

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 108

Mathematics

1. For $f(x)=x^3+bx^2+cx+d$, if $b^2>4c>0$ and $b,c,d\in R$, then f(x)

A. is strictly increasing

B. is strictly decreasing

C. has a local maxima

D. is bounded

Answer: C

Watch Video Solution

2. Let f(x) be a differentiable function such that

$$\int_t^{t^2} x f(x) dx = rac{4}{3} t^3 - rac{4t}{3} \, orall \, t \geq 0$$
, then f(1) is equal to

A. 4

B. $\frac{4}{3}$

C. 3

D. $\frac{8}{3}$

Answer: D

3. If the area bounded by
$$y^2=4ax$$
 and $x^2=4ay$ is $\frac{64}{3}$ square units, then the positive value of a is

A. 1

B. 2

C. 3

D. 4

Answer: B

4. If
$$\left(\frac{2+\cos x}{3+y}\right)\frac{dy}{dx}+\sin x=0$$
 and $y(0)=1$, then $y\left(\frac{\pi}{3}\right)$ is equal to

- A. $\frac{4}{3}$
- $\mathsf{B.}\;\frac{7}{3}$
- c. $\frac{1}{3}$

D. 1

Answer: C

Watch Video Solution

5. The area (in square units) of the triangle bounded by x = 4and the lines $y^2-x^2+2x=1$ is equal to

- A. 3
- B. 6
- C. 12
- D. 9

Answer: D

- **6.** The angle between the tangents drawn from the point (2,
- 6) to the parabola $y^2-4y-4x+8=0$ is
 - A. $\frac{\pi}{2}$
 - B. $\frac{\pi}{4}$
 - C. $\frac{\kappa}{3}$

D.
$$\frac{\pi}{6}$$

Answer: C

Watch Video Solution

7. If
$$f(x) = \cos x + \sin x$$
 and $g(x) = x^2 - 1$, then $g(f(x))$

is injective in the interval

A.
$$\left[0, \frac{\pi}{2}\right]$$

B.
$$\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$$

$$\mathsf{C.}\left[\,-\,\frac{\pi}{2},\,\frac{\pi}{2}\,\right]$$

D.
$$[0, \pi]$$

Answer: B

valcii video Solution

8. The value of
$$\lim_{x o 0} rac{\left(1+6x
ight)^{rac{1}{3}}-\left(1+4x
ight)^{rac{1}{2}}}{x^2}$$
 is equal to

A. 1

B. 2

C. -1

D.-2

Answer: D

Watch Video Solution

9. If $\displaystyle \int \!\! rac{x}{x+1+e^x} dx = px + q \ln \lvert x+1+e^x
vert + c$, where c is

the constant of integration, then p+q is equal to

A. 0
B. 1
C. 2
D. 3
Answer: A
Watch Video Solution
10. Let X_n denote the mean of first n natural numbers, then
the mean of $X_1, X_2, \ldots, X_{100}$ is
A. 25
B. 50
C. 25.5

Answer: D

Watch Video Solution

- 11. Let $f(x)=rac{\sin x+3\sin 3x+5\sin 5x+3\sin 7x}{\sin 2x+2\sin 4x+3\sin 6x}$, wherever defined. If $x_1+x_2=rac{\pi}{2}$, where f(x) is defined at x_1 and x_2 , then $f^2(x_1)+f^2(x_2)$ is
 - A. $\cos^2 x$
 - $\mathsf{B.}\sin^2 x$
 - C. 4
 - D. 1

Answer: C

12. If two points A and B lie on the curve $y=x^2$ such that \overrightarrow{OA} . $\hat{i}=1$ and \overrightarrow{OB} . $\hat{j}=4$, where O is origin and A and B lie in the $1^{\rm st}$ and $2^{\rm nd}$ quadrant respectively, then \overrightarrow{OA} . \overrightarrow{OB} is equal to

- A. 0
- B. 2
- C. 4
- D. 5

Answer: B

13. A man alternately tosses a coin and throw a dice, beginning with the coin. The probability that he gets a head in coin before he gets a 5 or 6 in dice, is

- A. $\frac{3}{4}$
- B. $\frac{1}{2}$
- $\mathsf{C.}\ \frac{1}{3}$
- D. $\frac{2}{3}$

Answer: A

Watch Video Solution

14. A plane P passes through the point (1,1,1) and is parallel to the vectors $\overrightarrow{a}=-\hat{i}+\hat{j}$ and $\overrightarrow{b}=\hat{i}-\hat{k}$. The

distance of the point $\left(\frac{3\sqrt{3}}{2},3\sqrt{3},3\right)$ from the plane is equal to

A.
$$\sqrt{3}$$
 units

B.
$$\frac{9}{2}$$
 units

C.
$$3\sqrt{3}$$
 units

Answer: B

15. Let A and B two non singular matrices of same order such that $(AB)^k=B^kA^k$ for consecutive positive integral values of k, then AB^2A^{-1} is equal to

A.
$$A^2$$

B.B

C. A

D. B^2

Answer: D

Watch Video Solution

16. The value of $\Sigma_{r=1}^n (\,-1)^{r+1} rac{^n C_r}{r+1} \, \Big)$ is equal to

$$\mathsf{A.} - \frac{1}{n+1}$$

$$\mathsf{B.} - \frac{1}{n}$$

$$\mathsf{C.}\;\frac{1}{n+1}$$

D.
$$\frac{n}{n+1}$$

Answer: D

Watch Video Solution

17. If α and β are the roots of the equation $x^2+\alpha x+\beta=0$ such that $\alpha\neq\beta$, then the number of integral values of x satisfying $||x-\beta|-\alpha|<1$ is

A. 0

B. 1

C. 2

D. more than 2

Answer: C

18. Given α and β are the roots of the quadratic equation $x^2-4x+k=0 (k
eq 0).$ If $lphaeta,lphaeta^2+lpha^2eta$ and $lpha^3+eta^3$ are in geometric progression, then the value of k is equal to

- A. 4
- B. $\frac{16}{7}$ C. $\frac{3}{7}$
- D. 12

Answer: B

19. The equation $\cos^4 x - \sin^4 x + \cos 2x + \alpha^2 + \alpha = 0$ will have at least one solution, if

A.
$$-2 < lpha < 2$$

B.
$$-3 \le \alpha \le 1$$

$$\mathsf{C}.-2 \leq lpha \leq 1$$

$$\mathsf{D}.-1 \leq lpha \leq 2$$

Answer: C

Watch Video Solution

20. The radius of the circle with centre at (3, 2) and whose common chord with the circle

A. 3 units

B. 2 units

C. 1 units

 $C\!:\!x^2+y^2-4x-8y+16=0$ is also a diameter of the

D. $\sqrt{3}$ units

Answer: A

21.

circle C, is

 $f(x)=[x]ig\{x^2ig\}+[x]ig[x^2ig]+\{x\}ig[x^2ig]+\{x\}ig\{x^2ig\},\ orall x\in[0,10]$ $[.\]$ and $\{.\ \}$ the greatest integer and fractional part

Let

functions respectively). The number of points of discontinuity of f(x) is

Watch Video Solution

22. If the line $2x + \sqrt{6}y = 2$ touches the hyperbola $x^2-2y^2=a^2$, then a^2 is equal to

23. If
$$i^2=-1$$
 and $\left(rac{1+i}{\sqrt{2}}
ight)^n=\left(rac{1-i}{\sqrt{2}}
ight)^m=1,\ orall n,\ m\in N,$ then the minimum value of $n+m$ is equal to

24. If a, b and c are non - zero real numbers and if system of equations

$$(a-1)x=y+z,$$
 $(b-1)y=z+x \ ext{ and } \ (c-1)z=x+y$ have a non - trivial solutin, then $rac{3}{2a}+rac{3}{2b}+rac{3}{2c}$ is equal to

Watch Video Solution

- **25.** The number of quadratic polynomials $ax^2 + 2bx + c$ which satisfy the following conditions is k
- (i) a, b, c are distinct
- (ii) $a,b,c \in \{1,2,3,4,....2001,2002\}$
- (iii) x+1 divides ax+2bx+c Then $\dfrac{k}{10^5}$ is equal to

