

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 102

Mathematics

1. In the expansion of $(a+b)^n$, first three terms are 243, 810 and 1080 respectively, then the fourth term of the expansion is $(n \in N)$

- A. 32
- B. 720
- C. 510
- D. 420

Answer: B

Watch Video Solution

- **2.** If $z=x+iy,\ \forall x,y\in R, i^2=-1, xy\neq 0 \ {\rm and}\ |z|=2$, then the imaginary part of $\frac{z+2}{z-2}$ cannot be
 - A. 1
 - B. 3
 - C. 2
 - D. 4

Answer: A

Watch Video Solution

3. The number of permutations of the alphabets of the word "GOOGLE" in which O's are together but G's are separated, is

- A. 24
- B. 48
- C. 72
- D. 36

Answer: D

- **4.** If B, C are square matrices of same order such that $C^2=BC-CB$ and $B^2 = \, - \, I$, where I is an identity matrix, then the inverse of matrix (C-B) is
 - A. C
 - B.C+B
 - $\mathsf{C}.\,C-B$
 - D. I

Answer: B

Watch Video Solution

- **5.** The tangent drawn to the hyperbola $\frac{x^2}{16} \frac{y^2}{9} = 1$, at point P in the first quadrant whose abscissa is 5, meets the lines 3x 4y = 0 and 3x + 4y = 0 at Q and R respectively. If O is the origin, then the area of triangle OQR is (in square units)
 - A. 6
 - B. 12
 - C. 3
 - D. 24

Answer: B

6. Two natrual numbers are randomly chosen and multiplied, then the chance that their product is divisible by 3 is

A.
$$\frac{4}{9}$$

B.
$$\frac{5}{9}$$

C.
$$\frac{2}{3}$$
D. $\frac{1}{9}$

Answer: B

Watch Video Solution

7. If α and β are the roots of the equation $x^2+x+c=0$ such that $\alpha+\beta, \alpha^2+\beta^2$ and $\alpha^3+\beta^3$ are in arithmetic progression, then c is equal to

B.
$$\frac{4}{3}$$

Answer: D

Watch Video Solution

- **8.** In a harmonic progression $t_1, t_2, t_3, \ldots, t_n$, it is given that $t_5=20 \ \ {
 m and} \ \ t_6=50.$ If S_n denotes the sum of first n terms of this, then
- the value of n for which S_n is maximum is
 - A. 6

B. 7

- C. 9
- D. 10

Answer: A

9. The locus of the centre of the circle which makes equal intercepts on the lines $x+y=1\,$ and $\,x+y=5\,$ is

A.
$$x - y = 2$$

B.
$$x + y = 6$$

C.
$$x + y = 3$$

D.
$$x - y = 0$$

Answer: C

10. Consider the system of equations $\alpha x+y+z=p, x+\alpha y+z=q \text{ and } x+y+\alpha z=r,$ then the sum of all possible distinct value(s) of α for which system does not possess a unique solution is

- A.-2
- B. 1
- C. -1
- D. 0

Answer: C

Watch Video Solution

11. The normal to the parabola $y^2=4x$ at P(9,6) meets the parabola again at Q. If the tangent at Q meets the directrix at R, then the slope of another tangent drawn from point R to this parabola is

- A. 11
- B. $\frac{11}{3}$
- C. $\frac{3}{11}$
- D. 3

Answer: B

Watch Video Solution

- **12.** The number of points where $f(x) = \left|x^2 3|x| 4\right|$ is nondifferentiable is
 - A. 1
 - B. 2
 - C. 3
 - D. 4

Answer: C

Watch Video Solution

13. The complete set of values of lpha for which the

are

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and $\frac{x-3}{2} = \frac{y-5}{\alpha} = \frac{z-7}{\alpha+2}$

concurrent and coplanar is

A. $\{2, 3\}$

B. $\{0, 3\}$

C.[-2,3]

D. R

Answer: D

A. 4

B.-4

C. 3

D. 2

14. Let f(x)=2x+1 and $g(x)=\int\!\!\frac{f(x)}{x^2(x+1)^2}dx.$ If 6g(2)+1=0 then $g\!\left(-\frac{1}{2}\right)$ is equal to

Answer: A

Watch Video Solution

15. Let f(x) be a cubic function such that f'(1)=f''(2)=0. If x=1 is a point of local maxima of f(x), then the local minimum value of f(x) occurs at

$$\mathbf{A.}\,x=0$$

$$\mathrm{B.}\,x=2$$

$$\mathsf{C.}\,x=4$$

$$\mathrm{D.}\,x=3$$

Answer: D

16. The maximum value of p for which the lines

3x - 4y = 2, 3x - 4y = 12, 12x + 5y = 7 and 12x + 5y = p

- A. 33
- B. 19
- C. 19
- D. 9

Answer: A

Watch Video Solution

constitute the sides of a rhombous is

17. The function $f\!:\!R o R$ defined as $f(x)=rac{x^2-x+1}{x^2+x+1}$ is

A. injective as well as sujective

B. injective but not surjective

C. surjective but not injective

D. neither injective nor surjective

Answer: D

Watch Video Solution

18. The value of $\lim_{x o 0^+} \left\{ x^{x^2} + x^{(x^x)}
ight\}$ is equal to

A. 0

B. 1

C. 2

 $\mathsf{D.}\,\frac{1}{2}$

Answer: B

19. The area (in sq. units) bounded by $y = \ln x$, $y = \frac{x}{e}$ and y - axis is equal to

A.
$$rac{e}{2}-1$$
B. $rac{e}{2}$

C.
$$\dfrac{5e}{2}$$
D. $\dfrac{3e}{2}-1$

Answer: B

20.

Consider

$$\overrightarrow{p}=\hat{i}+\hat{j}+\hat{k}, \overrightarrow{q}=3\hat{i}-\hat{j}+\hat{k} ext{ and } \overrightarrow{r}=lpha\hat{i}+eta\hat{j}+\lambda\hat{k}, \, oralllpha,eta,\lambda\in R$$
 . If $\left[\overrightarrow{p} \quad \overrightarrow{q} \quad \overrightarrow{r}\,
ight]$ is maximum and $\left[\overrightarrow{r}
ight]=2\sqrt{6}$, then the value of

three

vectors

 $\alpha-\beta-\lambda$ is equal to

B. 4

C. 0

D.-4

Answer: B

- **21.** If $\sin \theta + \sin^2 \theta = 1$, then prove that $\cos^{12} \theta + 3\cos^{10} \theta + 3\cos^8 \theta + \cos^6 \theta 1 = 0$
 - Watch Video Solution

- **22.** If y=f(x) satisfies the differential equation $rac{dy}{dx}+rac{2x}{1+x^2}y=rac{3x^2}{1+x^2}$ where f(1)=1, then f(2) is equal to
 - Watch Video Solution

23. If the variance of the first 50 odd natural numbers is V_1 and the variance of next 50 odd natural numbers is V_2 , then V_1+V_2 is equal to

Watch Video Solution

24. If

$$I_1=\int_0^{rac{\pi}{2}}e^{\sin x}(1+x\cos x)dx \ ext{ and } I_2=\int_0^{rac{\pi}{2}}e^{\cos x}(1-x\sin x)dx,$$
 then $\left[rac{I_1}{I_2}
ight]$ is equal to (where $[x]$ denotes the greatest integer less than or equal to x)

25. The number of solution of $\cos^2 x + \cos^2 2x = 2$ in [0, 20] is equal to

