©゙doubtnut

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 32

Mathematics

1. Two vertical poles of height 10 m and 40 m stand
apart on a horizontal plane. The height (in meters)
of the point of intersection of the line joining the
top of intersection of the lines joining the top of
each pole to the foot of the other, from this horizontal plane is
A. 8
B. 10
C. 6
D. 4

Answer: A

- Watch Video Solution

2. The total number of solution(s) of the equation
$2 x+3 \tan x=\frac{5 \pi}{2}$ in $x \in[0,2 \pi]$ is/are equal to
A. 1
B. 2
C. 3
D. 4

Answer: C

D Watch Video Solution
3. If $y=|\tan x-|\sin x||$, then the value of $\frac{d y}{d x}$ at $x=\frac{5 \pi}{4}$ is
A. $\frac{2 \sqrt{2}+1}{\sqrt{2}}$
B. $\frac{2 \sqrt{2}-1}{\sqrt{2}}$
C. $\frac{\sqrt{2}+1}{2}$
D. $\frac{\sqrt{2}-1}{2}$

Answer: B

D Watch Video Solution
4. The value of k for which the sum of the squares
of the roots of $2 x^{2}-2(k-2) x-(k+1)=0$ is
least is
A. 1
B. $\frac{3}{2}$
C. 2
D. $\frac{5}{2}$

Answer: B

D Watch Video Solution

5. If \lim
 $\sin 2 x-a \sin x$ $\lim _{x \rightarrow 0}$ x^{3} exists finitely, then the

 value of a isA. 0
B. 2
C. 1
D. 4

Answer: B

- Watch Video Solution

6.
 If
 $f(x)=\tan ^{-1} \sqrt{x^{2}+4 x}$
 $+\sin ^{-1} \sqrt{x^{2}+4 x+1}$

A. domain of $f(x)$ contains 3 integers only
B. range of $f(x)$ has two elements only
C. $f(x)$ is a constant function $A a x \in R$
D. $f(x)$ contains only two elements in its domain

Answer: D

- Watch Video Solution
$f(x)=\max \cdot\{(1-x),(1+x), 2\}, x \in(-\infty, \infty)$
is
A. discontinuous at exactly two points
B. differentiable $\forall \xi n R$
C. differentiable $\forall x \in R-\{-1,1\}$
D. continuous $A a x \in R-\{0,1,-1\}$

Answer: C
8. A nine - digit number is formed using the digits 1, 2, 3, 5 and 7. The probability that the product of all digits is always 1920 is

$$
\begin{aligned}
& \text { A. } \frac{1}{5^{9}} \\
& \text { B. } \frac{7}{5^{8}} \\
& \text { C. } \frac{72}{5^{9}} \\
& \text { D. } \frac{1}{7!}
\end{aligned}
$$

Answer: C
9. The order of the differential equation of the
family of curves $y=a 3^{b x+c}+d \sin (x+e)$ is
(where, a, b, c, d, e are arbitrary constants)
A. 5
B. 4
C. 3
D. 2

Answer: B
10. Focus of hyperbola is $(\pm 3,0)$ and equation of tangent is $2 x+y-4=0$, find the equation of hyperbola is

$$
\begin{aligned}
& \text { A. } 4 x^{2}-5 y^{2}=20 \\
& \text { B. } 5 x^{2}-4 y^{2}=20 \\
& \text { C. } 4 x^{2}-5 y^{2}=1 \\
& \text { D. } 5 x^{2}-4 y^{2}=1
\end{aligned}
$$

Answer: A
11. Which of the following statement is not a fallacy?
A. $p \wedge(\sim(\sim p \Rightarrow q))$
B. $\sim((p \wedge q) \Rightarrow p)$
C. $\sim(p \Rightarrow(p \vee q))$
D. $\sim p \vee(\sim p \Rightarrow q)$

Answer: D
12. The value of $\int \frac{e^{\sqrt{x}}}{\sqrt{x}\left(1+e^{2 \sqrt{x}}\right)} d x$ is equal to
(where, C is the constant of integration)
A. $\tan ^{-1}\left(2 e^{\sqrt{x}}\right)+C$
B. $\ln \left(\frac{1+e^{x}}{1-e^{\sqrt{x}}}\right)+C$
C. $2 \tan ^{-1}\left(e^{\sqrt{x}}\right)+C$
D. $\left(\tan ^{-1} x\right) e^{\sqrt{x}}+C$

Answer: C

13. A plane passes through $(1,-2,1)$ and is perpendicular to two planes
$2 x-2 y+z=0$ and $x-y+2 z=4$.
The
distance of the plane from the point $(0,2,2)$ is
A. $\frac{3}{\sqrt{2}}$ units
B. $4 \sqrt{2}$ units
C. $3 \sqrt{2}$ units
D. $2 \sqrt{2}$ units

Answer: A
14. Consider $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$
such that $A B=B A$. then the value of $\frac{a_{12}}{a_{21}}+\frac{a_{11}}{a_{22}}$ is
A. 2
B. 4
C. $\frac{3}{2}$
D. $\frac{1}{\sqrt{2}}$

Answer: C

- Watch Video Solution

15. A line passing through the point $(2,2)$ encloses an area of 4 sq. units with coordinate axes. The sum of intercepts made by the line on the x and y axis is equal to
A. -2
B. 4
C. -4
D. 2

Answer: C
16. If $2,7,9$ and 5 are subtraced respectively from
four numbers in geometric progression, then the resulting numbers are in arithmetic progression.

The smallest of the four numbers is
A. -24
B. -12
C. 6
D. 3

Answer: A

17. The coefficient of x^{6} in the expansion of

$$
\left(1+x+x^{2}+x^{3}\right)(1-x)^{6} \text { is }
$$

A. ' -10
B. 10
C. 9
D. '-9

Answer: D
(Watch Video Solution
18. The acute angles between the curves $y=2 x^{2}-x$ and $y^{2}=x$ at $(0,0)$ and $(1,1)$ are α and β respectively, then
A. $\alpha-\beta=0$
B. $\alpha+\beta=0$
C. $\alpha>\beta$
D. $\alpha<\beta$

Answer: A

- Watch Video Solution

19. The slope of the tangent of the curve

$$
y=\int_{x}^{x^{2}}\left(\cos ^{-1} t^{2}\right) d t \text { at } x=\frac{1}{\sqrt{2}} \text { is equal to }
$$

$$
\text { A. } \cos ^{-1}\left(\frac{1}{4}\right)-\frac{\pi}{3}
$$

$$
\text { B. } \cos ^{-1}\left(\frac{1}{4}\right)+\frac{\pi}{3}
$$

$$
\text { C. } \sqrt{2} \cos ^{-1}\left(\frac{1}{4}\right)-\frac{\pi}{3}
$$

$$
\text { D. } \sqrt{2} \cos ^{-1}\left(\frac{1}{4}+\frac{\pi}{3}\right.
$$

Answer: C

D Watch Video Solution

20. The valueof $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} e^{\sec ^{2} x} \frac{\sin x}{\cos ^{3} x} d x$ is equal to
A. $\frac{1}{2} e^{4}$
B. $\frac{1}{2} e^{\frac{4}{3}}$
C. $\frac{1}{2}\left(e^{\frac{4}{3}}-e^{4}\right)$
D. $\frac{1}{2}\left(e^{2}-1\right)$

Answer: C

(D) Watch Video Solution

21. Let $P Q$ be a focal chord of the parabola $y^{2}=4 a x$. If the centre of a circle having PQ as its diameter lies on the line $\sqrt{5} y+4=0$, then length of the chord PQ , is

- Watch Video Solution

22. If $\lambda \in R$ such that the origin and the non-real roots of the equation $2 z^{2}+2 z+\lambda=0$ form the vertices of an equilateral triangle in the argand plane, then $\frac{1}{\lambda}$ is equal to

- Watch Video Solution

23. Let $|A|=1,|\vec{b}|=4$ and $\vec{a} \times \vec{r}+\vec{b}=\vec{r}$. If the projection of \vec{r} along \vec{a} is 2 , then the projection of \vec{r} along \vec{b} is
24. Let a, x, y, z be real numbers satisfying the equations
$a x+a y=z$
$x+a y=z$
$x+a y=a z$, where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are not all zero, then
the number of the possible values of a is

- Watch Video Solution

25. If the radisu of the circle passing through the origin and touching the line $x+y=2$ at $(1,1)$ is
r units, then the value of $3 \sqrt{2} r$ is

- Watch Video Solution

