

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 19

Mathematics

1. If A and B are square matrices of order 3 such that |A|=3 and |B|=2, then the value of $|A^{-1}adj(3A^{-1})|$ is equal to

A. 27

B.
$$\frac{27}{4}$$

C. $\frac{1}{108}$
D. $\frac{1}{4}$

Answer: A

2. Which of the following statement is equivalent to the statement "if 2 + 2 = 4 then India is country" ? A. 2+2=4 or India is a country

B. 2+2=4 and India is a country

C. 2+2
eq 4 or India is a country

D. 2+2=4 or India is not a country

Answer: C

Watch Video Solution

3. Two points P and Q are lying on the curve $y = \log_2(x+3)$ in xy plane such that $\overrightarrow{OP} \cdot \hat{i} = 1$ and $\overrightarrow{OQ} \cdot \hat{j} = 3$,then the value of $\left|\overrightarrow{OQ} - 2\overrightarrow{OP}\right|$ is (where,"O" is the origin).

A. $\sqrt{6}$

B. $\sqrt{7}$

 $C.\sqrt{8}$

D. $\sqrt{10}$

Answer: D

4. Bag A contains 4 green and 3 red balls and bag B contains 4 red and 3 green balls. One bag is taken at random and a ball is drawn and noted to be green. The probability that it comes from bag B,

A.
$$\frac{2}{7}$$

B. $\frac{2}{3}$
C. $\frac{3}{7}$
D. $\frac{1}{3}$

Answer: C

A. $\sqrt{2}$

 $\mathsf{B.}\,2\sqrt{2}$

C. 1

D. $\sqrt{2} - 1$

6. If the letters of the word CORONA are arranged in all possible ways and these words are written in order of a dictionary, then the word CORONA appears at the serial number

A. 108

B. 110

C. 106

D. 112

Answer: A

7. The solution of the differential equation $dy - \frac{ydx}{2x} = \sqrt{x}ydy$ is (where , c is an arbitrary constant)

A.
$$\displaystyle rac{y}{\sqrt{x}} = y + c$$

B. $\displaystyle rac{y}{\sqrt{x}} = \displaystyle rac{y^2}{2} + c$
C. $\displaystyle y = \displaystyle y \sqrt{x} + c$
D. $\displaystyle rac{y}{\sqrt{x}} = \displaystyle - \displaystyle y^2 + c$

8. If $\left(\cot^{-01}x\right)^2 - 7\left(\cot^{-1}x\right) + 10 > 0$ then

range of x will be

- A. $(-\infty, \cot 2)$
- $\mathsf{B.}\,(\,-\infty,\,\cot\,5)$
- $\mathsf{C}.\,(\cot 2,\,\cot 5)$
- D. $(\cot 2, \infty)$

9. If $\alpha \neq \beta$ but, $\alpha^2 = 4\alpha - 2$ and $\beta^2 = 4\beta - 2$ then the quadratic equation with roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ is A. $x^2 - 4x + 2 = 0$ B. $x^2 - 6x + 1 = 0$ C. $x^2 + 6x - 1 = 0$ D. $x^2 + 4x - 2 = 0$

10. The sum up to 60 terms of
$$\frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^2 + 2^2 + 3^2} + \dots$$
 is equal to

A.
$$\frac{240}{61}$$

B. $\frac{180}{17}$
C. $\frac{360}{61}$
D. $\frac{100}{17}$

Answer: C

11. If $C_0, C_1, C_2, ..., C_n$ are binomial coefficients

in the expansion of $(1+x)^n$, then the value of

$$C_0 - rac{C_1}{2} + rac{C_2}{3} - rac{C_3}{4} + ... + (\,-1)^n rac{C_n}{n+1}$$
 is

integral

(where , c is an arbitrary constant)

A.
$$\frac{\sin x}{x} + C$$

B. $\frac{\sin x}{x^2} + C$
C. $\frac{\sin^7 x}{x^7} + C$
D. $\frac{\sin^7 x}{7x^7} + C$

Answer: D

13. If the difference between the number of subsets of two sets A and B is 120, then n(A imes B) is equal to

A. 21

B. 25

C. 18

D. 24

Answer: A

14. The function f : [0,7]
ightarrow [0,70] where

 $f(x) = x^3 - 12x^2 + 45x$, is

A. one - one & onto

B. many - one & onto

C. one - onto & into

D. many-one & into

15. The area (in sq. units) of the region $\{(x,y): y^2 \leq 2x ext{ and } x^2 + y^2 \leq 4x, x \geq 0, y \leq 0\},$ is

A.
$$\pi - \frac{4\sqrt{2}}{3}$$

B. $\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$
C. $\pi - \frac{4}{3}$
D. $\pi - \frac{8}{3}$

16. The value of $\lim_{x o 0} rac{\log(\sin 5x + \cos 5x)}{\tan 3x}$ is

equal to

A.
$$\frac{10}{3}$$

B. $\frac{20}{3}$
C. $\frac{5}{6}$
D. $\frac{5}{3}$

17. The number of values of p for which the lines x + y - 1 = 0, px + 2y + 1 = 0 and 4x + 2py + 7 = 0 are concurrent is equal to A. 0

B. 2

C. 1

D. infinite

Answer: C

D. -3

19. From a point P(3, 3) on the circle $x^2 + y^2 = 18$, two chords PQ and PR each of 2 units length are drawn on this circle. The value of cos $(\angle QPR)$ is equal to

A.
$$\frac{1}{3\sqrt{2}}$$

B.
$$-\frac{8}{9}$$

C.
$$\frac{\sqrt{2}}{3}$$

D.
$$\frac{-4}{9}$$

20. The equation of parabola which cuts the parabola $y^2 = 4bx$ orthogonally having the same axis and length of latus rectum as 8b, is

A.
$$y^2 = -8b(x-8b)$$

B. $y^2 = -8b(x-4b)$
C. $y^2 = -8b(x-32b)$

D.
$$y^2=~-8b(x-3b)$$

21. If
$$\sum_{i=1}^5 (x_i-6) = 5$$
 and $\sum_{i=1}^5 (x_i-6)^2 = 25$,

then the standard deviation of observations

Watch Video Solution

22. If the image of the point P(1, -2, 3) in the plane 2x + 3y + 4z + 22 = 0 measured parallel to the line 20x = 5y = 4z is point Q, then the value of $|PQ|^2$ is

23. $\tan^6 20^\circ - 33 \tan^2 20^\circ + 27 \tan^2 20^\circ + 4 =$

24. If
$$f(x) = \begin{cases} \frac{\sqrt{1+\sqrt{5+x}-a}}{(x-4)} & 0 \le x \le 4\\ b & x \ge 4 \end{cases}$$
 is continuous at x = 4 then value of $\frac{1}{ab}$ is equal to

A. 4

B. 15

C. 8

D. 12

Answer: D

25. If
$$P_1=1-\frac{w}{2}+\frac{w^2}{4}-\frac{w^3}{8}+\ldots\ldots\infty$$

and $P_2=\frac{1-\omega^2}{2}$ { where w is non-real root of equation $x^3=1$ }, then P_1P_2 is equal to