©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 28

Mathematics

1. The area of the region enclosed by $f(x)=\frac{-2 x}{e^{x}}$ and the x - aixs is
A. 1 sq.units
B. 2 sq.units
C. $\frac{1}{2}$ sq. units
D. not defined

D Watch Video Solution

2. Let $x_{1}, x_{2}, x_{3} \ldots \ldots \ldots x_{k}$ be k observations and $w_{i}=a x_{i}+b$ for I
$=1,2,3 \ldots \ldots . \mathrm{K}$, where a and b are constants. If mean of x_{i} is 52 and their standard deviation is 12 and mean of w_{i} is 60 and their standard deviation is 15 , then the value of a and b should be 15 , then the value of a and b should be
A. $a=1.25, b=-5$
B. $a=-1.25, b=5$
C. $a=2.5, b=-5$
D. $a=2.5, b=5$

Answer: A

3. For real values of x , the value of expression $\frac{11 x^{2}-12 x-6}{x^{2}+4 x+2}$
A. lies between -17 and -3
B. does not lie between -17 and -3
C. lies between 3 and 17
D. does not lie between 17 and 3

Answer: B

- Watch Video Solution

4. Two distinct numbers are chosen from 1,3,5,7 151,153,155 and multiplied. The probability that the product is a multiple of 5 is
A. $\frac{1020}{3003}$
B. $\frac{1112}{3003}$
C. $\frac{1011}{3003}$
D. $\frac{1122}{3003}$

Answer: B

(D) Watch Video Solution

5. If $f(x)$ is a twice differentiable function such that $f^{\prime \prime}(x)=-f, f^{\prime}(x)=g(x), h(x)=f^{2}(x)+g^{2}(x)$ and $h(10)=10$
, then $h(5)$ is equal to
A. 5
B. 15
C. 10
D. 17
6. The minimum value of $|3 z-3|+|2 z-4|$ equal to
A. 2
B. 1.5
C. 3
D. 1

Answer: A

D Watch Video Solution

7. If $\lim _{x \rightarrow 0}\left(1+p x+q x^{2}\right)^{\operatorname{cosec} x}=e^{5}$, then
A. $p=5, q \in R$
B. $p=5, q>R$
C. $p=5, q \in R$
D. $q=5, p=0$

Answer: A

- Watch Video Solution

8. If $\int e^{\sin \theta}\left(\sin \theta+\sec ^{2} \theta\right) \mathrm{d} \theta$ is equal to $f(\theta)+C$ (where, C is the constant of integration) and $\mathrm{f}(0)=0$, then the value of $f\left(\frac{\pi}{4}\right)$ is
A. $e^{\sqrt{2}}$
B. $e^{\frac{1}{\sqrt{2}}}$
C. e^{2}
D. $e^{\frac{1}{2}}$

Answer: B
9. A curve passing through the point (1,2) and satisfying the condition that slope of the normal at any abscissa of that point, then the curve also passes through the point
A. $(0,0)$
B. $(2,2)$
C. $(2,1)$
D. $(3,2)$

Answer: C

- Watch Video Solution

10. The coefficient of x^{8} in the expansion of
$\left(1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\frac{x^{8}}{8!}\right)^{2}$ is
A. $\frac{1}{135}$
B. $\frac{2}{315}$
C. $\frac{3}{105}$
D. $\frac{1}{210}$

Answer: A

D Watch Video Solution

11. Let P and Q be two points on the curves $x^{2}+y^{2}=2$ and $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ respectively. Then the minimum value of the length $P Q$ is
A. 1
B. $2-\sqrt{2}$
C. $2 \sqrt{2}$
D. $\sqrt{2}$

Answer: B

D Watch Video Solution

12. Let orthocentre of $\triangle A B C$ is $(4,6)$. If
$A=(4,7)$ and $B=(-2,4)$, then coordinates of vertex C is
A. $(5,4)$
B. $(4,5)$
C. $(-5,-4)$
D. $(-4,-5)$

Answer: A

D Watch Video Solution
13.
$y=\left|\cos ^{-1}(\sin x)\right|+\left|\frac{\pi}{2}-\cos ^{-1}(\cos x)\right|$ and the x - axis, where $\frac{\pi}{2} \leq x \leq \pi$, is equal to
A. π^{2}
B. $\frac{\pi^{2}}{2}$
C. $\frac{\pi^{2}}{8}$
D. $\frac{\pi^{2}}{4}$

Answer: D

- Watch Video Solution

14. Let \oplus and \otimes are two mathematical operators. If $p \oplus(q \otimes r)$ is equivalent to $((p \wedge q) \Rightarrow r)$, then \oplus and \otimes
A. can be \vee and \wedge respectively
B. can be \wedge and \vee respectively
C. can both be \Rightarrow
D. can be \Rightarrow and \Leftrightarrow respectively

Answer: C

- Watch Video Solution

15. The point of intersection of the plane $3 x-5 y+2 z=6$ with the straight line passing through the origin and perpendicular to the plane $2 x-y-z=4$ is
A. $(1,-1,-1)$
B. $(-1,-1,2)$
C. $(4,2,2)$
D. $\left(\frac{4}{3}, \frac{-2}{3}, \frac{-2}{3}\right)$

- Watch Video Solution

16. If $\quad D_{r}=\left|\begin{array}{lll}r & 15 & 8 \\ r^{2} & 35 & 9 \\ r^{3} & 25 & 10\end{array}\right|$, then the value of
$\sqrt[5]{\left(\left(-\frac{1}{100}\right) \sum_{r=1}^{5} D_{r}\right)-37}$ is equal to
A. 5
B. 2
C. 9
D. 3

Answer: D

17. Let $I_{1}=\int_{0}^{1} e^{x^{2}} d x$ and $I_{2}=\int_{0}^{12} 2^{x^{2}} e^{x^{2}} d x$ then the value of $I_{1}+I_{2}$ is equal to
A. 1
B. 2
C.e
D. e^{2}

Answer: C

D Watch Video Solution

18. A pair of tangents are drawn from a point P to the circle $x^{2}+y^{2}=1$. If the tangents make an intercept of 2 on the line $\mathrm{x}=1$ then the locus of P is
A. $y^{2}=2(x+1)$
B. $2 y^{2}=-(x+1)$
C. $y^{2}=2(x-1)$
D. $y^{2}=-2 x+1$

Answer: A

- Watch Video Solution

19. Tangents to the parabola $y^{2}=4 a x$ at $P\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $Q\left(a t_{2}^{2}, 2 a t_{2}\right)$ meet at T. If $\Delta P T Q$ is right - angled at T , then $\frac{1}{P S}+\frac{1}{Q S}$ is equal to (where, S is the focus of the given parabola)
A. $\frac{1}{a}$
B. $\frac{2}{a}$
C. $\frac{1}{2 a}$
D. $\frac{1}{4 a}$

D Watch Video Solution

20. The value of $\int_{-1}^{1} \cot ^{-1}\left(\frac{x+x^{3}+x^{5}}{x^{4}+x^{2}+1}\right) \mathrm{dx}$ is equal to
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. $\frac{3 \pi}{4}$
D. π

Answer: D

D Watch Video Solution

21. Let $\vec{U}=\hat{i}, \hat{j}, \vec{V}=\hat{i}-\hat{j}$ and $\vec{W}=3 \hat{i}+5 \hat{j}+3 \hat{k}$. If $\widehat{n}=0$
then $|\vec{W} \cdot \widehat{n}|$ is equal to

- Watch Video Solution

22.

Consider
the
function
$f(x)=\max \{|\sin x|,|\cos x|\}, \forall \mathrm{x} \in[0,3 \pi]$. if λ is the number of points at which $f(x)$ is non-differentiable, then value of $\frac{\lambda^{3}}{5}$ is

D Watch Video Solution

23. If the roots of the equation $10 x^{3}-c x^{2}=54 x-27=0$ are in harmonic progression the value of c is

D Watch Video Solution

24. If the normal to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{1}=1$ is at a distance p from the origin then the maximum value of p is
25. If $A=\left[\begin{array}{ll}2 & 3 \\ -1 & -2\end{array}\right]$ and $B=\sum_{r=1}^{10} A^{r}$, then the value of det
(B)is equal to
(D) Watch Video Solution
