

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 109

Mathematics

1. Let $f(x) = -x^2 + x + p$, where p is a real

number. If g(x) = [f(x)] and g(x)

discontinuous at $x=rac{1}{2}$, then p - cannot be

is

(where [.] represents the greatest integer function)

$$1 - \frac{1}{2}$$

A.
$$\frac{1}{2}$$
B. $\frac{3}{4}$

$$\mathsf{C.}\ \frac{7}{4}$$

$$\mathsf{D.}-\frac{1}{4}$$

Answer: A

2. If n(A) denotes the number of elements in if set Α and $n(A) = 4, n(B) = 5 \text{ and } n(A \cap B) = 3$ then $n[(A \times B) \cap (B \times A)] =$

A. 8

B. 9

C. 10

D. 11

Answer: B

3. The number of integers for which the equation $\sin^{-1}x + \cos^{-1}x + \tan^{-1}x = n$ has real solution(s) is

A. 0

B. 1

C. 2

D. 3

Answer: D

Watch Video Solution

4. If the straight line y=x meets y=f(x) at

P, where f(x) is a solution of the differential

equation
$$\dfrac{dy}{dx}=\dfrac{x^2+xy}{x^2+y^2}$$
 such that $f(1)=3$,

then the value of $f^{\,\prime}(x)$ at the point P is

A.
$$\frac{\mathbf{5}}{5}$$

A.
$$\frac{3}{5}$$
B. $\frac{5}{3}$

D. 1

Answer: D

Watch Video Solution

5. Two whole numbers are randomly chosen and multiplied, then the chance that their product is divisible by 5 is

$$\text{A.}\ \frac{4}{25}$$

B.
$$\frac{9}{25}$$

c.
$$\frac{16}{25}$$

D.
$$\frac{1}{25}$$

Answer: B

Watch Video Solution

6. The minimum value of p for which the lines

3x - 4y = 2, 3x - 4y = 12, 12x + 5y = 7

and 12x+5y=p constitute the sides of a

rhombus is

A. 33

B. 19

C. - 19

D. 9

Answer: C

Watch Video Solution

7. The coefficient of x^6 in the expansion of $(1-x)^8(1+x)^{12}$ is equal to

A. 168

B.-8

C. 28

D. 104

Answer: D

8. For a complex number Z. If
$$arg(Z)\in (-\pi,\pi],$$
 then $arg\Big\{1+\cos.\,rac{6\pi}{7}+i\sin.\,rac{6\pi}{7}\Big\}$ is (here $i^2=-1$)

B.
$$\frac{2\pi}{7}$$

$$\mathsf{C.} - \frac{2\pi}{7}$$

$\mathrm{D.}-\frac{3\pi}{7}$

Answer: A

$$rac{x^2}{16}-rac{y^2}{b^2}={}-1$$
 is $rac{5}{4}$, then b^2 is equal to 256

B.
$$\frac{16}{3}$$

Answer: A

Watch Video Solution

10. The number of solutions of the equation $an x \sin x - 1 = an x - \sin x, \ orall \ \in [0, 2\pi]$ is euqal to

A. 1

B. 2

C. 3

D. 4

Answer: B

11.

Watch Video Solution

$$f{:}R o R, f(x) = x^4 - 8x^3 + 22x^2 - 24x,$$

For

the sum of all local extreme value of f(x) is equal to

A. - 9

B. - 8

C. - 17

D. 6

Answer: D

12.

Let

 $f(n)=\Sigma_{r=1}^{10n}(6+rd) \ ext{ and } \ g(n)=\Sigma_{r=1}^{n}(6+rd)$

, where $n \in N, d
eq 0$. If $\dfrac{f(n)}{g(n)}$ is independent of n, then d is equal to

A. 12

B.-6

C. 6

D. - 12

Answer: D

Match Video Calution

watch video Solution

13. The tangent to the parabola $y=x^2-2x+8$ at P(2,8) touches the circle $x^2+y^2+18x+14y+\lambda=0$ at Q. The coordinates of point Q are

A.
$$(-7, -12)$$

B.
$$(-9, -13)$$

C.
$$(-11, -16)$$

D.
$$\left(-\frac{31}{5}, -\frac{42}{5}\right)$$

Answer: D

14.	The	value	of
$\lim_{x o0}$	$rac{(e^x-x-1)(x-\sin x){ m ln}(1+x)}{x^6}$		is
equal to			

A.
$$\frac{1}{2}$$

A.
$$\frac{1}{2}$$
B. $\frac{1}{6}$

c.
$$\frac{1}{12}$$

D.
$$\frac{1}{3}$$

Answer: C

Watch Video Solution

15. The equation of an ex - circle of a triangle formed by the common tangents to the circle

$$x^2 + y^2 = 4$$
 and $x^2 + y^2 - 6x + 8 = 0$ is

A.
$$x^2 + y^2 = 4$$

$$B. x^2 + y^2 - 6x + 8 = 0$$

$$\mathsf{C.}\,x^2 + y^2 - 6x + 9 = 0$$

D.
$$x^2 + y^2 = 1$$

Answer: A

- **16.** If the observation 1, 2, 3,, n occur with frequency, $n, (n-1), (n-2), \ldots, 1$ respectively such that the mean of observations is $\frac{13}{3}$, then n is equal to
 - A. 10
 - B. 11
 - C. 12

D. 13

Answer: B

Watch Video Solution

17. The direction cosines of two lines satisfy

$$2l+2m-n=0$$
 and $lm+mn+nl=0.$

The angle between these lines is

A.
$$\frac{\pi}{4}$$

B.
$$\frac{\pi}{2}$$

C.
$$\frac{\pi}{6}$$

D.
$$\frac{\pi}{3}$$

Answer: B

Watch Video Solution

18. A statue of height 4 m stands on a tower of height 10 m. The angle subtended by the status at the eyes of an observer of height 2m, standing at a distance of 6m from base of the tower is

A.
$$an^{-1}igg(rac{2}{11}igg)$$
B. $an^{-1}igg(rac{4}{3}igg)$

$$\mathsf{C.}\tan^{-1}(2)$$

D. $\tan^{-1}\left(\frac{7}{13}\right)$

Watch Video Solution

19. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$, then the determinant value of RA is

then the determinant value of BA is

A. 8

B. 0

-8

D. 24

Answer: B

Watch Video Solution

20. The area bounded by the curve $y=\cos x$ and $y=\sin 2x,\ orall x\in\left[rac{\pi}{6},rac{\pi}{2}
ight]$ is equal to

A.
$$\frac{\pi}{2}$$
 sq. units

B.
$$\frac{\pi}{3}$$
 sq. units

D.
$$\frac{1}{4}$$
 sq. units

Answer: D

21. The value of the integral
$$\int_0^4 \frac{x^2}{x^2-4x+8} dx$$
 is equal to

Watch Video Solution

22. Let
$$\int \frac{x^3 + x^2 + x}{\sqrt{12x^3 + 15x^2 + 20x}} dx = f(x)$$

where $f(1)=\frac{\sqrt{47}}{30}$. If $\left(f(2)\right)^2$ is equal to $\frac{p}{255}$, then the value of p is equal to

Watch Video Solution

23. Let

$$A = egin{bmatrix} 1 & 1 \ 3 & 3 \end{bmatrix} ext{ and } B = A + A^2 + A^3 + A^4.$$

If $B=\lambda A,\ orall\lambda\in R$, then the value of λ is equal to

24. The number of permutations of alphabets of the word "ENSHRINE" in which no two alike alphabets are are together is equal to

Watch Video Solution

25. For three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , If $\left|\overrightarrow{a}\right|=2,\left|\overrightarrow{b}\right|=1,\overrightarrow{a}\times\overrightarrow{b}=\overrightarrow{c}$ and

$$\overrightarrow{b} imes\overrightarrow{c}=\overrightarrow{a}$$
, then the value of

$$\left[\overrightarrow{a} + \overrightarrow{b} \quad \overrightarrow{b} + \overrightarrow{c} \quad \overrightarrow{c} + \overrightarrow{a} \right]$$
 is equal to

