©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 37

Mathematics

1. If the garph of the function $f(x)=a x^{3}+x^{2}+b x+c$ is
symmetric about the line $\mathrm{x}=2$, then the value of $a+b$ is equal to
A. 10
B. -4
C. 16
D. -10

Answer: B

- Watch Video Solution

2. If $y=2+\sqrt{\sin x+2+\sqrt{\sin x+2+\sqrt{\sin x+\ldots \infty}}}$ then the value of $\frac{d y}{d x}$ at $x=0$ is
A. 0
B. 2
C. $\frac{1}{2}$
D. $\frac{1}{3}$

Answer: D

3. From a point P, two tangents $P A$ and $P B$ are drawn to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If these tangents cut the coordinates axes at 4 concyclic points, then the locus of P is
A. $x^{2}-y^{2}=\left|a^{2-b^{2}}\right|$
B. $x^{2}-y^{2}=a^{2}+b^{2}$
C. $x^{2}+y^{2}=\left|a^{2}-b^{2}\right|$
D. $x^{2}+y^{2}=a^{2}+b^{2}$

Answer: B

D Watch Video Solution

4. Let $f(x)=x^{3}+x^{2}+x+1$, then the area (in sq. units) bounded by $y=f(x), x=0, y=0$ and $x=1$ is equal to
A. $\frac{25}{3}$
B. $\frac{25}{12}$
C. $\frac{12}{5}$
D. $\frac{5}{3}$

Answer: B

D Watch Video Solution

5. The variance of the first 20 positive integral multiples of 4 is equal to
A. 532
B. 133
C. 266
D. 600

Answer: A

- Watch Video Solution

6. Eleven objects $A, B, C, D, E, F, \alpha, \alpha, \alpha, \beta$ and β are arranged in a row, then the probability that every β has two α as neighbors is
A. $\frac{1}{1320}$
B. $\frac{1}{7920}$
C. $\frac{1}{110}$
D. $\frac{1}{660}$
7. If $\vec{a}=\hat{i}+\hat{j}+2 h t k, b e c=\hat{i}+2 \hat{j}+2 \hat{k}$ and $|\vec{c}|=1$, then the maximum value of $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]$ is equal to
A. 2
B. 3
C. 4
D. 5

Answer: D

- Watch Video Solution

8. If the differential equation $3 x^{\frac{1}{3}} d y+x^{\frac{-2}{3}} y d x=3 x d x$ is satisfied by $k x^{\frac{1}{3}} y=x^{2}+c$ (where c is an arbitrary constant), then the value of k is
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. 2
D. 1

Answer: C

D Watch Video Solution

9. Let z and w be non - zero complex numbers such that $z w=\left|z^{2}\right|$ and $|z-\bar{z}|+|w+\bar{w}|=4$. If w varies, then the perimeter of the locus of z is
A. $8 \sqrt{2}$ units
B. $4 \sqrt{2}$ units
C. 8 units
D. 4 units

Answer: A

D Watch Video Solution

10. The sum of the roots of the equation $2^{(33 x-2)}+2^{(11 x+2)}=2^{(22 x+1)}+1$ is
A. $\frac{1}{11}$
B. $\frac{2}{11}$
C. $\frac{3}{11}$
D. $\frac{4}{11}$

Answer: B

- Watch Video Solution

11. For $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$, the number of point of intersection of curves $y=\cos x$ and $y=\sin 3 x$ is
A. 0
B. 1
C. 2
D. 3

Answer: D

12. A balloon moving in a straight line passes vertically above two points A and B on a horizontal plane 300 ft apart. When above A it has an altitude of 30° as seen from A . The distance of B it has an altitude of 30° as seen from A. The distance of B from the point C where it will touch the plane is
A. $150(\sqrt{3}+1) f t$
B. 150 ft
C. $150(3+\sqrt{3}) f t$
D. $300(\sqrt{3}+1) f t$

Answer: A

13. The value of $\lim _{x \rightarrow 0^{-}} \frac{2^{\left(1+\frac{6}{x}\right)}+6\left(2^{\frac{1}{x}}\right)}{\text { is equal to }}$

$$
\frac{4^{2+\frac{3}{x}}+5\left(2^{\frac{1}{x}}\right)}{\left.2^{\left(1+\frac{6}{x}\right.}\right)+6\left(2^{\frac{1}{x}}\right)} \text { is equal to }
$$

A. $\frac{5}{6}$
B. 8
C. 16
D. $\frac{5}{2}$

Answer: A

D Watch Video Solution

14. If $2^{2020}+2021$ is divided by 9 , then the remainder obtained is
A. 0
B. 1
C. 3
D. 7

Answer: C

D Watch Video Solution

15. The value of the integral $\int x^{\frac{1}{3}}(1-\sqrt{x})^{3} d x$ is equal to (where c is the constant of integration)
A. $6\left(\frac{x^{\frac{4}{3}}}{8}+\frac{3}{11} x^{\frac{11}{6}}+\frac{3}{14} x^{\frac{7}{3}}+\frac{1}{17} x^{\frac{17}{6}}\right)+c$
B. $6\left(\frac{x^{\frac{4}{3}}}{8}-\frac{3}{11} x^{\frac{11}{6}}+\frac{3}{14} x^{\frac{7}{3}}-\frac{1}{17} x^{\frac{17}{6}}\right)+c$
C. $2\left(\frac{x^{\frac{4}{3}}}{8}-\frac{3}{11} x^{\frac{11}{6}}-\frac{3}{14} x^{\frac{7}{3}}-\frac{1}{17} x^{\frac{17}{6}}\right)+c$
D. $2\left(\frac{x^{4}}{8}-\frac{3}{11} x^{11}-\frac{3}{11} x^{7}-\frac{1}{17} x^{17}\right)+c$

- Watch Video Solution

16. If $y=f(x)$ satisfies has conditions of Rolle's theorem in
$[2,6]$, then $\int_{2}^{6} f^{\prime}(x) d x$ is equal to
A. 2
B. 0
C. 4
D. 6

Answer: B

17. Let D is a point on the line $l_{1}: x+y=2=0$ and $S(3,3)$ is a fixed point. The line l_{2} is perpendicular to DS and passes through S . If M is another point on the line l_{1} (other than D), then the locus of the point of intersection of l_{2} and the angle bisector of the angle MDS is
A. $(x+y-2)^{2}=2(x-3)^{2}+2(y-3)^{2}$
B. $(x+y-2)^{2}=(x-2)^{2}+(y-3)^{2}$
C. $(x+y-2)^{2}=\frac{(x-3)^{2}+(y-3)^{2}}{2}$
D. None of these

Answer: A

- Watch Video Solution

18.

$a+b+c=0$ and $a^{2}+b^{2}+c^{2}-a b-b c-c a \neq 0, \forall a, b, c \in R$
then the system of equations
$a x+b y+c z=0, b x+c y+a z=0 \quad$ and $\quad c x+a y+b z=0$
has
A. A unique solution
B. Infinte solutions
C. No solution
D. Exactly two solutions

Answer: B

- Watch Video Solution

19. If $a x+13 y+b z+c=0$ is a plane through the line intersection of $2 x+3 y-z+1=0, x+y-2 z+3=0$ and is perpendicular to the plane $3 x-y-2 z=4$, then the value of $2 a+3 b+4 c$ is equal to
A. -12
B. 12
C. 10
D. -10

Answer: D

D Watch Video Solution

20. Let the points $A:(0, a), B:(-2,0)$ and $C:(1,1)$ form an obtuse angled triangle (obtuse angled at angle A), then the
complete set of values of a is
A. $(-2,1)$
B. $(-2,1)-\left\{\frac{2}{3}\right\}$
C. $(-1,2)$
D. $(-1,2)=\left\{\frac{2}{3}\right\}$

Answer: D

D Watch Video Solution

21. Let normals to the parabola $y^{2}=4 x$ at variable points $P\left(t_{1}^{2}, 2 t_{1}\right)$ and $Q\left(t_{2}^{2}, 2 t_{2}\right)$ meet at the point $R\left(t^{2} 2 t\right)$, then the line joining P and Q always passes through a fixed point (α, β), then the value of $|\alpha+\beta|$ is equal to
22. Let A be a square matrix of order 3 such that $A=A^{T}=\left[\begin{array}{ccc}10 & 4 & 6 \\ a_{21}+a_{12} & 6 & a_{23}+a_{32} \\ a_{31}+a_{13} & 8 & 4\end{array}\right]$,where a_{12}, a_{23}, a_{31} are positive roots of the equation $x^{3}-6 x^{2}+p x-8=0, \forall p \in R$, then the absolute vlaue of $|A|$ is equal to

- Watch Video Solution

23. If 4 dice ae rolled once, the numberof ways of getting the sum as 10 is K , then the value of $\frac{K}{10}$ is equal to

- Watch Video Solution

24. Let $X_{1}, X_{2}, X_{3} \ldots \ldots$ are in arithmetic progression with a common difference equal to d which is a two digit natural
number. $y_{1}, y_{2}, y_{3} \ldots \ldots \ldots$ are in geometric progression with common ratio equal to 16. Arithmetic mean of $X_{1}, X_{2} \ldots \ldots . X_{n}$ is equal to the arithmetic mean of $y_{1}, y_{2} \ldots \ldots y_{n}$ which is equal to 5 . If the arithmetic mean of $X_{6}, X_{7} \ldots X_{n+5}$ is equal to the arithmetic mean of $y_{P+1}, y_{P+2} \ldots \ldots y_{P+n}$ then d is equal to

- Watch Video Solution

25. The equation $x^{3}+3 x^{2}+6 x+3-2 \cos x=0$ has n solution(s) in $(0,1)$, then the value of $(n+2)$ is equal to

- Watch Video Solution

