© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 43

Mathematics

1. If α and β are the roots of the equation $2 x^{2}+4 x-5=0$, then the equation whose roots are $\frac{1}{2 \alpha-3}$ and $\frac{1}{2 \beta-3}$ is
A. $x^{2}+10 x-11=0$
B. $11 x^{2}+10 x+1=0$
C. $x^{2}+10 x+11=0$
D. $11 x^{2}-10 x+1=0$

Answer: B

- Watch Video Solution

2. If $f: A \rightarrow B$ defined by $f(x)=\sin x-\cos x+3 \sqrt{2}$ is an invertible function, then the correct statement can be
A. $A=\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right], B=[3 \sqrt{2}, 4 \sqrt{2}]$
B. $A=\left[\frac{-\pi}{4}, \frac{5 \pi}{4}\right], B=[2 \sqrt{2}, 4 \sqrt{2}]$
C. $A=\left[\frac{-\pi}{4}, \frac{3 \pi}{4}\right], B=[\sqrt{2}, 4 \sqrt{2}]$
D. $A=\left[\frac{-\pi}{4}, \frac{3 \pi}{4}\right], B=[2 \sqrt{2}, 4 \sqrt{2}]$

Answer: D

- Watch Video Solution

3. Three numbers a, b and c are in between 2 and 18 such that $2, \mathrm{a}, \mathrm{b}$ are in A.P. and $\mathrm{b}, \mathrm{c}, 18$ are in G.P. If $a+b+c=25$, then the value of $c-a$ is
A. 4
B. 3
C. 7
D. 0

Answer: C

- Watch Video Solution

4. If the sum of the coefficients in the expansion of $(1+3 x)^{n}$ lies between 4000 and 10000, then the value of the greatest coefficient must be
A. 3954
B. 6342
C. 4806
D. 1458
5. In a shooting competition a man can score $5,4,3,2,1$ or 0 points for each shot. Then the number of different ways in which he can score 10 in seven shots is
A. 6538
B. 6648
C. 6468
D. 6236

Answer: A

- Watch Video Solution

6. If $4 \sin 26^{\circ}=\sqrt{\alpha}-\sqrt{\beta}$, then the value of $\alpha+\beta$ is
A. 5
B. 3
C. 8
D. 2

Answer: C

- Watch Video Solution

7. If $\int \frac{d x}{\sqrt{e^{x}-1}}=2 \tan ^{-1}(f(x))+C$, (where $x>0$ and C is the constant of integration) then the range of $f(x)$ is
A. $(0, \infty)$
B. $[0, \infty)$
C. $[1, \infty)$
D. $(1, \infty)$

Answer: A

8. Consider $I(\alpha)=\int_{\alpha}^{\alpha^{2}} \frac{d x}{x}$ (where $\alpha>0$), then the value of $\Sigma_{r=2}^{5} I(r)+\Sigma_{k=2}^{5} I\left(\frac{1}{k}\right)$ is
A. 0
B. 1
C. $\ln 2$
D. $\ln 4$

Answer: A

Watch Video Solution

9. If the mean and the variance of the numbers $a, b, 8,5$ and 10 are 6 and 6.8 respectively, then the value of $a^{3}+b^{3}$ is equal to
A. 58
B. 61
C. 91
D. 89

Answer: C

- Watch Video Solution

10. If the solution of the differential equation $y^{3} x^{2} \cos \left(x^{3}\right) d x+\sin \left(x^{3}\right) y^{2} d y=\frac{x}{3} d x$ is $2 \sin \left(x^{3}\right) y^{k}=x^{2}+C$ (where C is an arbitrary constant), then the value of k is equal to
A. 3
B. 2
C. 1
D. 4

Answer: A

11. If $\frac{\cos ^{-1}(n)}{2 \pi}>\frac{2 \pi}{3}$ then maximum and minimum values of integer in are respectively
A. 3
B. 4
C. -4
D. -3

Answer: C

- Watch Video Solution

12. The value of $f(0)$ such that the function $f(x)=\frac{\sqrt[3]{1+2 x}-\sqrt[4]{1+x}}{x}$ is continuous at $\mathrm{x}=0$, is
A. $\frac{1}{12}$
B. $\frac{5}{12}$
C. 0
D. $\frac{9}{12}$

Answer: B

- Watch Video Solution

13. If m_{1} and m_{2} are slopes of the tangents to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ which passes through $(5,4)$, then the value of $\left(m_{1}+m_{2}\right)-\left(m_{1} m_{2}\right)$ is equal to
A. $\frac{47}{9}$
B. $-\frac{40}{6}$
C. $\frac{22}{3}$
D. $\frac{11}{3}$

Answer: D

14. Let \vec{a} and \vec{b} be non collinear vectors of which \vec{a} is a unit vector. The angle of the triangle whose sides are represented by $\sqrt{3}(\vec{a} \times \vec{b})$ and $\vec{b}-(\vec{a} \cdot \vec{b}) \vec{a}$ are:
A. $\frac{\pi}{2}, \frac{\pi}{4}, \frac{\pi}{4}$
B. $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{6}$
C. $\frac{\pi}{2}, \frac{5 \pi}{12}, \frac{\pi}{12}$
D. $\frac{\pi}{4}, \frac{\pi}{3}, \frac{5 \pi}{12}$

Answer: B

- Watch Video Solution

15. There are 6 positive numbers and 8 negative numbers. Three numbers are chosen from them at random and multiplied. The probability that the product is a negative number is
A. $\frac{11}{34}$
B. $\frac{17}{33}$
C. $\frac{16}{35}$
D. $\frac{11}{35}$

Answer: D

- Watch Video Solution

16. The image of the line $\frac{x}{2}=\frac{y-1}{5}=\frac{z+1}{3}$ in the plane $x+y+2 z=3$ meets the $x z-$ plane at the point $(\mathrm{a}, \mathrm{b}, \mathrm{c})$, then the value of c is equal to
A. $\frac{11}{6}$
B. $\frac{129}{6}$
C. $\frac{115}{6}$
D. $\frac{232}{6}$

Answer: B

- Watch Video Solution

17. A square matrix A of order 3 satisfies $A^{2}=I-2 A$, where I is an identify matrix of order 3 . If $A^{n}=29 A-12 I$, then the value of n is equal to
A. 3
B. 4
C. 5
D. 6

Answer: C

18. The perimeter of a parallelogram whose sides are represented by the lines $x+2 y+3=0$, $3 x+4 y-5=0,2 x+5=0$ and $3 x+4 y-10=0$ is equal to
A. $\frac{5}{2}+5 \sqrt{5}$ units
B. $5+4 \sqrt{5}$ units
C. $5+\frac{5}{2} \sqrt{5}$ units
D. $\frac{5+5 \sqrt{5}}{2}$ units

Answer: A

- Watch Video Solution

19. If the length of the tangents from $P(1,3)$ and $Q(3,7)$ to a circle are $\sqrt{2}$ units and $\sqrt{18}$ units respectively, then the length of the tangent from $R(7$,
15) to the same circle is
A. $\sqrt{98}$ units
B. $\sqrt{170}$ units
C. $\sqrt{50}$ units
D. None of these

Answer: B

- Watch Video Solution

20. The length of the chord $y=\sqrt{3} x-2 \sqrt{3}$ intercepted by the parabola
$y^{2}=4(x-1)$ is equal to
A. $4 \sqrt{3}$ units
B. $\frac{8}{3}$ units
C. $\frac{16}{3}$ units
D. $\frac{4}{\sqrt{3}}$ units

Answer: C

21. If $|Z-2|=2 \mid Z-1$, then the value of $\frac{\operatorname{Re}(Z)}{|Z|^{2}}$ is (where Z is a complex number and $\operatorname{Re}(Z)$ represents the real part of Z)

- Watch Video Solution

22.

$(1)(2020)+(2)(2019)+(3)(2018)+\ldots \ldots . \cdot(2020)(1)=2020 \times 2021 \times$ then the value of $\frac{k}{100}$ is equal to

- Watch Video Solution

23. The function $f(x)=e^{x^{3}-6 x^{2}+10}$ attains local extremum at $\mathrm{x}=\mathrm{a}$ and x $=\mathrm{b}(\mathrm{a}<\mathrm{b})$, then the value of $a+b$ is equal to

- Watch Video Solution

24. If $L=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\left(1-\tan x_{1}-\sin 2 x\right)}{(1+\tan x)(\pi-4 x)^{3}}$, then the value of 40 L is equal to

Watch Video Solution

25. If A and B are square matrices of order 3 such that $\mathrm{AA}^{T}=3 B$ and
$2 A B^{-1}=3 A^{-1} B$, then the value of $\frac{|B|^{2}}{16}$ is equal to

- Watch Video Solution

