©゙’doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 25

Mathematics

1. If $y=(1+x)^{y}+\sin ^{-1}\left(\sin ^{2} x\right)$, then $\frac{d y}{d x}$ at $\mathrm{x}=0$ is
A. 0
B. In 2
C. 1
D. $\frac{1}{2}$

Answer: C

D Watch Video Solution

2. The area bounded by $f(x)=\sin ^{2} x$ and the x - axis
from $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$, where

$$
f^{\prime \prime}(a)=f^{\prime \prime}(b)=0(\forall a, b, \in(0, \pi)) \text { is }
$$

A. $\frac{\pi}{4}$
B. $\pi+2$
C. 2
D. $\frac{\pi+2}{4}$

Answer: D

- Watch Video Solution

3. The domain of the function
$f(x)=\frac{1}{9-x^{2}}+\log _{20}\left(x^{3}-3 x\right)$ is
A. $(-\sqrt{3}, 0) \cup(\sqrt{3}, \infty)$
B. $(-\sqrt{3}, 0) \cup(\sqrt{3}, 3)$
C. $(-\sqrt{3}, 0) \cup(3, \infty)$
D. $(-\sqrt{3}, 0) \cup(\sqrt{3}, 3) \cup(3, \infty)$

Answer: D
4. If for a sample size of 10 ,
$\sum_{i=1}^{10}\left(x_{i}-5\right)^{2}=350$ and $\sum_{i=1}^{10}\left(x_{i}-6\right)=20$, then
the variance is
A. 23
B. 24
C. 25
D. 26

Answer: D

5. If a and b are two real number lying between 0 and 1 such that $z_{1}=a+i, z_{2}=1+b i$ and $z_{3}=0$ form an equilateral triangle, then
A. $a=2+\sqrt{3}$
B. $a=4-\sqrt{3}$
C. $a=b$
D. $a=2, b=\sqrt{3}$

Answer: C
6. If any tangent to the ellipse $25 x^{2}+9 y^{2}=225$ meets the coordinate axes at A and B such that $O A=O B$ then, the length $A B$ is equal to (where, O is the origin)
A. $\sqrt{17}$ units
B. $\sqrt{34}$ units
C. $2 \sqrt{17}$ units
D. $2 \sqrt{34}$ units

Answer: C

- Watch Video Solution

7. If $\frac{1}{1!11!}+\frac{1}{3!9!}+\frac{1}{5!7!}=\frac{2^{n}}{m!}$ then the value of m $+n$ is
A. 18
B. 23
C. 12
D. 22

Answer: D

D Watch Video Solution

8. There are 10 seats in the first row of a theatre of
which 4 are to be occupied. The number of ways of
arranging 4 persons so that no two persons sit side by side is:
A. 240
B. 480
C. 840
D. 420

Answer: C

- Watch Video Solution

9. Let the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ satisfies the equation $\frac{d y}{d x}=1-\frac{1}{x^{2}}$ and passes through the point $\left(2, \frac{7}{2}\right)$
then the value of $f(1)$ is
A. 3
B. 2
C. $\frac{7}{2}$
D. 1

Answer: A

- Watch Video Solution

10. If a function $F: R \rightarrow R$ is defined as $f(x)=\int \frac{x^{8}+4}{x^{4}-2 x^{2}+2} d x \mathrm{f}(0)=1$, then which of the following is correct ?
A. $f(x)$ is an even function
B. $f(x)$ is an onto function
C. $f(x)$ is an odd function
D. $f(x)$ is an many one function

Answer: B

- Watch Video Solution

11. Six fair dice are rolled. The probability that the product of the numbers appearing on top faces is prime is

$$
\text { A. } \frac{1}{2}\left(\frac{1}{6}\right)^{4}
$$

B. $\left(\frac{1}{2}\right)^{6}$
C. $\frac{1}{6^{4}}$
D. $\frac{1}{2}\left(\frac{1}{6}\right)^{5}$

Answer: A

D Watch Video Solution

12. If x satisfies the inequality
$\left(\tan ^{-1} x\right)^{2}+3\left(\tan ^{-1} x\right)-4>0$, then the complete
set of values of x is
A. $\left(-\tan 4, \frac{\pi}{4}\right)$
B. $(\infty, \tan 4) \cup\left(\frac{\pi}{4}, \infty\right)$
C. $(\tan 1, \infty)$
D. $(\tan 4, \tan 1)$

Answer: C

- Watch Video Solution

13. Let $2 a+2 b+c=0$, then the equation of the straight line $a x+b y+c=0$ which is farthest the point $(1,1)$ is
A. $y=x$
B. $y+x=2$
C. $y+x=4$
D. $y=x+2$

Answer: C

D Watch Video Solution

14. If $x,|x+a|,|x-1|$ are first three terms of an A.P.,
then the sum of its first 20 terms is
A. 90 or 175
B. 180 or 350
C. 360 or 700
D. 720 or 1400

- Watch Video Solution

15. The difference between the greatest and the least possible value of the expression $3-\cos x+\sin ^{2} x$ is
A. $\frac{13}{4}$
B. $\frac{17}{4}$
C. $\frac{9}{4}$
D. $\frac{1}{4}$

Answer: C

16. The value of $\int_{0}^{12 \pi}([\sin t]+[-\sin t]) d t$ is equal to
(where [.] denotes the greatest integer function)
A. 12π
B. -12π
C. -10π
D. -6π

Answer: B

- Watch Video Solution

17.

$f(x)=\sin x+2 \cos x, \forall \mathrm{x} \in[0,2 \pi]$ we obtain
A. a local point of maxima at $x=\alpha$, where α is in $1^{\text {st }}$ quadrant
B. a local point of maxima at $x=\alpha$, where α is in $3^{r d}$ quadrant
C. a local point of minima at $x=\alpha$, where α is in $1^{s t}$
quadrant
D. a local point of minima at $x=\alpha$, where α is in
$2^{\text {nd }}$ quadrant

- Watch Video Solution

18. Find the equation of the plane containing the lines
$2 x-y+z-3=0,3 x+y+z=5$ and at a distance of $\frac{1}{\sqrt{6}}$ from the point (2,1,-1).
A. $x+y+z-3=0$
B. $2 x-y-z-3=0$
C. $2 x-y+z+3=0$
D. $62 x+29 y+19 z-105=0$

Answer: D

19. If \vec{m}_{a}, \vec{m}_{b} and \vec{m}_{c} are 3 units vectors such that $\vec{m}_{a} \cdot \vec{m}_{b}=\vec{m}_{a} \cdot \vec{m}_{c}=0$ and the angle between $\vec{m}_{b} \cdot \vec{m}_{c}$ is $\frac{\pi}{3}, \quad$ then then value of $\left|\vec{m}_{a} \times \vec{m}_{b}-\vec{m}_{a} \times \vec{m}_{c}\right|$ is equal to
A. 1
B. 2
C. 3
D. 4

Answer: A

20. Let the points A lies on $3 x-4 y+1=0$, the point B lines on $4 x+3 y-7=0$ and the point C is $(-2,5)$. If $A B C D$ is a rhombus, then the locus of D is

$$
\begin{aligned}
& \text { A. } \left.25\left((x+2)^{2}+(y-5)^{2}\right)\right)=(3 x+4 y+1)^{2} \\
& \text { B. }(3 x-4 y+1)^{2}+(4 x-3 y-7)^{2}=1 \\
& \text { C. }(3 x-4 y+1)^{2}-(4 x-3 y-7)^{2}=1 \\
& \text { D. }(4 x+3 y-7)^{2}+(3 x-4 y+1)^{2}=1
\end{aligned}
$$

Answer: A

- Watch Video Solution

21.

$A+2 B=\left[\begin{array}{lll}2 & 4 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 5\end{array}\right]$ and $2 A-B=\left[\begin{array}{lll}6 & -2 & 4 \\ 6 & 1 & 5 \\ 6 & 3 & 4\end{array}\right]$
, then $\operatorname{tr}(A)-\operatorname{tr}(B)$ is equal to (where, $\operatorname{tr}(A)=n$ trace of matrix x A i.e. . Sum of the principle diagonal elements of matrix A)

D Watch Video Solution

22.

$p x^{4}+q x^{3}+r x^{2}+s x+t=\left|\begin{array}{lll}x^{2}+3 x & x-1 & x+3 \\ x+1 & -2 & x-4 \\ x-3 & x+4 & 3 x\end{array}\right|$
be an identity where $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$ and t are constants, then the value of s is equal to
23. If $S=\sum_{r=1}^{80} \frac{r}{\left(r^{4}+r^{2}+1\right)}$, then the value of $\frac{6481 s}{1000}$ is

D Watch Video Solution

24. If the equation of the tangent at the point $P(3,4)$ on
the parabola whose axis is the x - axis is $3 \mathrm{x}-4 \mathrm{y}+7=0$
,then distance of the tangent from the focus of the parabola is
25. In the figure PQ $P O_{1}$ and $O_{1} Q$ are the diameters of semicircles C_{1}, C_{2} and C_{3} with centres at O_{1}, O_{2} and O_{3} respectively $C_{1} C_{2}$ and C_{3}. If $\mathrm{PQ}=24$ units and the area of the circle C_{4} is A sq. units, then the value of $\frac{8 \pi}{4}$ is equal ot (here, $P O_{1}=O_{1} Q$)

