

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 101

Mathematics

1. If the area covered by $y=rac{2}{x}$ and $y=rac{2}{2x-1}$ from x=1 or x=e is In (a) sq. units, then $(2e-1)^2a^2$ is equal to

A.
$$\frac{e}{2}$$

B. e^4
C. 1

D. e

Answer: B

2. If a, b, c are real numbers satisfying the condition a+b+c=0 then the roots of the quadratic equation $3ax^2+5bx+7c=0$ are

A. Positive

B. Negative

C. real and equal

D. distinct but not imaginary

Answer: D

Watch Video Solution

3. The indefinite integral
$$I=\int\!\!\frac{\left(\sin^2x-\cos^2x
ight)^{2019}}{\left(\sin x
ight)^{2021}\left(\cos x
ight)^{2021}}dx$$
 simplifies to

(where c is an integration constant)

A.
$$rac{\left(\sin^2 x - \cos^2 x
ight)^{2020}}{2020} + c$$

$$\begin{array}{l} \mathsf{B.} \ \displaystyle \frac{\left(\tan x - \cot x\right)^{2020}}{2020} + c \\ \mathsf{C.} \ \displaystyle \frac{\left(\sin x - \cos x\right)^{2020}}{2020} + c \\ \mathsf{D.} \ \displaystyle \frac{\left(\tan^2 x + \cot^2 x\right)^{2020}}{2020} + c \end{array}$$

Answer: B

D Watch Video Solution

4. Coefficient of
$$\alpha^t$$
 in the expansion of
 $(\alpha + p)^{m-1} + (\alpha + p)^{m-2}(\alpha + q) + (\alpha + p)^{m-3}(\alpha + q)^2 + \ldots + (\alpha + q)^{m-1}$, where $\alpha \neq -q$ and $p \neq q$ is

A.
$$rac{{}^{m}C_tig(t^t-q^tig)}{p-q}$$

B. $rac{{}^{m}C_tig(p^{m-1}-q^{m-1}ig)}{p-q}$
C. $rac{{}^{m}C_tig(p^t-q^tig)}{p-q}$
D. $rac{{}^{m}C_tig(p^{m-t}+q^{m-t}ig)}{p-q}$

Answer: B

5. The solution of the differential equation $\frac{dy}{dx} = \frac{2x - y}{x - 6y}$ is (where c is

an arbitrary constant)

A.
$$4xy = x^2 - 3y + c$$

B. $2xy = x^2 + 3y^2 + c$
C. $xy = x^2 + 3y^2 + c$
D. $xy = x^2 + c$

Answer: C

Watch Video Solution

6. Let a_1, a_2, a_3 be three positive numbers which are in geometric progression with common ratio r. The inequality $a_3 > a_2 + 2a_1$ holds true if r is equal to

A. 2	
B. 1.5	
C. 0.5	
D. 2.5	

Watch Video Solution

Answer: D

 7.
 The arithmetic mean of the numbers

 2sin 2°, 4sin 4°, 6sin 6°, 178sin 178°, 180sin 180°

 A. sin 1°

 B. cot 1°

 C. tan 1°

 D. cos 1°

Answer: B

8. If PQ is the focal chord of the parabola $y^2 = -x$ and P is (-4, 2), then the ordinate of the point of intersection of the tangents at P and Q

is

A.
$$\frac{15}{16}$$

B. $\frac{7}{8}$
C. 4
D. $\frac{17}{18}$

Answer: A

9. Consider $f(x) = \begin{cases} [x] + [-x] & x \neq 2\\ \lambda & x = 2 \end{cases}$ where [.] denotes the greatest integer function. If f(x) is continuous at x = 2 then the value of λ is equal to

 $\mathsf{A.}-1$

B. 0

C. 1

D. No value of possible

Answer: A

10. Consider the statement p : If a hexagon is regular than all its sides and angles are equal. The contrapositive of statement p is

A. If all sides and angles of a hexagon are not equal then it is not

regular

B. If all sides and angles of a hexagon are equal then it is regular

C. If all sides and angles of a hexagon are not equal then it is regular

D. If all sides and angles of a hexagon are equal then it is not regular

Answer: A

11. If
$$\sin (\cot^{-1}(1-x)) = \cos (an^{-1}(-x))$$
 , then x is

A. 1
B.
$$\frac{1}{2}$$

C. 0
D. $-\frac{1}{2}$

Answer: B

12. A circle C_1 has radius 2 units and a circles C_2 has radius 3 units. The distance between the centres of C_1 and C_2 is 7 units. If two points, one tangent to both circles and the other passing through the centre of both

circles, intersect at point P which lies between the centers of C_1 and C_2 , then the distance between P and the centre of C_2 is

A.
$$\frac{9}{4}$$
 units
B. $\frac{7}{3}$ units
C. $\frac{21}{5}$ units
D. $\frac{14}{5}$ units

Answer: C

Watch Video Solution

13. The number of values of x in the interval $[0, 3\pi]$ satisfying the equation $3\sin^2 x - 7\sin x + 2 = 0$ is

A. 0

B. 5

C. 4

Answer: C

Watch Video Solution

14. From the point P(3, 4) pair of tangents PA and PB are drawn to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. If AB intersects y - axis at C and x - axis at D, then OC. OD is equal to (where O is the origin)

A. 9

B. 18

C. 8

D. 12

Answer: D

15. For two non - zero complex numbers A and B, if $A + \frac{1}{B} = \overline{A}$ and $\frac{1}{A} + B = \overline{B}$, then

A. A is purely real

B. B is purely real

$$\mathsf{C.}\left|AB\right| = \frac{1}{2}$$

$$\mathsf{D}.\left|A\right|=\left|B\right|$$

Answer: C

Watch Video Solution

16. The value of the determinant
$$\Delta = \begin{vmatrix} \sqrt{13} + \sqrt{3} & 2\sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{26} & 5 & \sqrt{10} \\ 3 + \sqrt{65} & \sqrt{15} & 5 \end{vmatrix}$$
 is

equal to

A. $15\sqrt{2}-25\sqrt{3}$

B. $25\sqrt{3}-15\sqrt{2}$

C. $3\sqrt{5}$

D.
$$-15\sqrt{2} + 7\sqrt{3}$$

Answer: A

17. Two dice are thrown at a time, the probability that the absolute value of the difference of number on dice is 3, is

A.
$$\frac{3}{4}$$

B. $\frac{5}{6}$
C. $\frac{2}{7}$
D. $\frac{1}{6}$

Answer: D

18. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three non - zero, non - coplanar vectors and $\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}$ three vectors be given by $\overrightarrow{p} = \overrightarrow{a} + 2\overrightarrow{b} - 2\overrightarrow{c}, \overrightarrow{q} = 3\overrightarrow{a} + \overrightarrow{b} - 3\overrightarrow{c} ext{ and } \overrightarrow{r} = \overrightarrow{a} - 4\overrightarrow{b} + 4\overrightarrow{c}$. If the volume of parallelepiped determined by $\overrightarrow{a}, \overrightarrow{b} ext{ and } \overrightarrow{c}$ is v_1 cubic units and volume of tetrahedron determined by $\overrightarrow{p}, \overrightarrow{q} \; ext{and} \; \overrightarrow{r}$ is v_2 cubic units, then $\frac{v_1}{v_2}$ is equal to A. $\frac{1}{3}$ B. $\frac{3}{4}$ C. $\frac{1}{4}$ D. $\frac{1}{2}$

Answer: D

19. The number of matrices X with entries $\{0, 2, 3\}$ for which the sum of all the principal diagonal elements of X. X^T is 28 (where X^T is the

transpose matrix of X), is

A. 12

B. 18

C. 36

D. 44

Answer: C

Watch Video Solution

20. Let
$$f(x) = 2\tan^3 x - 6\tan^2 x + 1 + sgn(e^x), \forall x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$$
,
Then the positive difference between the least value and the local maximum value of the function is (where sgn (f(x)) represents the signum function)

A. 7

B. 8

C. 9

Answer: B

Watch Video Solution

21. If the integral
$$I = \int_0^{\pi} = \frac{\sec^{-1}(\sec x)}{1 + \tan^8 x} dx$$
, $\forall x \neq \frac{\pi}{2}$, then the value of $[I]$ is equal to (where $[.]$ is the greatest integer function)

Watch Video Solution

22. The value of
$$\lim_{x
ightarrow 0} \ rac{\log(1+2x)}{5x} + \ \lim_{x
ightarrow 2} \ rac{x^4-2^4}{x-2}$$
 is equal to

Watch Video Solution

23. The sum of square of the abscissas fo all the points on the line x + y = 4 that lie at a unit distance from the line 4x + 3y - 10 = 0 is

24. The line $\frac{x}{k} = \frac{y}{2} = \frac{z}{-12}$ makes an isosceles triangle with the planes 2x + y + 3z - 1 = 0 and x + 2y - 3z - 1 = 0 then the value of k is-

25. If the total number of ways of selecting two numbers from the set $\{1, 2, 3, \dots, k, 89, 90\}$ such that their sum is divisible by 3 is k, then $\frac{k}{500}$ is