© 'doubtnut
 India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 29

Mathematics

1. Vectors $3 \vec{a}-5 \vec{b}$ and $2 \vec{a}+\vec{b}$ are mutually perpendicular. If $\vec{a}+4 \vec{b}$ and $\vec{b}-\vec{a}$ are also mutually perpendicular, then the cosine of the angle between $\vec{a} n a d \vec{b}$ is
A. $\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
B. $\pi-\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
C. $\cos ^{-1}\left(\frac{9}{5 \sqrt{43}}\right)$
D. $\pi-\cos ^{-1}\left(\frac{9}{5 \sqrt{43}}\right)$

Answer: A

- Watch Video Solution

2. If a_{1}, a_{2}, a_{3} are in arithmetic progression and d is the common diference, then
$\tan ^{-1}\left(\frac{d}{1+a_{1} a_{2}}\right)+\tan ^{-1}\left(\frac{d}{1+a_{2} a_{3}}\right)=$
A. $\tan ^{-1}\left(\frac{2 d}{1+a_{1} a_{3}}\right)$
B. $\tan ^{-1}\left(\frac{d}{1+a_{1} a_{3}}\right)$
C. $\tan ^{-1}\left(\frac{2 d}{1+a_{2} a_{3}}\right)$
D. $\tan ^{-1}\left(\frac{2}{1-a_{1} a_{3}}\right)$

Answer: A

- Watch Video Solution

3. The solution of the differential equation

$$
\frac{d y}{d x}+\frac{y}{x}=\frac{1}{(1+\ln x+\ln y)^{2}} \text { is (where, } \mathrm{c} \text { is an }
$$

arbitrary constant)

$$
\begin{aligned}
& \text { A. } x y\left[1+\left(\ln (x y)^{2}\right)\right]=\frac{x^{2}}{2}+c \\
& \text { B. } 1+(\ln (x y))^{2}=\frac{x^{2}}{2}+y+c \\
& \text { C. } x y(1+\ln (x y))=\frac{x^{2}}{2}+c \\
& \text { D. } x y(1+\ln (x y))=\frac{x}{2}+c
\end{aligned}
$$

Answer: A

- Watch Video Solution

4. If $p \because$ ' 4 is an odd number" and $\mathrm{q}: 4^{3}$ is an even number" are two statements, then which of the following statements is equivalent to $\sim(p \Rightarrow q) ?$
A. '4 is an odd number and 4^{3} is an even number"
B. The negation of the statement " 4 is not an odd number of 4^{3} is not an even number"
C. Both (" 4 is an odd number and 4^{3} is an even number") and (The negation of the stateement " 4 is not an odd number of 4^{3} is not an even number")
D. '4 is an odd number and 4^{3} is not an even number"

Answer: D

- Watch Video Solution

5. Tangents are drawn to the circle $x^{2}+y^{2}=16$ at the points where it intersects the circle $x^{2}+y^{2}-6 x-8 y-8=0$, then the point of intersection of these tangents is
A. $\left(4, \frac{16}{3}\right)$
B. $(12,16)$
C. $(3,4)$
D. $(16,12)$

D Watch Video Solution

6. A closed cylindrical can has to be made with $100 m^{2}$ of plastic. If its volume is maximum, then the ratio of its radius to the height is
A. 1:1
B. 1: 2
C. 2:1
D. $\sqrt{2}: 1$

D Watch Video Solution

7. If A and B are non- singular square matrix of same order 3×3, then which of the following options is correct?
A. $|\operatorname{adj}(A B)|=|A||B|$
B. $\left|(a d j A B)^{-1}\right|=|a d j(A B)|$
C. $\left|\operatorname{adj}(A B)^{-1}\right|=\left|\operatorname{adj}(A B)^{-1}\right|$
D. $\left|\operatorname{adj}(A B)^{T}\right|=|A B|^{-2}$

Answer: C

D Watch Video Solution

8. The area (in sq. units) enclosed by the graphs of $|x+y|=2$ and $|x|=1$ is
A. 2
B. 4
C. 6
D. 8
9. The sum to n terms of
$\left[\frac{1}{1.3}+\frac{2}{13.5}+\frac{3}{1.3 .5 .7}+\frac{4}{1.3 .5 .7 .9}+\ldots \ldots \ldots \ldots.\right]$
A. $\frac{1}{2}\left[1+\frac{1}{1.3 .5 \ldots \ldots(2 n+1)}\right]$
B. $\frac{1}{2}\left[1-\frac{1}{2.4 .6 \ldots \ldots \ldots .2 n}\right]$
C. $\frac{1}{2}\left[1-\frac{1}{1.3 .5 \ldots \ldots \ldots(2 n+1)}\right]$
D. None of these

Answer: C
10. The value of P for which both the roots of the equation $4 x^{2}-20 P x+\left(25 P^{2}+15 P-66\right)=0$ are less than 2, lies in

$$
\begin{aligned}
& \text { A. }\left(\frac{4}{5}, 2\right) \\
& \text { B. }(0,2) \\
& \text { C. }\left(-1,-\frac{4}{5}\right) \\
& \text { D. }(-\infty,-1)
\end{aligned}
$$

Answer: D

11. Let $g(x)=|x-2|$ and $h(x)=g(g(x))$ be two functions, then the value of
$h^{\prime}(-1)+h^{\prime}(1)+h^{\prime}(3)+h^{\prime}(5)$ is equal to (where, h ' denotes the derivative of h)
A. 2
B. -1
C. 0
D. 1

Answer: C

12. A card is lost from a pack of 52 playing cards.

From remainder of the pack of a card is drawn and is found to be a spade. The probability that the misssing card is spade, is
A. $\frac{5}{17}$
B. $\frac{4}{17}$
C. $\frac{3}{17}$
D. $\frac{2}{17}$

Answer: B
13. Suppose S and S are foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$. If P is a variable point on the ellipse and if Δ is the area (in sq. units) of the triangle PSS' then the maximum value of Δ is double of
A. Minimum value of $\frac{2 a^{8}+2 b^{4}}{a^{4} b^{2}} \forall a, b \in R$
B. Minimum value of $\frac{3 a^{8}+3 b^{4}}{a^{4} b^{2}} \forall a, b \in R$
C. $\frac{4 a^{8}+4 b^{4}}{a^{4} b^{2}} \forall a, b \in R$
D. $\frac{6 a^{8}+6 b^{4}}{a^{4} b^{2}} \forall a, b \in R$

Answer: B
14. If $\cot (\alpha+\beta)=0$, then $\sin (\alpha+2 \beta)$ is equal to
A. $\sin \alpha$
B. $\cos \alpha$
C. $\sin \beta$
D. $\cos 2 \beta$

Answer: A

- Watch Video Solution

15.
 The
 value
 $\Delta=\left|\begin{array}{ccc}1 & \sin 3 \theta & \sin ^{3} \theta \\ 2 \cos \theta & \sin 6 \theta & \sin ^{3} 2 \theta \\ 4 \cos ^{2} \theta-1 & \sin 9 \theta & \sin ^{3} 3 \theta\end{array}\right|$ equal to

A. -2
B. -1
C. 1
D. 0

Answer: D

- Watch Video Solution

16. $\lim _{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x}$ is equal to
A. 1
B. 2
C. $-\frac{1}{4}$
D. $\frac{1}{2}$

Answer: B

D Watch Video Solution
17. The number of 7 digit integers abcdefg, where
$a<b<c<d>e>f>g$ such that $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$,
f, g in $\{1,2,3,, 9\}$. Are
A. 700
B. 20
C. 720
D. 800

Answer: C

- Watch Video Solution

18. If $\int_{\frac{-1}{\sqrt{3}}}^{1 / \sqrt{3}} \frac{x^{4}}{1-x^{4}} \cos ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x=k$,
then $\int_{0}^{1 / \sqrt{3}} \frac{x^{4}}{1-x^{4}} d x$
the value of k is equal to
A. π
B. 2π
C. $-\pi$
D. 3π

Answer: A

D Watch Video Solution
19. If $(9 a, 6 a)$ is a point bounded in the region formed by parabola $y^{2}=16 x$ and $x=9$, then
A. $a \in(0,1)$
B. $a<\frac{1}{4}$
C. $a<1$
D. $0<a<4$

Answer: A

- Watch Video Solution

20.

$P_{1}: x-2 y+3 z=5$ and $P_{2}: 2 x-3 y+z+4=0$
be two planes. The equation of the plane perpendicular to the line of intersection to the line of intersection of $P_{1}=0$ and $P_{2}=$ and passing through $(1,1,1)$ is
A. $11 x-5 y+7 z-13=0$
B. $7 x+5 y+z=13$
C. $x+2 y+z-4=0$
D. $x-2 t+4 z+3=0$

(D) Watch Video Solution

21. If the 6th term in the expansion of $\left[\frac{1}{x^{\frac{8}{3}}}+x^{2} \log _{10} x\right]^{8}$ is 5600 , then $\mathrm{x}=$

- Watch Video Solution

22. If $f(x)$ is the antidervative of
$\left(1+2 \tan x(\tan x+\sec x)^{\frac{1}{2}}\right)$ and $f\left(\frac{\pi}{6}\right)=\log 2$
, then the value of $f(0)$ is

- Watch Video Solution

23. Let $f(x)=\sin \left(\frac{x}{3}\right)+\cos \left(\frac{3 x}{10}\right)$ for all real x .

Find the least natural number n such that $f(n \pi+x)=f(x)$ for all real x.

D Watch Video Solution

24. If $x+\frac{1}{x}=1$ and $p=x^{4000}+\frac{1}{x^{4000}}$ and q is the digit at
unit place in the number $2^{2^{n}}+1, n \in N a b d n>1$
, then $\mathrm{p}+\mathrm{q}$ is .

- Watch Video Solution

25. If variance of first n natural number is 10 and variance of first m even natural number is 16 then the value of $m+n$ is
