

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 40

Mathematics

1. Let the tangents at point P and R on the parabola $y=x^2$ intersects at T. Tangent at point Q (lies in between the points P and R) on the parabola intersect PT and RT at A and B respectively. The value of $\frac{TA}{TP}+\frac{TB}{TR}$ is

A. $\frac{1}{2}$

Answer: B

Watch Video Solution

$$f(x) = \sqrt{x - 4\sqrt{x - 4}} + an^{-1}igg(rac{1 - 2x}{2 + x}igg), \ orall 4 < x < 8$$
,

If

then the value of f'(5) is equal to

A.
$$-\frac{7}{13}$$

c.
$$\frac{5}{13}$$

D.
$$-\frac{8}{13}$$

Answer: A

Watch Video Solution

3. The statement $ildar(p \Leftrightarrow q)$ is not equivalent to

A.
$$\sim p \Leftrightarrow q$$

B.
$$(p \wedge \neg q) \vee (q \wedge \neg q)$$

C.
$$(p \lor q) \land (\lnot p \lor \lnot q)$$

$$\mathsf{D}.\,(p\vee q)\Rightarrow (p\wedge q)$$

Answer: C

4. For the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, distance between the foci is 10 units. Form the point $(2,\sqrt{3})$, perpendicular tangents are drawn to the hyperbola, then the value of $\left|\frac{b}{a}\right|$ is

- A. 0.25
- B. 5
- C. 0.75
- D. 1

Answer: C

Watch Video Solution

5. The mean square deviation of a set of observation x_1, x_2, \ldots, x_n about a point m is defined as

$$rac{1}{n}\Sigma_{i=1}^n(x_i-m)^2$$
. If the mean square deviation about -1 and 1 of a set of observation are 7 and 3 respectively. The

standard deviation of those observations is

A.
$$\sqrt{2}$$

B. 2

C. 5

D. $\sqrt{3}$

Answer: D

6. If
$$f(x)=\left\{egin{array}{ll} x^{p+1}\cos.\ rac{1}{x}\colon & x
eq0 \ 0\colon & x=0 \end{array}
ight.$$
 then at x = 0 the function f(x) is

A. continuous if $p>\,-\,1$ and differentiable if p>0

B. Continuous if p>0 and differentiable if $p>\,-\,1$

C. Continuous and differetiable if $p>\,-\,1$

D. None of these

Answer: A

Watch Video Solution

7. The sum of the roots of the equation $\left|x^2-x-6\right|=x+2$

A. 0

is

B.-2

C. 2

Answer: D

Watch Video Solution

8. The sum (upto two decimal places) of the infinite series

$$\frac{7}{17} + \frac{77}{17^2} + \frac{777}{17^3} + \dots$$
 is

A. 1.06

B. 2.06

C. 3.06

D. 4.06

Answer: A

9. The value of $\lim_{n \to \infty} \left(\cos x \cos. \, \frac{x}{2} \cos. \, \frac{x}{4} \ldots \cos. \, \frac{x}{2^n} \right)$ is equal to

A.
$$\frac{x}{\sin x}$$

B.
$$\frac{\sin x}{x}$$

C.
$$\frac{\sin 2x}{2x}$$

D.
$$\frac{2x}{\sin 2x}$$

Answer: C

Watch Video Solution

10. Two friends A and B have equal number of sons. There are 3 cinema tickets which are to be distributed among the sons of

A and B. The probability that all the tickets go to the sons of B

is 1/20. The no. of sons each of them having is

- A. 3
- B. 4
- C. 5
- D. 6

Answer: A

11. If arg $\left(\frac{z-(10+6t)}{z-(4+2i)}\right)=\frac{\pi}{5}$ (where z is a complex

number), then the perimeter of the locus of z is

A.
$$\frac{\sqrt{13}\pi}{4}$$
 units

B. $\frac{3\sqrt{13}\pi}{4}$ units

C. $3\sqrt{13}\pi$ units

D. $\frac{3\pi}{2}\sqrt{26}$ units

Answer: D

Watch Video Solution

12. If
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots$$
 and $+ C_n x^n$

$$\Sigma_{r=0}^{50}rac{C_r^2}{(r+1)}=rac{m\,!}{{(n\,!)}^2}, \,\,$$
 then the value of $(m+n)$ is equal to (where C_r represents $.^n\,C_r$)

A. 149

B. 152

C. 155

D. 146

Answer: B

Watch Video Solution

- 13. The maximum slope of the curve $y = -x^3 + 3x^2 - 4x + 9$ is
 - A. 1
 - B. 1
 - C. 2
 - D. 3

Answer: B

14. The value of the integral $\int \frac{\csc^2 x - 2019}{\cos^{2019} x} dx$ is equal to (where C is the constant of integration)

A.
$$\frac{\cot x}{\left(\cos x\right)^{2019}}+C$$

$$\mathsf{B.}\,\frac{-\cot x}{\left(\cos x\right)^{2019}}+C$$

$$\mathsf{C.}\cot x(\cos x)^{2019} + C$$

D.
$$-\cot x(\cos x)^{2019} + C$$

Answer: B

Watch Video Solution

15. If $\int_0^\infty \frac{\sin x}{x} dx = k$, then the value of $\int_0^\infty \frac{\sin^3 x}{x} dx$ is equal to

- A. k
- $\mathsf{B.}\;\frac{k}{2}$
- C. $\frac{k}{4}$
- D. 2k

Answer: B

Watch Video Solution

16. The equation of the locus of the foot of perpendicular drawn from (5, 6) on the family of lines $(x-2)+\lambda(y-3)=0$ (where $\lambda\in R$) is

A.
$$(x-1)(x-3) + (y-2)(y-6) = 0$$

B.
$$(x-5)(x-6) + (y-2)(y-6) = 0$$

C.
$$(x-2)(x-5) + (y-3)(y-6) = 0$$

D.
$$(x+2)(x+5) + (y+3)(y+6) = 0$$

Answer: C

Watch Video Solution

17.
$$\left\{ \begin{bmatrix} 5 & 1 & 4 \\ 7 & 6 & 2 \\ 1 & 3 & 5 \end{bmatrix} \begin{bmatrix} 1 & 6 & -7 \\ 6 & 2 & 4 \\ -7 & 4 & 3 \end{bmatrix} \begin{bmatrix} 5 & 7 & 1 \\ 1 & 6 & 3 \\ 4 & 2 & 5 \end{bmatrix} \right\}^{2020} = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 5 \end{bmatrix} \begin{bmatrix} 6 & 2 & 4 \\ -7 & 4 & 3 \end{bmatrix}$$

equal to

A. 0

B. 1

C. 2

If

, then the value of $2|a_2-b_1|+3|a_3-c_1|+4|b_3-c_2|$ is

D. 3

Answer: A

Watch Video Solution

18. The lengths of the tangents from any point on the circle $x^2+y^2+8x+1=0$ to the circles $x^2+y^2+7x+1=0$ and $x^2+y^2+4x+1=0$ are in the ratio

A. 1:2

B.1:3

C. 1: 4

D. 1: $\sqrt{2}$

Answer: A

19. Let A and B are two non - singular matrices of order 3 such that |A|=3 and $A^{-1}B^2+2AB=O$, then the value of $\left|A^4-2A^2B\right|$ is equal to (where O is the null matrix of order 3)

A. 0

 $\mathsf{B.}\,5^6$

 $C. 2^2 5^6$

D. 3^45^3

Answer: D

20. The distance of the plane x+2y-z=2 from the point $(2,\,-1,\,3)$, measured in the direction with the direction ratios (2, 2,1) is

- A. 1 units
- B. 2 units
- C. 3 units
- D. 4 units

Answer: C

21. The number of the positive integral solutions (x, y, z) of the equation xyz = 24 is t, then the number of all possible

factors of t is

Watch Video Solution

22. If $f(x) = \cos^{-1}\Bigl(x^{rac{3}{2}} - \sqrt{1-x-x^2+x^3}\Bigr), \ orall \ 0 \leq x \leq 1$ then the minimum value of f(x) is

Watch Video Solution

23. If \overrightarrow{a} , \overrightarrow{b} are vectors perpendicular to each other and $\left|\overrightarrow{a}
ight|=2,\left|\overrightarrow{b}
ight|=3,\overrightarrow{c} imes\overrightarrow{a}=\overrightarrow{b}$, then the least value of $2 |\overrightarrow{c} - \overrightarrow{a}|$ is

24. If the order of the differential equation of the family of circle touching the x - axis at the origin is k, then 2k is equal to

Watch Video Solution

25. If the area bounded by the curve $y+x^2=8x$ and the line y=12 is K sq. units, then the vaue of $\frac{3K}{10}$ is

