

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 43

Mathematics

1. If α and β are the roots of the equation $2x^2 + 4x - 5 = 0$, then the equation whose roots are $\frac{1}{2\alpha - 3}$ and $\frac{1}{2\beta - 3}$ is

A.
$$x^2 + 10x - 11 = 0$$

$$\mathsf{B}.\,11x^2 + 10x + 1 = 0$$

$$\mathsf{C.}\, x^2 + 10x + 11 = 0$$

D.
$$11x^2 - 10x + 1 = 0$$

Answer: B

2. If $f \colon A o B$ defined by $f(x) = \sin x - \cos x + 3\sqrt{2}$ is an invertible

function, then the correct statement can be

$$\begin{aligned} \mathsf{A}.\, &A = \left[\frac{\pi}{4}, \frac{5\pi}{4}\right], B = \left[3\sqrt{2}, 4\sqrt{2}\right] \\ \mathsf{B}.\, &A = \left[\frac{-\pi}{4}, \frac{5\pi}{4}\right], B = \left[2\sqrt{2}, 4\sqrt{2}\right] \\ \mathsf{C}.\, &A = \left[\frac{-\pi}{4}, \frac{3\pi}{4}\right], B = \left[\sqrt{2}, 4\sqrt{2}\right] \\ \mathsf{D}.\, &A = \left[\frac{-\pi}{4}, \frac{3\pi}{4}\right], B = \left[2\sqrt{2}, 4\sqrt{2}\right] \end{aligned}$$

Answer: D

Watch Video Solution

3. Three numbers a, b and c are in between 2 and 18 such that 2, a, b are in A.P. and b, c, 18 are in G.P . If a + b + c = 25, then the value of c - a is

В	•	3

D. 0

Answer: C

Watch Video Solution

4. If the sum of the coefficients in the expansion of $(1 + 3x)^n$ lies between 4000 and 10000, then the value of the greatest coefficient must be

A. 3954

B. 6342

C. 4806

D. 1458

Answer: D

5. In a shooting competition a man can score 5, 4, 3, 2, 1 or 0 points for each shot. Then the number of different ways in which he can score 10 in seven shots is

A. 6538

B. 6648

C. 6468

D. 6236

Answer: A

Watch Video Solution

6. If $4{\sin 26}^\circ = \sqrt{lpha} - \sqrt{eta}$, then the value of lpha + eta is

В	•	3

D. 2

Answer: C

Watch Video Solution

7. If
$$\int \! rac{dx}{\sqrt{e^x-1}} = 2 an^{-1}(f(x)) + C$$
, (where $x>0$ and C is the

constant of integration) then the range of $f(\boldsymbol{x})$ is

- A. $(0,\infty)$
- B. $[0,\infty)$
- $\mathsf{C}.\left[1,\infty\right)$
- $\mathsf{D}.\left(1,\infty
 ight)$

Answer: A

8. Consider
$$I(\alpha) = \int_{\alpha}^{\alpha^2} \frac{dx}{x}$$
 (where $\alpha > 0$), then the value of $\Sigma_{r=2}^5 I(r) + \Sigma_{k=2}^5 I\left(rac{1}{k}
ight)$ is

A. 0

B. 1

C. ln 2

D. In 4

Answer: A

Watch Video Solution

9. If the mean and the variance of the numbers a, b, 8, 5 and 10 are 6 and 6.8 respectively, then the value of $a^3 + b^3$ is equal to

A. 58

B. 61

D. 89

Answer: C

Watch Video Solution

10. If the solution of the differential equation $y^3x^2\cos(x^3)dx+\sin(x^3)y^2dy=rac{x}{3}dx$ is $2\sin(x^3)y^k=x^2+C$ (where

C is an arbitrary constant), then the value of k is equal to

A. 3

B. 2

C. 1

D. 4

Answer: A

11. If $\frac{\cos^{-1}(n)}{2\pi} > \frac{2\pi}{3}$ then maximum and minimum values of integer in are respectively A. 3 B. 4 C. -4

 $\mathsf{D.}-3$

Answer: C

12. The value of f(0) such that the function $f(x) = rac{\sqrt[3]{1+2x}-\sqrt[4]{1+x}}{x}$

is continuous at x = 0, is

A.
$$\frac{1}{12}$$

B. $\frac{5}{12}$

D.
$$\frac{9}{12}$$

Answer: B

Watch Video Solution

13. If m_1 and m_2 are slopes of the tangents to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ which passes through (5, 4), then the value of $(m_1 + m_2) - (m_1 m_2)$ is equal to

A.
$$\frac{47}{9}$$

B. $-\frac{40}{6}$
C. $\frac{22}{3}$
D. $\frac{11}{3}$

Answer: D

14. Let \overrightarrow{a} and \overrightarrow{b} be non collinear vectors of which \overrightarrow{a} is a unit vector. The angle of the triangle whose sides are represented by $\sqrt{3} \left(\overrightarrow{a} \times \overrightarrow{b} \right)$ and $\overrightarrow{b} - \left(\overrightarrow{a} \cdot \overrightarrow{b} \right) \overrightarrow{a}$ are: A. $\frac{\pi}{2}, \frac{\pi}{4}, \frac{\pi}{4}$ B. $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{6}$ C. $\frac{\pi}{2}, \frac{5\pi}{12}, \frac{\pi}{12}$

D. $\frac{\pi}{4}, \frac{\pi}{3}, \frac{5\pi}{12}$

Answer: B

S Watch Video Solution

15. There are 6 positive numbers and 8 negative numbers. Three numbers are chosen from them at random and multiplied. The probability that the product is a negative number is

A.
$$\frac{11}{34}$$

B. $\frac{17}{33}$
C. $\frac{16}{35}$
D. $\frac{11}{35}$

Answer: D

Watch Video Solution

16. The image of the line $\frac{x}{2} = \frac{y-1}{5} = \frac{z+1}{3}$ in the plane x + y + 2z = 3 meets the xz - plane at the point (a, b, c), then the value of c is equal to

A.
$$\frac{11}{6}$$

B. $\frac{129}{6}$
C. $\frac{115}{6}$
D. $\frac{232}{6}$

Answer: B

17. A square matrix A of order 3 satisfies $A^2 = I - 2A$, where I is an identify matrix of order 3. If $A^n = 29A - 12I$, then the value of n is equal to A. 3 B. 4 C. 5 D. 6 Answer: C

18. The perimeter of a parallelogram whose sides are represented by the lines x + 2y + 3 = 0, 3x + 4y - 5 = 0, 2x + 5 = 0 and 3x + 4y - 10 = 0 is equal to A. $\frac{5}{2} + 5\sqrt{5}$ units B. $5 + 4\sqrt{5}$ units C. $5 + \frac{5}{2}\sqrt{5}$ units

D. ${5+5\sqrt{5}\over 2}$ units

Answer: A

Watch Video Solution

19. If the length of the tangents from P(1, 3) and Q (3, 7) to a circle are $\sqrt{2}$ units and $\sqrt{18}$ units respectively, then the length of the tangent from R(7, 15) to the same circle is

A.
$$\sqrt{98}$$
 units

B. $\sqrt{170}$ units

C. $\sqrt{50}$ units

D. None of these

Answer: B

Watch Video Solution

20. The length of the chord $y=\sqrt{3}x-2\sqrt{3}$ intercepted by the parabola

$$y^2 = 4(x-1)$$
 is equal to

A. $4\sqrt{3}$ units

B.
$$\frac{8}{3}$$
 units
C. $\frac{16}{3}$ units
D. $\frac{4}{\sqrt{3}}$ units

Answer: C

21. If |Z-2|=2|Z-1|, then the value of $\frac{Re(Z)}{|Z|^2}$ is (where Z is a complex number and Re(Z) represents the real part of Z)

22. If $(1)(2020) + (2)(2019) + (3)(2018) + \dots + (2020)(1) = 2020 \times 2021 \times 1000)$ then the value of $\frac{k}{100}$ is equal to Vatch Video Solution

23. The function $f(x) = e^{x^3 - 6x^2 + 10}$ attains local extremum at x = a and x

= b (a < b), then the value of
$$a+b$$
 is equal to

Watch Video Solution

25. If A and B are square matrices of order 3 such that $AA^T = 3B$ and

 $2AB^{-1}=3A^{-1}B$, then the value of $rac{\leftert B
ightert ^{2}}{16}$ is equal to