

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 104

Mathematics

1. If 4x - ay + 3z = 0, x + 2y + ax = 0

and ax+2z=0 have a non - trivial solution, then the number of real value(s) of a is

A. 0

B. 1

C. 2

Answer: B

Watch Video Solution

- **2.** Triangle ABC is right angled at A. The circle with centre A and radius AB cuts BC and AC internally at D and E respectively. If BD=20 and DC=16 then the length AC equals
 - A. $6\sqrt{21}$ units
 - B. $6\sqrt{26}$ units
 - C. 30 units
 - D. 32 units

Answer: B

3. Consider the quadratic polynomial $f(x)=\frac{x^2}{4}-ax+a^2+a-2 \text{ then (i) If the origin lies between}$ zero's of polynomial, then number of integral value(s) of 'a' is (ii) if

 \boldsymbol{a} varies , then locus of the vertex is :

A. 1

B. 2

C. 3

D. more than 3

Answer: B

4. Sum of an infinite G.P. is $\frac{5}{4}$ times the sum of all the odd terms.

The common ratio of the G.P. is

- A. $\frac{1}{4}$
- B. 4
- $\mathsf{C.}\ \frac{1}{3}$
- D. 6

Answer: A

Watch Video Solution

5. The value of x satisfying the equation

$$|\sin x \cos x| + \sqrt{2+ an^2 x + \cot^2 x} = \sqrt{3}$$

A. belongs to $\left[0, \frac{\pi}{3}\right]$

C. belongs to
$$\left[\frac{3\pi}{4}, \pi\right)$$

D. does not exist

B. belongs to $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$

Answer: D

Watch Video Solution

6. if $f(x)=e^{-\frac{1}{x^2}}, x
eq 0$ and f(0)=0 then f'(0) is

- A. not defined

 - B. 1
 - C. 0
 - D. 2

Answer: C

7. The value of
$$\lim_{x\, o\,0^+}\,\left((x\cot x)+(x\ln x)
ight)$$
 is equal to

- A. 1
- B. 2
- C. 3
- D. 0

Answer: A

- **8.** Which of the following is true?
- (i) If p is a statement then ${}^{\sim}p$ is not a statement
- (ii) If p is a statement then p is also a statement

(iii) Negation of ''p: x is a positive real number" is , "x is a negative real number"

A. Only (ii)

B. Only (i)

C. (i) and (iii)

D. None of these

Answer: A

9. Two poles of height a and b stand at the centers of two circular plots which touch each other externally at a point and the two poles subtend angles of 30° and 60° respectively at this point, then distance between the centers of these plots is

A.
$$a+b$$

$$(3a \cdot$$

B.
$$\frac{(3a+b)}{\sqrt{3}}$$
C. $\frac{(a+3b)}{\sqrt{3}}$

D.
$$a\sqrt{3}+b$$

Answer: B

Watch Video Solution

If $\overset{\longrightarrow}{S}$ be a unit vector, then the magnitude of the vector

10. Let $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i} + 4\hat{j} - \hat{k}$ and $\overrightarrow{c} = \hat{i} + \hat{j} + 2\hat{k}$.

$$\left(\overrightarrow{a}.\overrightarrow{S}\right) \left(\overrightarrow{b} \times \overrightarrow{c}\right) + \left(\overrightarrow{b}.\overrightarrow{S}\right) \left(\overrightarrow{c} \times \overrightarrow{a}\right) + \left(\overrightarrow{c}.\overrightarrow{S}\right) \left(\overrightarrow{a} \times \overrightarrow{b}\right)$$
 is equal to

A. 1

C. 3

D. 4

Answer: C

Watch Video Solution

11. Two numbers a and b are chosen simultaneously from the set of integers 1, 2, 3,, 39, then the probability that the equation $7a-9b=0 \ {\rm is \ satisfied \ is}$

A.
$$\frac{1}{247}$$

B.
$$\frac{2}{247}$$

C.
$$\frac{4}{741}$$

$$\mathsf{D.}\;\frac{5}{741}$$

Answer: C

12. Let the matrix
$$A=\begin{bmatrix}1&2&3\\0&1&2\\0&0&1\end{bmatrix}$$
 and $BA=A$ where B

represent 3 imes 3 order matrix. If the total number of 1 in matrix A^{-1} and matrix B are p and q respectively. Then the value of p+q is equal to

- A. 3
- B. 4
- C. 5
- D. 7

Answer: D

13. Find the term independent of x in the expansion of

$$\left(1+x+2x^{3}
ight) \left[\left(3x^{2}/2
ight)-\left(1/3
ight)
ight] ^{9}$$

- A. $\frac{13}{63}$
- B. $\frac{19}{45}$
- c. $\frac{17}{54}$
- $\mathsf{D.}\;\frac{23}{36}$

Answer: C

Watch Video Solution

14. The maximum negative integral value of b for which the point

 $\left(2b+3,\,b^2
ight)$ lies above the line

 $3x-4y-a(a-2)=0,\,orall a\in R$ is

A. -1

$$B.-3$$

$$\mathsf{C.}-2$$

$$\mathsf{D.}-4$$

Answer: C

Watch Video Solution

15. The number of ways in which 2n distinct letters (addressed) can be distributed in N distinct mail boxes such that there are exactly K letters $(n < K \le 2n)$ in one of the mail boxes is

A.
$$^{2n}C_K$$

B.
$${}^{2n}C_K$$
. $N(N-1)^{2n-K}$

C.
$$^{2n}C_K$$
. $(N-1)^{2n-K}$

D.
$$^{2n}C_K(2n-K)^{N-1.N}$$

Answer: B

Watch Video Solution

16. From a variable point P on the tagent at the vertex of the parabola $y^2=2x$, a line is drawn perpendicular to the chord of contact. These variable lines always pass through a fixed point, whose x - coordinate is

- A. $\frac{1}{2}$
- B. 1
- c. $\frac{3}{2}$
- D. 2

Answer: B

17. If the complex number
$$\omega=x+iyig(\,orall x,y\in R\, ext{ and }i^2=\,-1ig)$$
 satisfy the equation $\omega^3=8i$, then the maximum vlaue of y is

B.
$$\frac{\sqrt{3}}{2}$$

c.
$$\frac{1}{2}$$

D. 2

Answer: A

Watch Video Solution

18. If f(x) is a twice differentiable function such that f(0)=f(1)=f(2)=0. Then

A. F(x)=0 has exactly 3 roots

B. f'(x) = for atleast 3 real values of x

C. f''(x) = 0 for atleast 2 real value of x

D. $f^{\prime\prime}(x)=0$ for atleast 1 real value of x

Answer: D

19. Let
$$y=f(x)$$
 be a solution of the differential equation

$$rac{dy}{dx}=rac{y^2-x^2}{2xy}(\,orall x,y>0).$$
 If $f(1)=2$, then $f'(1)$ is equal to

- A. 2

B. $\frac{5}{2}$

- $\mathsf{C.}\ \frac{5}{4}$
- $\mathrm{D.}\ \frac{3}{4}$

Watch Video Solution

20. The value of the integral $\int_{-1}^{1} \frac{dx}{(1+x^2)(1+e^x)}$ is equal to

- A. $\frac{\pi}{4}$
- B. $\frac{\pi}{2}$
- $\mathsf{C}.\,\pi$
- D. 0

Answer: A

21. If the variance of the data $12,\,14,\,18,\,19,\,21,\,36$ is $\,\,\lambda$, then the value of 3λ is equal to

22. If the plane ax-by+cz=d contains the line $\frac{x-a}{a}=\frac{y-2d}{b}=\frac{z-c}{c}$, then the value of $\frac{b}{4d}$ is equal to $(b,d\neq 0)$

23. The vertices of the triangle ABC are A(0,0), B(3,0) and C(3,4), where A and C are foci of an ellipse and B lies on the ellipse. If the length of the latus rectum of the ellipse is $\frac{12}{p}$ units, then the value of p is

24. If $\cos 2x + 2\cos x = 1$, then $\left(\sin^2 x\right)\left(2 - \cos^2 x\right)$ is equal to

Watch Video Solution

25. Consider $\int \frac{3x^4+2x^2+1}{\sqrt{x^4+x^2+1}}dx=f(x)$. If $f(1)=\sqrt{3}$, then $(f(2))^2$ is equal to

