# ©゙" doubtnut 

India's Number 1 Education App

## MATHS

## BOOKS - NTA MOCK TESTS

## NTA JEE MOCK TEST 36

## Mathematics

$$
\begin{aligned}
& \text { 1. The relation } \quad \mathrm{R} \quad \text { given by } \\
& \left\{(x, y): x^{2}-3 x y+2 y^{2}=0, \forall x, y \in R\right\} \text { is }
\end{aligned}
$$

A. reflexive but not symmetric
B. symmetric but not transitive

## C. symmetric and transitive

D. an equivalence relation

## Answer: A

## D Watch Video Solution

2. If $I_{n}-\int(\ln x)^{n} d x$, then $I_{10}+10 I_{9}$ is equal to (where C is the constant of integration)
A. $x(\ln x)^{10}+C$
B. $10(\ln x)^{9}+C$
C. $9(\ln x)^{10}+C$
D. $x(\ln x)^{9}+C$

## D Watch Video Solution

3. If p and q are two logical statements, then $p \Rightarrow(q \Rightarrow p)$ is equivalent to
A. $p \Rightarrow(p \Rightarrow q)$
B. $p \Rightarrow(p \vee q)$
C. $p \Rightarrow(p \wedge q)$
D. $p \Rightarrow(p \Leftrightarrow q)$

Answer: B
4. Let $\alpha$ and $\beta$ be the roots of the equation $x^{2}+a x+1=0, a \neq 0$. Then the equation whose roots are $-\left(\alpha+\frac{1}{\beta}\right)$ and $-\left(\frac{1}{\alpha}+\beta\right)$ is
A. $x^{2}=0$
B. $x^{2}-2 a x+4=0$
C. $x^{2}-2 a x+4=0$
D. $x^{2}-a x+1=0$

Answer: C
5. The value of the expression
$1+\operatorname{cosec} \frac{\pi}{4}+\operatorname{cosec} \frac{\pi}{8}+\operatorname{cosec} \frac{\pi}{16}$ is equal to
A. $\cot \cdot \frac{\pi}{8}$
B. $\cot \cdot \frac{\pi}{16}$
C. $\cot \cdot \frac{\pi}{32}$
D. $\operatorname{cosec}^{2} \cdot \frac{\pi}{16}$

Answer: C
6. Let $\vec{p} 2 \hat{i}+\hat{j}-2 \hat{k}, \vec{q}=\hat{i}+\hat{j}$. If $\vec{r}$ is a vector such that $\vec{p}$. Vecr $=|\vec{r}|,|\vec{r}-\vec{p}|=2 \sqrt{2}$ and the angle between $\vec{p} \times \vec{q}$ and $\vec{r}$ is $\frac{\pi}{6}$, then the value of $|(\vec{p} \times \vec{q}) \times \vec{r}|$ is equal to
A. $\frac{3}{2}$
B. $\frac{1}{2}$
C. $\frac{3 \sqrt{3}}{2}$
D. 3

Answer: A
7. The solution of the differential equation $x \cos y \frac{d y}{d x}+\sin y=1$ is (Here, $x>0$ and $\lambda$ is an arbitrary constant)
A. $x-x \cos x=l a m d b a$
B. $x+x \cos x=\lambda$
C. $x-x \sin y=\lambda$
D. $x+x \cos y=\lambda$

Answer: C

D Watch Video Solution
8.
$\left|z_{1}\right|=1,\left|z_{2}\right|=2,\left|z_{3}\right|=3$ and $z_{1}+z_{2}+z_{3}=3+\sqrt{5} i$
, then the value of $\operatorname{Re}\left(z_{1} \overline{z_{2}}+z_{2} \overline{z_{3}}+z_{3} \overline{z_{1}}\right)$ is equalto
(where $z_{1}, z_{2}$ and $z_{3}$ are complex numbers)
A. 1
B. -1
C. $-\frac{1}{2}$
D. 0

Answer: D
9. If from the top of a tower 80 meters high the angles of depression of the top and bottom of a house are $30^{\circ}$ and $45^{\circ}$ respectively, then the height of the house is
A. $40 \sqrt{3}$ meters
B. $40\left(\frac{\sqrt{3}-1}{\sqrt{3}}\right)$ meters
C. $80\left(\frac{\sqrt{3}-1}{\sqrt{3}}\right)$ meters
D. $40\left(\frac{\sqrt{3}+1}{\sqrt{3}}\right)$ meters

## Answer: C

10. The radius of circle, touching the parabola $y^{2}=8 x$ at $(2,4)$ and passing through $(0,4)$, is
A. 1 unit
B. 2 units
C. $\sqrt{2}$ units
D. $\sqrt{3}$ units

Answer: C
(D) Watch Video Solution
11. Distance between two non - intersecting planes
$P_{1}$ and $P_{2} \quad$ is 5 units, where $P_{1}$ is
$2 x-3 y+6 z+26=0$
$4 x+b y+c z+d=0$. The point $A(-3,0,-1)$ lies
between the planes $P_{1}$ and $P_{2}$, then the value of $3 b+4 c-5 d$ is equal to
A. 580
B. 120
C. -18
D. -120

Answer: B
12. Let $Z=\left[\begin{array}{lll}1 & 1 & 3 \\ 5 & 1 & 2 \\ 3 & 1 & 0\end{array}\right]$ and $P=\left[\begin{array}{lll}1 & 0 & 2 \\ 2 & 1 & 0 \\ 3 & 0 & 1\end{array}\right]$. If
$Z=P Q^{-1}$, where Q is a square matrix of order 3 , then the value of $\operatorname{Tr}((a d j Q) P)$ is equal to (where
$\operatorname{Tr}(A)$ represents the trace of a matrix A i.e. the sum of all the diagonal elements of the matrix $A$ and adjB represents the adjoint matrix of matrix B)
A. 3
B. -1
C. 4
D. $\frac{6}{5}$
13. The sum of 10 terms of the series
$1+2(1.1)+3(1.1)^{2}+4(1.1)^{3}+\ldots$ is
A. 85.12
B. 92.5
C. 96.5
D. 100

Answer: D
14. The coefficient of $x^{4}$ in the expansion of $\left(1+x+x^{2}\right)^{6}$ is
A. 72
B. 90
C. 96
D. 112

## Answer: B

## D Watch Video Solution

15. The tangent at any point on the curve $x y=4$ makes intercepls on the coordinates axes as a and b. Then
the value of $a b$ is
A. 8
B. 16
C. 32
D. 64

## Answer: B

## D Watch Video Solution

16. The number of ways in which 10 boys can be divied into 2 groups of 5 , such that two tallest boys are in two different groups, is equal to
A. 70
B. 35
C. 252
D. 126

Answer: A

## (D) Watch Video Solution

17. The value of $\int_{3}^{6} \frac{\sqrt{\left(36-x^{2}\right)^{3}}}{x^{4}} d x$ is equal to
A. $\frac{\pi}{2}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: C

## D Watch Video Solution

18. The line $(K+1)^{2} x+K y-2 K^{2}-2=0$ passes
through the point $(m, n)$ for all real values of $K$, then
A. $m+n=2$
B. $m-n=6$
c. $\frac{m}{n}=2$
D. $\frac{m}{n}=\frac{1}{2}$

## - Watch Video Solution

19. If $A$ and $B$ are non - singular matrices of order
$3 \times 3$, such that $A=(a d j B)$ and $B=(a d j A)$, then $\operatorname{det}(A)+\operatorname{det}(B)$ is equal to (where $\operatorname{det}(M)$ represents the determinant of matrix $M$ and adj $M$ represents the adjoint matrix of matrix $M$ )
A. 1
B. 2
C. 3
D. 4

## Answer: B

## - Watch Video Solution

20. Line $L_{1} \equiv 3 x-4 y+1=0$ touches the cirlces
$C_{1}$ and $C_{2}$. Centres of $C_{1}$ and $C_{2}$ are
$A_{2}(1,2)$ and $A_{2}(3,1)$ respectively, then identify the
INCORRECT statement from the following statements.
A. $L_{1}$ is direct common tangent of these circles
B. $L_{1}$ is transverse common tangent to these circles
C. Radius of circle $C_{1}$ is $\frac{4}{5}$ units
D. Radius of circle $C_{2}$ is $\frac{6}{5}$ units

Answer: A

## D Watch Video Solution

21. If $\lim _{x \rightarrow \infty} \frac{a e^{x}+b \cos x+c+d x}{x \sin ^{2} x}=3$, then the
value of $272 \frac{a b d}{c^{3}}$ is equal to

D Watch Video Solution
22. A purse contains 10 ten rupee coins and 5 five rupee coins. Two coins are randomly drawn. If the expected value of 2 drawn coins is $\lambda$, then $\frac{9 \lambda}{4}$ is equal to

## - Watch Video Solution

23. If $f(x)=\left\{\begin{array}{ll}\frac{\left(2^{x}-1\right)^{2} \tan 3 x}{x \sin ^{2} x}: & 0<x<\pi / 6 \\ \lambda: & x=0\end{array}\right.$ is
continuous at $x=0$, then the value of $\frac{10 \sqrt{3 \lambda}}{\ln 2}$ is equal to
24. If $f: R \rightarrow(0, \pi / 2], f(x)=\sin ^{-1}\left(\frac{40}{x^{2}+x+\lambda}\right)$ is a surjective function, then the value of $\lambda$ is equal to

## - Watch Video Solution

25. If $f: R \rightarrow R$ is a function defined as
$f\left(x^{3}\right)=x^{5}, \forall x \in R-\{0\}$ and $f(x)$
differentiable $\forall x \in R$, then the value of $\frac{1}{4} f^{\prime}(27)$ is equal to (here $f$ ' represents the derivative of $f$ )

## D Watch Video Solution

