© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 101

Mathematics

1. If the area covered by $y=\frac{2}{x}$ and $y=\frac{2}{2 x-1}$ from $x=1$ or $x=e$ is $\ln (a)$ sq. units, then $(2 e-1)^{2} a^{2}$ is equal to
A. $\frac{e}{2}$
B. e^{4}
C. 1
D.e
2. If a, b, c are real numbers satisfying the condition $a+b+c=0$ then the roots of the quadratic equation $3 a x^{2}+5 b x+7 c=0$ are
A. Positive
B. Negative
C. real and equal
D. distinct but not imaginary

Answer: D

- Watch Video Solution

3. The indefinite integral $I=\int \frac{\left(\sin ^{2} x-\cos ^{2} x\right)^{2019}}{(\sin x)^{2021}(\cos x)^{2021}} d x$ simplifies to (where c is an integration constant)

$$
\text { A. } \frac{\left(\sin ^{2} x-\cos ^{2} x\right)^{2020}}{2020}+c
$$

B. $\frac{(\tan x-\cot x)^{2020}}{2020}+c$
C. $\frac{(\sin x-\cos x)^{2020}}{2020}+c$
D. $\frac{\left(\tan ^{2} x+\cot ^{2} x\right)^{2020}}{2020}+c$

Answer: B

- Watch Video Solution

4. Coefficient of α^{t} in the expansion of $(\alpha+p)^{m-1}+(\alpha+p)^{m-2}(\alpha+q)+(\alpha+p)^{m-3}(\alpha+q)^{2}+\ldots \ldots \ldots+(\alpha$, where $\alpha \neq-q$ and $p \neq q$ is
A. $\frac{{ }^{m} C_{t}\left(t^{t}-q^{t}\right)}{p-q}$
B. $\frac{{ }^{m} C_{t}\left(p^{m-1}-q^{m-1}\right)}{p-q}$
C. $\frac{{ }^{m} C_{t}\left(p^{t}-q^{t}\right)}{p-q}$
D. $\frac{{ }^{m} C_{t}\left(p^{m-t}+q^{m-t}\right)}{p-q}$

Answer: B

5. The solution of the differential equation $\frac{d y}{d x}=\frac{2 x-y}{x-6 y}$ is (where c is an arbitrary constant)
A. $4 x y=x^{2}-3 y+c$
B. $2 x y=x^{2}+3 y^{2}+c$
C. $x y=x^{2}+3 y^{2}+c$
D. $x y=x^{2}+c$

Answer: C

- Watch Video Solution

6. Let a_{1}, a_{2}, a_{3} be three positive numbers which are in geometric progression with common ratio r. The inequality $a_{3}>a_{2}+2 a_{1}$ holds true if r is equal to
A. 2
B. 1.5
C. 0.5
D. 2.5

Answer: D

- Watch Video Solution

7. The arithmetic mean of the numbers
$2 \sin 2^{\circ}, 4 \sin 4^{\circ}, 6 \sin 6^{\circ}, \ldots \ldots \ldots \ldots 178 \sin 178^{\circ}, 180 \sin 180^{\circ}$
A. $\sin 1^{\circ}$
B. $\cot 1^{\circ}$
C. $\tan 1^{\circ}$
D. $\cos 1^{\circ}$
8. If PQ is the focal chord of the parabola $y^{2}=-x$ and P is $(-4,2)$, then the ordinate of the point of intersection of the tangents at P and Q is
A. $\frac{15}{16}$
B. $\frac{7}{8}$
C. 4
D. $\frac{17}{18}$

Answer: A

Watch Video Solution

9. Consider $f(x)=\left\{\begin{array}{ll}{[x]+[-x]} & x \neq 2 \\ \lambda & x=2\end{array}\right.$ where [.] denotes the greatest integer function. If $f(x)$ is continuous at $x=2$ then the value of λ is equal to
A. -1
B. 0
C. 1
D. No value of possible

Answer: A

- Watch Video Solution

10. Consider the statement p : If a hexagon is regular than all its sides and angles are equal. The contrapositive of statement p is
A. If all sides and angles of a hexagon are not equal then it is not regular
B. If all sides and angles of a hexagon are equal then it is regular
C. If all sides and angles of a hexagon are not equal then it is regular
D. If all sides and angles of a hexagon are equal then it is not regular

- Watch Video Solution

11. If $\sin \left(\cot ^{-1}(1-x)\right)=\cos \left(\tan ^{-1}(-x)\right)$, then x is
A. 1
B. $\frac{1}{2}$
C. 0
D. $-\frac{1}{2}$

Answer: B

- Watch Video Solution

12. A circle C_{1} has radius 2 units and a circles C_{2} has radius 3 units. The distance between the centres of C_{1} and C_{2} is 7 units. If two points, one tangent to both circles and the other passing through the centre of both
circles, intersect at point P which lies between the centers of C_{1} and C_{2}, then the distance between P and the centre of C_{2} is
A. $\frac{9}{4}$ units
B. $\frac{7}{3}$ units
C. $\frac{21}{5}$ units
D. $\frac{14}{5}$ units

Answer: C

- Watch Video Solution

13. The number of values of x in the interval $[0,3 \pi]$ satisfying the equation $3 \sin ^{2} x-7 \sin x+2=0$ is
A. 0
B. 5
C. 4
D. 10

Answer: C

- Watch Video Solution

14. From the point $P(3,4)$ pair of tangents PA and PB are drawn to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. If AB intersects y - axis at C and x - axis at D , then $O C . O D$ is equal to (where O is the origin)
A. 9
B. 18
C. 8
D. 12

Answer: D

- Watch Video Solution

15. For two non - zero complex numbers A and B, if $A+\frac{1}{B}=\bar{A}$ and $\frac{1}{A}+B=\bar{B}$, then
A. A is purely real
B. B is purely real
C. $|A B|=\frac{1}{2}$
D. $|A|=|B|$

Answer: C

- Watch Video Solution

16. The value of the determinant $\Delta=\left|\begin{array}{ccc}\sqrt{13}+\sqrt{3} & 2 \sqrt{5} & \sqrt{5} \\ \sqrt{15}+\sqrt{26} & 5 & \sqrt{10} \\ 3+\sqrt{65} & \sqrt{15} & 5\end{array}\right|$ is equal to
A. $15 \sqrt{2}-25 \sqrt{3}$
B. $25 \sqrt{3}-15 \sqrt{2}$
C. $3 \sqrt{5}$
D. $-15 \sqrt{2}+7 \sqrt{3}$

Answer: A

- Watch Video Solution

17. Two dice are thrown at a time, the probability that the absolute value of the difference of number on dice is 3 , is
A. $\frac{3}{4}$
B. $\frac{5}{6}$
C. $\frac{2}{7}$
D. $\frac{1}{6}$

Answer: D

- Watch Video Solution

18. Let $\vec{a}, \vec{b}, \vec{c}$ be three non - zero, non - coplanar vectors and $\vec{p}, \vec{q}, \vec{r}$ be three vectors given by $\vec{p}=\vec{a}+2 \vec{b}-2 \vec{c}, \vec{q}=3 \vec{a}+\vec{b}-3 \vec{c}$ and $\vec{r}=\vec{a}-4 \vec{b}+4 \vec{c}$. If the volume of parallelepiped determined by \vec{a}, \vec{b} and \vec{c} is v_{1} cubic units and volume of tetrahedron determined by \vec{p}, \vec{q} and \vec{r} is v_{2} cubic units, then $\frac{v_{1}}{v_{2}}$ is equal to
A. $\frac{1}{3}$
B. $\frac{3}{4}$
C. $\frac{1}{4}$
D. $\frac{1}{2}$

Answer: D

- Watch Video Solution

19. The number of matrices X with entries $\{0,2,3\}$ for which the sum of all the principal diagonal elements of $X . X^{T}$ is 28 (where X^{T} is the
transpose matrix of X), is
A. 12
B. 18
C. 36
D. 44

Answer: C

- Watch Video Solution

20. Let $f(x)=2 \tan ^{3} x-6 \tan ^{2} x+1+\operatorname{sgn}\left(e^{x}\right), \forall x \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$, Then the positive difference between the least value and the local maximum value of the function is (where $\operatorname{sgn}(f(x)$) represents the signum function)
A. 7
B. 8
C. 9
D. 10

Answer: B

- Watch Video Solution

21. If the integral $I=\int_{0}^{\pi}=\frac{\sec ^{-1}(\sec x)}{1+\tan ^{8} x} d x, \forall x \neq \frac{\pi}{2}$, then the value of $[I]$ is equal to (where [.] is the greatest integer function)

- Watch Video Solution

22. The value of $\lim _{x \rightarrow 0} \frac{\log (1+2 x)}{5 x}+\lim _{x \rightarrow 2} \frac{x^{4}-2^{4}}{x-2}$ is equal to

- Watch Video Solution

23. The sum of square of the abscissas fo all the points on the line $x+y=4$ that lie at a unit distance from the line $4 x+3 y-10=0$ is
24. The line $\frac{x}{k}=\frac{y}{2}=\frac{z}{-12}$ makes an isosceles triangle with the planes
$2 x+y+3 z-1=0$ and $x+2 y-3 z-1=0$ then the value of k is-

- Watch Video Solution

25. If the total number of ways of selecting two numbers from the set $\{1,2,3, \ldots \ldots \ldots \ldots, 89,90\}$ such that their sum is divisible by 3 is k, then $\frac{k}{500}$ is
