

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 27

Mathematics

1. The number of integral values of a for which the equation $\cos 2x + a \sin x = 2a - 7$ possesses a solution is

A. 2

B. 3

C. 4

D. 5

Answer: D

Watch Video Solution

2. Equation of chord AB of the circle $x^2+y^2=2$ passing through P(2,2) such that $\frac{PB}{PA}=3$, is given by (a) x=3y (b) x=y (c) $y-2=\sqrt{3}(x-2)$ (d) Non of these

A.
$$x = 3y$$

$$B. x = y$$

C.
$$y-2\sqrt{3}(x-2)$$

D. None of these

Answer: B

3. The value of $\int \frac{xdx}{(x+3)\sqrt{x+1}}$ is (where , c is the constant of integration)

A.
$$2\sqrt{x+1} + 3\tan^{-1}\sqrt{x+1} + c$$

B.
$$2\sqrt{x+1}+3\sqrt{2} an^{-1}\sqrt{rac{x+1}{2}}+c$$

C.
$$2\sqrt{x+1}-3\sqrt{2} an^{-1}\sqrt{rac{x+1}{2}}+c$$

D.
$$2\sqrt{x+1} - 3\tan^{-1}\sqrt{x+1} + c$$

Answer: C

- **4.** If in the expansion of $(1+x)^m(1-x)^n$, the coefficients of x and x^2 are 3 and 6 respectively, the value of m and n are
 - A. 12
 - B. 14

C. 16

D. 18

Answer: C

Watch Video Solution

5. If $P = \{1,2,3,4,5\}$ and $Q = \{a,b,c\}$, then the number of onto functions from P to Q is

A. 150

B. 144

C. 147

D. 154

Answer: A

6. Let Z is be the set of integers , if
$$A=\left\{\mathbf{x}\in Z\colon |x-3|\, rac{(x^2-5x+6)}{2}=1
ight\} ext{ and } B\{x\in Z\colon 10<3x+1<22\}$$

7. If $A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$, abc = 1, $A^TA = l$, then find the value of

, then the number of subsets of the set A imes B is

A.
$$2^6$$

 $\mathsf{B.}\ 2^8$

 $\mathsf{C.}\,2^{15}$

 $D. 2^{9}$

Answer: A

Watch Video Solution

 $a^3 + b^3 + c^3$.

A. 2

D. 4

Answer: D

Watch Video Solution

8. If two points P&Q on the hyperbola , $\frac{x^2}{a^2}-\frac{y^2}{h^2}=1$ whose centre is

C be such that CP is perpendicularal to CQ and a < b1 ,then prove

that
$$rac{1}{CP^2} + rac{1}{CQ^2} = rac{1}{a^2} - rac{1}{b^2}.$$

A.
$$\dfrac{b^2-a^2}{2ab}$$

$$\mathsf{B.}\; \frac{1}{a^2} + \frac{1}{b^2}$$

C.
$$rac{2ab}{b^2-a^2}$$

D.
$$\frac{1}{a^2} - \frac{1}{b^2}$$

Answer: D

9. If the standard deviation of 0, 1, 2, 3...9 is K, then the standard deviation of 10, 11, 12, 13....19 is

10. The value of x for which $\sin\bigl(\cot^{-1}(1+x)\bigr) = \cos\bigl(\tan^{-1}x\bigr)$ is

B.k + 10

C. $k + \sqrt{10}$

D. 10K

Answer: A

$$\mathsf{D.}-\frac{1}{2}$$

Answer: D

Watch Video Solution

11. If
$$2^{a1}, 2^{a2}, 2^{a3}$$
..... 2^{ar} are in geometric progression , then

$$\mathsf{A.}\ 2^5$$

$$\mathsf{B.}\ 2^3$$

D. None of these

Answer: C

- **12.** The solution of the equation |z|-z=1+2i is
 - A. $\frac{3}{2}+2i$
 - B. $\frac{3}{2}-2i$
 - $\mathsf{C.}\,3-2i$
 - D. None of these

Answer: B

Watch Video Solution

13. The unbiased dice is tossed until a number greater than 4 appear.

What is the probability that an even number of tosses is needed?

A.
$$\frac{1}{2}$$

 $C.(0,\infty)$

B.(0,3)

$$(-\infty,\ -3)\cup(0,\infty)$$

Answer: B

B. $\frac{2}{5}$

c. $\frac{1}{5}$

D. $\frac{2}{3}$

14. The range of
$$a$$
 for which the equation $x^2+x-4=0$ has its smaller root in the interval $(-1,2)is$ $(-\infty,-3)$ b. $(0,3)$ c. $(0,\infty)$

d.
$$(-\infty, -3) \cup (0, \infty)$$

A.
$$(\,-\infty,\,-3)$$

$$\mathsf{C}.\left(0,\infty
ight)$$

D.
$$(-\infty, -3) \cup (0, \infty)$$

Answer: A

15. If volume of parallelopiped whose there coterminous edges are $\overrightarrow{u}=\hat{i}+\hat{j}+\lambda\hat{k}, \overrightarrow{v}=2\hat{i}+\hat{j}+\hat{k}, \overrightarrow{w}=\hat{i}+\hat{j}+3\hat{k}$, is 1 cubic unit

then cosine of angle between \overrightarrow{u} and \overrightarrow{v} is

A.
$$\frac{7}{6\sqrt{6}}$$

$$\mathsf{B.}\;\frac{7}{6\sqrt{3}}$$

c.
$$\frac{5}{7}$$

D.
$$\frac{7}{3\sqrt{3}}$$

Answer: B

Watch Video Solution

16. If 5a+4b+20c=t then the value of t for which the line ax+by+c-1=0 always passes through a fixed point is

A. 0

B. 20

C. 30

D. None of these

Answer: B

Watch Video Solution

17. The solution of the differential equation $\sin(x+y)dy=dx$ is

A.
$$y + \tan(x + y) - \sec(x + y) = c$$

$$\mathtt{B.}\,y - \tan(x+y) - \sec(x+y) = c$$

$$\mathsf{C.}\, y + \tan(x+y) + \sec(x+y) = c$$

$$\mathsf{D}.\,y - \tan(x+y) + \sec(x+y) = c$$

Answer: D

18. If $f(x)=[x]^{\{x\}}+\{x\}^{[x]}+\sin(\pi x)$, Where [.] and {.} represent the greatest integer function and the fractional part function respectively, then $f'\left(\frac{7}{2}\right)$ Is equal to

A.
$$\sqrt{3}In3+rac{\pi}{4}$$

$$\mathsf{B.}\,\sqrt{3}In3+\frac{3\pi}{4}$$

C.
$$\sqrt{3}In3+\pi+rac{3}{4}$$

D.
$$\sqrt{3}In3 + \frac{3}{4}$$

Answer: D

Watch Video Solution

19. An aeroplane flying horizontally , 1km above the ground , is observed at an elevation of 60° ,after 10 seconds , its elevation is observed to be

 30° . Find the speed of the aeroplane in km/hr.

B. $240\sqrt{3}$

 $\mathsf{C.}\,60\sqrt{3}$

D. None of these

Answer: B

Watch Video Solution

20. The sum to infinity of the series

$$1+rac{4}{5}+rac{7}{5^2}+rac{10}{5^3}+\ldots, \ {\sf is}$$

$$\mathsf{A.}\ \frac{16}{25}$$

B.
$$\frac{11}{5}$$

c.
$$\frac{35}{16}$$

D.
$$\frac{8}{11}$$

Answer: C

Watch Video Solution

21. The value of $\lim_{x o 1^+} rac{\int_1^x |t-1| dt}{\sin(x-1)}$ is

Watch Video Solution

22. If $f(x)=\cos^{-1}\bigl(\sin\bigl(4\cos^2x-1\bigr)\bigr), ext{ then } rac{1}{\pi}f'\Bigl(rac{\pi}{2}\Bigr). ext{ } f\Bigl(rac{\pi}{10}\Bigr) ext{ is }$

Watch Video Solution

23. If $f(x) = \min{\{|x-1|, |x|, |x+1|, \text{ then the value of } \int_{-1}^{1} f(x) dx\}}$ is equal to

x - cy - bz = 0, cx - y + az = 0 and bx + ay - z = 0

the

planes

pass

through a line, then the value of $a^2+b^2+c^2+2abc$ is

Watch Video Solution

25. Let $y=x^3-6x^2+9x+1$ be an equation of a curve, then the xintercept of the tangent to this curve whose slope is least, is

