© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 19

Mathematics

1. If A and B are square matrices of order 3 such
that $|A|=3$ and $|B|=2$, then the value of
$\left|A^{-1} a d j\left(3 A^{-1}\right)\right|$ is equal to
A. 27
B. $\frac{27}{4}$
C. $\frac{1}{108}$
D. $\frac{1}{4}$

Answer: A

- Watch Video Solution

2. Which of the following statement is equivalent to the statement "if $2+2=4$ then India is country" ?
A. $2+2=4$ or India is a country
B. $2+2=4$ and India is a country
C. $2+2 \neq 4$ or India is a country
D. $2+2=4$ or India is not a country

Answer: C

- Watch Video Solution

3. Two points P and Q are lying on the curve $y=\log _{2}(x+3)$ in $x y$ plane such that $\overrightarrow{O P} . \hat{i}=1$ and,$\vec{O} Q \cdot \hat{j}=3$, then the value of $|\overrightarrow{O Q}-2 \overrightarrow{O P}|$ is (where," O " is the origin).
A. $\sqrt{6}$
B. $\sqrt{7}$
C. $\sqrt{8}$
D. $\sqrt{10}$

Answer: D

- Watch Video Solution

4. Bag A contains 4 green and 3 red balls and bag B contains 4 red and 3 green balls. One bag is taken at random and a ball is drawn and noted to
be green. The probability that it comes from bag B, is

$$
\begin{aligned}
& \text { A. } \frac{2}{7} \\
& \text { B. } \frac{2}{3} \\
& \text { C. } \frac{3}{7} \\
& \text { D. } \frac{1}{3}
\end{aligned}
$$

Answer: C

- Watch Video Solution

5. The value of the integral $I=\int_{0}^{\frac{\pi}{4}}[\sin x+\cos x](\cos x-\sin x) d x$ is equal to (where,[.] denotes the greatest integer function)
A. $\sqrt{2}$
B. $2 \sqrt{2}$
C. 1
D. $\sqrt{2}-1$

Answer: D
6. If the letters of the word CORONA are arranged in all possible ways and these words are written in order of a dictionary, then the word CORONA appears at the serial number
A. 108
B. 110
C. 106
D. 112

Answer: A
7. The solution of the differential equation $d y-\frac{y d x}{2 x}=\sqrt{x} y d y$ is (where , c is an arbitrary constant)

$$
\begin{aligned}
& \text { A. } \frac{y}{\sqrt{x}}=y+c \\
& \text { B. } \frac{y}{\sqrt{x}}=\frac{y^{2}}{2}+c \\
& \text { C. } y=y \sqrt{x}+c \\
& \text { D. } \frac{y}{\sqrt{x}}=-y^{2}+c
\end{aligned}
$$

Answer: B
8. If $\left(\cot ^{-01} x\right)^{2}-7\left(\cot ^{-1} x\right)+10>0$ then range of x will be
A. $(-\infty, \cot 2)$
B. $(-\infty, \cot 5)$
C. $(\cot 2, \cot 5)$
D. $(\cot 2, \infty)$

Answer: D

- Watch Video Solution

9. If $\alpha \neq \beta$ but, $\alpha^{2}=4 \alpha-2$ and $\beta^{2}=4 \beta-2$
then the quadratic equation with roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ is
A. $x^{2}-4 x+2=0$
B. $x^{2}-6 x+1=0$
C. $x^{2}+6 x-1=0$
D. $x^{2}+4 x-2=0$

Answer: B
10. The sum up to 60 terms of $\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{2}}+\ldots \ldots .$. is equal to
A. $\frac{240}{61}$
B. $\frac{180}{17}$
C. $\frac{360}{61}$
D. $\frac{100}{17}$

Answer: C
11. If $C_{0}, C_{1}, C_{2}, \ldots, C_{n}$ are binomial coefficients in the expansion of $(1+x)^{n}$, then the value of

$$
C_{0}-\frac{C_{1}}{2}+\frac{C_{2}}{3}-\frac{C_{3}}{4}+\ldots+(-1)^{n} \frac{C_{n}}{n+1} \text { is }
$$

A. 0

$$
\begin{aligned}
& \text { B. } \frac{1}{n+1} \\
& \text { C. } \frac{2^{2}}{n+1} \\
& \text { D. } \frac{-1}{n+1}
\end{aligned}
$$

Answer: B

- Watch Video Solution

12. The value of the integral
$\int\left(\frac{\sin x}{x}\right)^{6}\left(\frac{x \cos x-\sin x}{x^{2}}\right) d x$ is
(where , c is an arbitrary constant)

$$
\begin{aligned}
& \text { A. } \frac{\sin x}{x}+C \\
& \text { B. } \frac{\sin x}{x^{2}}+C \\
& \text { C. } \frac{\sin ^{7} x}{x^{7}}+C \\
& \text { D. } \frac{\sin ^{7} x}{7 x^{7}}+C
\end{aligned}
$$

Answer: D

13. If the difference between the number of subsets of two sets A and B is 120 , then $n(A \times B)$
is equal to
A. 21
B. 25
C. 18
D. 24

Answer: A

- Watch Video Solution

14. The function $f:[0,7] \rightarrow[0,70]$ where $f(x)=x^{3}-12 x^{2}+45 x$, is
A. one - one \& onto
B. many - one \& onto
C. one - onto \& into
D. many-one \& into

Answer: B

- Watch Video Solution

15. The area (in sq. units) of the region

$\left\{(x, y): y^{2} \leq 2 x\right.$ and $\left.x^{2}+y^{2} \leq 4 x, x \geq 0, y \leq 0\right\}$,
is
A. $\pi-\frac{4 \sqrt{2}}{3}$
B. $\frac{\pi}{2}-\frac{2 \sqrt{2}}{3}$
C. $\pi-\frac{4}{3}$
D. $\pi-\frac{8}{3}$

Answer: D

- Watch Video Solution

16. The value of $\lim _{x \rightarrow 0} \frac{\log (\sin 5 x+\cos 5 x)}{\tan 3 x}$ is equal to
A. $\frac{10}{3}$
B. $\frac{20}{3}$
C. $\frac{5}{6}$
D. $\frac{5}{3}$

Answer: D

17. The number of values of p for which the lines
$x+y-1=0, p x+2 y+1=0$
$4 x+2 p y+7=0$ are concurrent is equal to
A. 0
B. 2
C. 1
D. infinite

Answer: C

- Watch Video Solution

18. If $y=\frac{1}{x}$, then the value of
$\frac{d y}{\sqrt{1+y^{4}}}+\frac{d x}{\sqrt{1+x^{4}}}+3$ is equal to
A. 0
B. 3
C. 4
D. -3

Answer: B
19. From a point $\mathrm{P}(3,3)$ on the circle $x^{2}+y^{2}=18$,
two chords PQ and PR each of 2 units length are drawn on this circle. The value of $\cos (\angle Q P R)$ is equal to

$$
\begin{aligned}
& \text { A. } \frac{1}{3 \sqrt{2}} \\
& \text { B. }-\frac{8}{9} \\
& \text { C. } \frac{\sqrt{2}}{3} \\
& \text { D. } \frac{-4}{9}
\end{aligned}
$$

Answer: B
20. The equation of parabola which cuts the parabola $y^{2}=4 b x$ orthogonally having the same axis and length of latus rectum as $8 b$, is
A. $y^{2}=-8 b(x-8 b)$
B. $y^{2}=-8 b(x-4 b)$
C. $y^{2}=-8 b(x-32 b)$
D. $y^{2}=-8 b(x-3 b)$

Answer: D

- Watch Video Solution

21. If $\sum_{i=1}^{5}\left(x_{i}-6\right)=5$ and $\sum_{i=1}^{5}\left(x_{i}-6\right)^{2}=25$, then the standard deviation of observations

D Watch Video Solution

22. If the image of the point $P(1,-2,3)$ in the plane $2 x+3 y+4 z+22=0$ measured parallel to the line $20 x=5 y=4 z$ is point Q , then the value of $|P Q|^{2}$ is

- Watch Video Solution

23. $\tan ^{6} 20^{\circ}-33 \tan ^{2} 20^{\circ}+27 \tan ^{2} 20^{\circ}+4=$

- Watch Video Solution

24. If $f(x)=\left\{\begin{array}{ll}\frac{\sqrt{1+\sqrt{5+x}-a}}{(x-4)} & 0 \leq x \leq 4 \\ b & x \geq 4\end{array}\right.$ is
continuous at $\mathrm{x}=4$ then value of $\frac{1}{a b}$ is equal to
A. 4
B. 15
C. 8
D. 12

Answer: D

D Watch Video Solution

25. If $P_{1}=1-\frac{w}{2}+\frac{w^{2}}{4}-\frac{w^{3}}{8}+\ldots \ldots \ldots \infty$ and $P_{2}=\frac{1-\omega^{2}}{2}\{$ where w is non-real root of equation $\left.x^{3}=1\right\}$, then $P_{1} P_{2}$ is equal to
