

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 22

Mathematics

1. Let
$$I_1=\int_0^1rac{|\ln x|}{x^2+4x+1}dx$$
 and $I_2=\int_1^\inftyrac{\ln x}{x^2+4x+1}dx$, then

A.
$$I_1=I_2$$

B.
$$I_1 > I_2$$

$$C. I_1 + I_2 = 0$$

D.
$$I_1 = 2I_2$$

Answer: A

2. The number of positive integral solutions of the equation

$$\left|egin{array}{cccc} x^3+1 & x^2y & x^2z \ xy^2 & y^3+1 & y^2z \ xz^2 & z^2y & z^3+1 \end{array}
ight|=11$$
 is

Watch Video Solution

3. The value of the integral $\int \frac{\left(x^2-4x\sqrt{x}+6x-4\sqrt{x}+1\right)dx}{x-2\sqrt{x}+1}$

A.
$$\frac{x^{\frac{3}{2}}}{2}+x+c$$

$$\mathsf{B.}\,\frac{x^2}{2}-\frac{4}{3}x^{\left(\frac{3}{2}\right)}+x+c$$

$$\mathsf{C.}\,x^{\frac{3}{2}}+\frac{x}{2}+c$$

D.
$$\frac{2}{3}x^{\frac{3}{2}} + c$$

Answer: B

4. If the solution of the differential equation
$$\frac{dy}{dx} =$$

4. If the solution of the differential equation
$$\frac{dy}{dx} = \frac{x^3 + xy^2}{y^3 - yx^2}$$
 is

(where, λ is an arbitrary constant), then the value of k is

A. 2

 $y^k-x^k=2x^2y^2+\lambda$

- B. 4
- C. 1
- D. $\frac{3}{2}$

Answer: B

5. The number of tangents that can be drawn from (2, 0) to the curve $y=x^6$ is/are

6. The equation $kx^2+x+k=0$ and $kx^2+kx+1=0$ have exactly one root in common for

A.
$$k=-rac{1}{2},1$$

$$B.k = 1$$

$$\mathsf{C.}\,k = \,-\,\frac{1}{2}$$

D.
$$k=rac{1}{2}$$

Answer: C

- **7.** The terms $\tan 80^{\circ}$, $\tan 70^{\circ} + \tan 10^{\circ}$ and $\tan 10^{\circ}$ are in
 - A. artithmetic progression
 - B. geometric progression
 - C. harmonic progression
 - D. none of these

Answer: A

Watch Video Solution

- **8.** If $a^2+b=2$, then maximum value of the term independent of x in the expansion of $\left(ax^{\frac16}+bx^{-\frac13}\right)^9$ is (a>0;b>0)
 - A. 48
 - B. 84
 - C. 42
 - D. 168

Answer: B

Watch Video Solution

9. The number of even numbers of four digits that can be formed using the digits 0, 1, 2, 3, 4 and 5 is

B. 156

C. 144

D. 198

Answer: B

Watch Video Solution

10. If
$$f\!:\!R o A$$
 defined as $f(x)= an^{-1}\Bigl(\sqrt{4\bigl(x^2+x+1\bigr)}\Bigr)$ surjective, then A is equal to

A.
$$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$

B.
$$\left[0, \frac{\pi}{2}\right)$$

$$\mathsf{C.}\left[\frac{\pi}{3},\frac{\pi}{2}\right)$$

D.
$$\left(0, \frac{\pi}{3}\right]$$

Answer: C

11. If the line y=x-1 bisects two chords of the parabola $y^2=4bx$ which are passing through the point (b, -2b), then the length of the latus rectum can be equal to

Watch Video Solution

12. The centre of the circule passing through the points of intersection of the curves (2x + 3y + 4)(3x + 2y - 1) = 0 and xy = 0 is

$$A.\left(\frac{5}{6},\ -\frac{5}{12}\right)$$

B.
$$\left(-\frac{5}{6},\ -\frac{5}{12}\right)$$
C. $\left(\frac{5}{12},\ -\frac{5}{6}\right)$

D.
$$\left(-\frac{5}{12}, \frac{5}{6}\right)$$

Answer: B

13. If $x=\sec t+\tan t$ and $y=\sec t-\tan t$, where t is a parameter, then the value of $\frac{dy}{dx}$ when $x=\frac{1}{\sqrt{3}}$ is

$$B.-3$$

C.
$$\sqrt{3}$$

D.
$$\frac{1}{\sqrt{3}}$$

Answer: B

Watch Video Solution

14. Let p, q and r be three statements. Consider two compound statements $S_1\colon (p\Rightarrow q)\Rightarrow r\equiv p\Rightarrow (q\Rightarrow r)$

 $S_2\colon (p\Leftrightarrow q)\Leftrightarrow r\equiv p\Leftrightarrow (q\Leftrightarrow r)$ State in order, whether S_1,S_2 are true of false. (where, T represents true F represents false)

Δ	Т	1

B. TF

C. FT

D. FF

Answer: C

Watch Video Solution

15. Let the equations of side BC and the internal angle bisector of angle B of ΔABC are 2x-5y+a=0 and y+x=0 respectively. If A=(2,3) , then the value of of a is equal to

A. 4

B. 2

 $\mathsf{C.}-2$

 $\mathsf{D.}-4$

Answer: D

Watch Video Solution

16. The mean and variance of 20 observations are found to be 10 and 4 respectively. On rechecking, it was found that an observation 8 is incorrect. If the wrong observation is omitted, then the correct variance is

- A. 7
- B. $\frac{100}{16}$
- C. $\frac{1400}{361}$
- D. $\frac{1440}{361}$

Answer: D

17. A box contains 9 slips bearing numbers -3, -2, -1, 0, 1, 2, 3, 4 and 5. An experiment consists of drawing a slip from this box and replacing it back in the box after noting the number. This experiment is repeated 9 times. This experiment is repeated 9 times. These 9 numbers are now chosen as elements of 3×3 matrix, then the probability that the matrix is skew symmetric is

A.
$$\frac{1}{9^6}$$

B.
$$\frac{343}{9^9}$$

c.
$$\frac{1}{9^9}$$

D.
$$\frac{1}{9^7}$$

Answer: B

18. If A and B are non - singular matrices of order three such that

$$adj(AB)=egin{bmatrix}1&1&1\1&lpha&1\1&1&lpha\end{bmatrix}$$
 and $egin{bmatrix}B^2adjAig|=lpha^2+3lpha-8$, then the value

of
$$lpha$$
 is equal to

A.
$$\frac{9}{5}$$

19.

Answer: A

Watch Video Solution

Watch Video Solution

 $\overrightarrow{r}.\left(\hat{i}+\hat{j}+\hat{k}
ight)=1, \overrightarrow{r}.\left(\hat{i}+2a\hat{j}+\hat{k}
ight)=2 \,\, ext{and}\,\,\, \overrightarrow{r}.\left(a\hat{i}+a^2\hat{j}+\hat{k}
ight)=3$

planes

intersect in a line, then the possible number of real values of a is

the

20. The value of
$$\lim_{x \to 1^-} \frac{\sqrt{\pi} - \sqrt{4 \tan^{-1} x}}{\sqrt{1-x}}$$
 is equal to

A.
$$2\sqrt{\pi}$$

$$\mathrm{B.}\; \frac{1}{2\sqrt{\pi}}$$

C.
$$4\sqrt{\pi}$$

D. 0

Answer: D

Watch Video Solution

21. The area (in sq. units) bounded by the curve $y=\max{.\left(x^3,x^4\right)}$ and the x - axis from x = 0 to x = 1 is

22. A vertical tower subtends an angle of 60° at a point on the same level as the foot of the tower. On moving 100 m further from the first point in line with the tower, it subtends an angle of 30° at the point. If the height of the tower is Hm, then the value of $\frac{H}{25\sqrt{3}}$ (in meters) is

Watch Video Solution

23. If the arguments of $(1-i)ig(\sqrt{3}+iig)ig(1+\sqrt{3}iig)$ and $(Z-2)ig(\overline{Z}-1ig)$ are equal, then the locus to Z is part of a circle with centre (a, b). The value of $\frac{1}{a+b}$ is

24. Let
$$\overrightarrow{a}=\hat{i}+2\hat{j}+3\hat{k},$$

$$\overrightarrow{b} = 2\hat{i} + 3\hat{j} + \hat{k}, \overrightarrow{c} = \hat{k} + \hat{i} \text{ and } (\overrightarrow{x} \times \overrightarrow{b}) = (\overrightarrow{a} \times \overrightarrow{c}) \times \overrightarrow{b}.$$
 If $\overrightarrow{x}, \overrightarrow{a} = 0$, then $|\overrightarrow{x}|$ is equal to use $\sqrt{3} = 1.73$)

$$\overrightarrow{x}$$
 . $\overrightarrow{a}=0$, then $\left|\overrightarrow{x}\right|$ is equal to use $\sqrt{3}=1.73$)

25. Let
$$f(x)=egin{cases} a & ,x=rac{\pi}{2} \\ rac{\sqrt{2x-\pi}}{\sqrt{9+\sqrt{2x-\pi}}-b} & ,x>rac{\pi}{2} \end{cases}$$
 . If $f(x)$ is continuous at $x=rac{\pi}{2}$, then the value of $rac{a^2}{5b}$ is

$$x=rac{\pi}{2}$$
 , then the value of $rac{a^2}{5b}$ is

