) and

B(2, 3), then the value of (h + k) is

24. The indefinite integral
$$I=\int\!\!\frac{\sec^2x\tan x(\sec x+\tan x)dx}{\left(\sec^5x+\sec^2x\tan^3x-\sec^3x\tan^2x-\tan^5x\right)}$$

simplifies to $\frac{1}{3} {\ln} |f(x)| + c$, where $f\Big(\frac{\pi}{4}\Big) = 2\sqrt{2} + 1$ and c is the constant of integration. If the value of $f\Big(\frac{\pi}{3}\Big)$ is $a + \sqrt{b}$, then

the value of b-3a is equal to

Water video Solution

25. The total number of solutions of the equation $\sin x \tan 4x = \cos x$ for all $x \in (0,\pi)$ are

