

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 41

Mathematics

1. If
$$f(x) = (x-1)(x-2)(x-3)(x-4)(x-5)$$
,

then the value of f' (5) is equal to

A. 0

B. 120

C. 24

D. 5

Answer: C

Watch Video Solution

2. If p, q and r anre 3 statements, then the truth value of $((-p \lor q) \land r) \Rightarrow p$ is

A. True if truth values of p, q, r are T, F, T respectively

B. False if truth values of p, q, r are T, F, T respectively

C. False if truth values of p, q, r are T, F, F respectively

D. False if truth values of p, q, r are T, T, T respectively

Answer: A

3. The number of nonnegative integer solutions of the equation x+y+z+5t=15 is

- A. 196
- B. 224
- C. 312
- D. 364

Answer: B

4. Let $f(x)=rac{rac{1}{x^2}}{lpha x^2+eta}:|x|\geq 1 \ .$ If f(x) is

continuous and differentiable at any point, then

A.
$$lpha=2,eta=1$$

B.
$$lpha=-1,eta=2$$

C.
$$\alpha=1, \beta=0$$

D.
$$\alpha=-2, \beta=3$$

Answer: B

5. If α, β are the roots of the equation

 $8x^2-3x+27=0,$ then the value of

$$\left(rac{lpha^2}{eta}
ight)^{rac{1}{3}}+\left(rac{eta^2}{lpha}
ight)^{rac{1}{3}}$$
 is

- A. $\frac{1}{3}$
- B. $\frac{1}{4}$
- $\mathsf{C.}\ \frac{1}{5}$
- D. $\frac{1}{6}$

Answer: B

6.
$$\left(1\frac{2}{3}\right)^2 + \left(2\frac{1}{3}\right)^2 + 3^2 + \left(3\frac{2}{3}\right)^2 + \dots$$
 to 10

terms, the sum is:

A.
$$\frac{1390}{9}$$

B.
$$\frac{1790}{9}$$
C. $\frac{1990}{9}$

D.
$$\frac{2290}{9}$$

Answer: D

7. For a complex number Z, if all the roots of the equation $Z^3+aZ^2+bZ+c=0$ are unimodular, then

A.
$$|a| > 3 \text{ and } |c| = 1$$

$$\mathsf{B.}\,|a|\leq 3\,\,\mathrm{and}\,\,|c|=3$$

$$|\mathsf{C}.|a| > 3 \; ext{and} \; |c| = rac{1}{3}$$

D.
$$|a| \leq 3 \& |c| = 1$$

Answer: D

8. If A,B,C,D are four distinct point in space such that AB is not perpendicular to CD and satisfies

$$\overrightarrow{A}\overrightarrow{BC}D=kigg(\left|\overrightarrow{A}D
ight|^2+\left|\overrightarrow{B}C
ight|^2-\left|\overrightarrow{A}C
ight|^2=\left|\overrightarrow{B}D
ight|^2igg),$$

then find the value of k

A.
$$1/2$$

B. 1

 $\mathsf{C.}\,3/2$

D. 2

Answer: A

9. Let a random variable X have a binomial distribution with mean 8 and variance r. If $P(X \leq 2) = rac{k}{2^{16}}$, then k is equal to

- A. 121
- B. 1
- C. 17
- D. 137

Answer: D

10. A tangent drawn to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at $P\left(a\sec\frac{\pi}{6}, b\frac{\tan\pi}{6}\right)$ form a triangle of area $3a^2$ sq. units with the coordinate axes. The eccentricity of the conjugate hyperbola of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is

A.
$$\sqrt{17}$$

B.
$$\frac{\sqrt{17}}{4}$$

$$\mathsf{C.}\,\frac{\sqrt{17}}{2}$$

D.
$$\frac{8}{\sqrt{17}}$$

Answer: B

11. If
$$f(x)= an^{-1}igg(rac{2^x}{1+2^{2x+1}}igg)$$
, then $\sum_{r=0}^9 f^r$ is

A.
$$\tan^{-1}(1024)$$

B.
$$\tan^{-1} \left(\frac{1023}{1024} \right)$$

C.
$$\tan^{-1} \left(\frac{1023}{1025} \right)$$

D. None of these

Answer: C

12. Let
$$A_n=\int\!\! an^nxdx,\,orall n\in N.$$
 If $A_{10}+A_{12}=rac{ an^mx}{m}+\lambda$ (where λ is an arbitrary

constant), then the value of m is equal to

A. 10

B. 11

C. 12

D. 13

Answer: B

13. Let $f(x) = \sin^3 x - 3\sin x + 6, \ orall x$ The

 $\in (0,\pi).$ number of local maximum/maxima of the

function f(x) is

A. 0

B. 1

C. 2

D. 3

Answer: A

14. The angle between the chords of the circle $x^2+y^2=100$, which passes through the point (7,1) and also divides the circumference of the circle into two arcs whose length are in the ratio 2 : 1, is equal to

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{3}$$

$$\mathsf{C.}\ \frac{\pi}{2}$$

D.
$$\frac{2\pi}{3}$$

Answer: C

15. If α and β are the roots of the equation,

$$[1,5] \left[egin{array}{ccc} 1 & 3 \ -4 & 7 \end{array}
ight]^2 \left[egin{array}{ccc} rac{7}{19} & -rac{13}{19} \ rac{4}{19} & rac{1}{19} \end{array}
ight]^4$$

$$\left[egin{array}{cc} 1 & 3 \ -4 & 7 \end{array}
ight]^2 \left[egin{array}{cc} x^2 - 5x + 5 \ -3 \end{array}
ight] = [\,-4]$$
 , then the value

of
$$(2-lpha)(2-eta)$$
 is

$$B. - 12$$

D.
$$-7$$

Answer: B

16. If the equal sides AB and AC (each equal to 5 units) of a right-angled isosceles triangle ABC are produced to P and Q such that $BP \cdot CQ = AB^2$, then the line PQ always passes through the fixed point (where A is the origin and AB, AC lie along the positive x and positive y - axis respectively)

- A. (7, 6)
- B. (6, 5)
- C. (5, 5)
- D.(6,6)

Answer: C

Watch Video Solution

17. If
$$\dfrac{2\sin\alpha}{1+\cos\alpha+\sin\alpha}=\dfrac{3}{4}$$
, then the value of $\dfrac{1+\cos\alpha+\sin\alpha}{1+\sin\alpha}$ is equal to

A.
$$4/3$$

D.
$$\frac{7}{4}$$

Answer: B

18. The intercepts made on the x, y and z axes, by the plane which bisects the line joining the points `(1,2,3) and (-3, 4,5) at right angles, are a,b and c respectively, then the ordered triplet (a,b,c) is

A.
$$\left(\frac{-9}{2}, 9, 9\right)$$

$$B.\left(\frac{9}{2},9,9\right)$$

$$\mathsf{C.}\left(9,\frac{-9}{2},9\right)$$

D.
$$(9, \frac{9}{2}, 9)$$

Answer: A

19. The value of
$$\lim_{x o rac{\pi}{4}} \left(\sin 2x
ight)^{\sec^2 x}$$
 is equal to

$$\mathsf{A.} - \frac{1}{2}$$

$$\mathsf{B.}\;\frac{1}{2}$$

C.
$$e^{-1/2}$$

D.
$$e^{1/2}$$

Answer: C

20. If a, b and c are distinct positive real numbers

such that
$$\Delta_1 = egin{array}{c|c} a & b & c \ b & c & a \ c & a & b \ \end{array}$$

and

$$\Delta_2=egin{array}{cccc} bc-a^2 & ac-b^2 & ab-c^2 \ ac-b^2 & ab-c^2 & bc-a^2 \ ab-c^2 & bc-a^2 & ac-b^2 \ \end{array}$$
 , then

A.
$$\Delta_1=\Delta_2$$

B.
$$\Delta_1^2 + \Delta_2 = 0$$

C.
$$\Delta_1^2=\Delta_2$$

D.
$$\Delta_1^2=\Delta_2^2$$

Answer: C

 $rac{x(1+a\cos x)-b\sin x}{x^3}=$ 1, then the **21**. If lim value of ab is eugal to

 $x^2 dy + 2xy dx = \sin x dx$ is $x^k y + \cos x = C$

22. If the solution of the differential equation

(where C is an arbitrary constant), then the value of k is equal to

A. 0

B. 1

C. 2

Answer: C

Watch Video Solution

23. If the normals at two points P and Q of a parabola $y^2=4x$ intersect at a third point R on the parabola $y^2=4x$, then the product of the ordinates of P and Q is equal to

24. The coefficient of t^{50} in $(1+t)^{41}ig(1-t+t^2ig)^{40}$ is equal to

Watch Video Solution

25. Let $f\colon R o R$ is a function defined as f(x)

where
$$= \left\{ egin{array}{ll} |x-[x]| & :[x] ext{is odd} \ |x-[x+1]| & :[x] ext{is even} \end{array}
ight.$$

[.] denotes the greatest integer function, then

$$\int_{-2}^{4} dx$$
 is equal to

