

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 37

Mathematics

1. If the garph of the function $f(x) = ax^3 + x^2 + bx + c$ is symmetric about the line x = 2, then the value of a + b is equal to

A. 10

 $\mathsf{B.}-4$

C. 16

D. - 10

Answer: B

Watch Video Solution

2. If
$$y = 2 + \sqrt{\sin x + 2 + \sqrt{\sin x + 2 + \sqrt{\sin x + \ldots \infty}}}$$
 then
the value of $\frac{dy}{dx}$ at x = 0 is

A. 0

B. 2

C.
$$\frac{1}{2}$$

D. $\frac{1}{3}$

3. From a point P, two tangents PA and PB are drawn to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. If these tangents cut the coordinates axes at 4 concyclic points, then the locus of P is

A.
$$x^2 - y^2 = |a^{2-b^2}|$$

B. $x^2 - y^2 = a^2 + b^2$
C. $x^2 + y^2 = |a^2 - b^2|$
D. $x^2 + y^2 = a^2 + b^2$

Answer: B

Watch Video Solution

4. Let $f(x) = x^3 + x^2 + x + 1$, then the area (in sq. units)

bounded by y = f(x), x = 0, y = 0 and x = 1 is equal to

A.
$$\frac{25}{3}$$

B. $\frac{25}{12}$
C. $\frac{12}{5}$
D. $\frac{5}{3}$

Answer: B

Watch Video Solution

5. The variance of the first 20 positive integral multiples of 4 is

equal to

A. 532

B. 133

C. 266

D. 600

Answer: A

6. Eleven objects $A, B, C, D, E, F, \alpha, \alpha, \alpha, \beta$ and β are arranged in a row, then the probability that every β has two α as neighbors is

A.
$$\frac{1}{1320}$$

B. $\frac{1}{7920}$
C. $\frac{1}{110}$
D. $\frac{1}{660}$

7. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + 2htk$$
, $bec = \hat{i} + 2\hat{j} + 2\hat{k}$ and $\left|\overrightarrow{c}\right| = 1$,
then the maximum value of $\left[\overrightarrow{a} \times \overrightarrow{b} \overrightarrow{b} \times \overrightarrow{c} \overrightarrow{c} \times \overrightarrow{a}\right]$ is equal

to

A. 2 B. 3

C. 4

D. 5

8. If the differential equation $3x^{\frac{1}{3}}dy + x^{\frac{-2}{3}}ydx = 3xdx$ is satisfied by $kx^{\frac{1}{3}}y = x^2 + c$ (where c is an arbitrary constant), then the value of k is

A.
$$\frac{1}{3}$$

B. $\frac{2}{3}$
C. 2

Answer: C

D.1

9. Let z and w be non - zero complex numbers such that $zw = |z^2|$ and $|z - \overline{z}| + |w + \overline{w}| = 4$. If w varies, then the perimeter of the locus of z is

A. $8\sqrt{2}$ units

B. $4\sqrt{2}$ units

C. 8 units

D. 4 units

Answer: A

A.
$$\frac{1}{11}$$

B. $\frac{2}{11}$
C. $\frac{3}{11}$

D.
$$\frac{4}{11}$$

Answer: B

Watch Video Solution

11. For $-rac{\pi}{2} \leq x \leq rac{\pi}{2}$, the number of point of intersection of curves $y = \cos x$ and $y = \sin 3x$ is

A. 0

B. 1

C. 2

D. 3

12. A balloon moving in a straight line passes vertically above two points A and B on a horizontal plane 300 ft apart. When above A it has an altitude of 30° as seen from A. The distance of B it has an altitude of 30° as seen from A. The distance of B from the point C where it will touch the plane is

A.
$$150 ig(\sqrt{3}+1ig) ft$$

 $\mathsf{B.}\,150ft$

- C. $150(3+\sqrt{3})ft$
- D. $300(\sqrt{3}+1)ft$

Answer: A

Watch Video Solution

Answer: A

Watch Video Solution

14. If $2^{2020}+2021$ is divided by 9, then the remainder obtained

is

B. 1

C. 3

D. 7

Answer: C

15. The value of the integral $\int x^{\frac{1}{3}} (1 - \sqrt{x})^3 dx$ is equal to (where c is the constant of integration)

$$\begin{aligned} \mathsf{A.} \ & 6 \left(\frac{x^{\frac{4}{3}}}{8} + \frac{3}{11} x^{\frac{11}{6}} + \frac{3}{14} x^{\frac{7}{3}} + \frac{1}{17} x^{\frac{17}{6}} \right) + c \\ & \mathsf{B.} \ & 6 \left(\frac{x^{\frac{4}{3}}}{8} - \frac{3}{11} x^{\frac{11}{6}} + \frac{3}{14} x^{\frac{7}{3}} - \frac{1}{17} x^{\frac{17}{6}} \right) + c \\ & \mathsf{C.} \ & 2 \left(\frac{x^{\frac{4}{3}}}{8} - \frac{3}{11} x^{\frac{11}{6}} - \frac{3}{14} x^{\frac{7}{3}} - \frac{1}{17} x^{\frac{17}{6}} \right) + c \\ & \mathsf{D.} \ & 2 \left(\frac{x^4}{8} - \frac{3}{11} x^{11} - \frac{3}{11} x^7 - \frac{1}{17} x^{17} \right) + c \end{aligned}$$

Answer: B

16. If y=f(x) satisfies has conditions of Rolle's theorem in [2,6], then $\int_2^6 f'(x) dx$ is equal to

A. 2

B. 0

C. 4

D. 6

Answer: B

Watch Video Solution

17. Let D is a point on the line $l_1: x + y = 2 = 0$ and S(3, 3) is a fixed point. The line l_2 is perpendicular to DS and passes through S. If M is another point on the line l_1 (other than D), then the locus of the point of intersection of l_2 and the angle bisector of the angle MDS is

A.
$$(x+y-2)^2 = 2(x-3)^2 + 2(y-3)^2$$

B. $(x+y-2)^2 = (x-2)^2 + (y-3)^2$
C. $(x+y-2)^2 = \frac{(x-3)^2 + (y-3)^2}{2}$

D. None of these

Answer: A

18.

$$a + b + c = 0 \, ext{ and } \, a^2 + b^2 + c^2 - ab - bc - ca
eq 0, \, orall a, b, c \in R$$

then the system of equations

ax+by+cz=0, bx+cy+az=0 and cx+ay+bz=0

has

A. A unique solution

B. Infinte solutions

C. No solution

D. Exactly two solutions

Answer: B

19. If ax + 13y + bz + c = 0 is a plane through the line intersection of 2x + 3y - z + 1 = 0, x + y - 2z + 3 = 0 and is perpendicular to the plane 3x - y - 2z = 4, then the value of 2a + 3b + 4c is equal to

A. - 12

B. 12

C. 10

D. - 10

Answer: D

20. Let the points A : (0, a), B : (-2, 0) and C : (1, 1) form an

obtuse angled triangle (obtuse angled at angle A), then the

complete set of values of a is

A.
$$(-2, 1)$$

B. $(-2, 1) - \left\{\frac{2}{3}\right\}$
C. $(-1, 2)$
D. $(-1, 2) = \left\{\frac{2}{3}\right\}$

Answer: D

21. Let normals to the parabola $y^2 = 4x$ at variable points $P(t_1^2, 2t_1)$ and $Q(t_2^2, 2t_2)$ meet at the point $R(t^22t)$, then the line joining P and Q always passes through a fixed point (α, β) , then the value of $|\alpha + \beta|$ is equal to

22. Let A be a square matrix of order 3 such that $A = A^T = \begin{bmatrix} 10 & 4 & 6 \\ a_{21} + a_{12} & 6 & a_{23} + a_{32} \\ a_{31} + a_{13} & 8 & 4 \end{bmatrix}$, where a_{12}, a_{23}, a_{31} are positive roots of the equation $x^3 - 6x^2 + px - 8 = 0, \ \forall p \in R$

, then the absolute vlaue of $\left|A
ight|$ is equal to

23. If 4 dice ae rolled once, the number f ways of getting the sum as 10 is K, then the value of $\frac{K}{10}$ is equal to

24. Let X_1, X_2, X_3, \ldots are in arithmetic progression with a common difference equal to d which is a two digit natural

number. y_1, y_2, y_3, \ldots are in geometric progression with common ratio equal to 16. Arithmetic mean of X_1, X_2, \ldots, X_n is equal to the arithmetic mean of y_1, y_2, \ldots, y_n which is equal to 5. If the arithmetic mean of $X_6, X_7, \ldots, X_{n+5}$ is equal to the arithmetic mean of $y_{P+1}, y_{P+2}, \ldots, y_{P+n}$ then d is equal to

25. The equation $x^3 + 3x^2 + 6x + 3 - 2\cos x = 0$ has n solution(s) in (0, 1), then the value of (n + 2) is equal to

