MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 44

Mathematics

1. If α,β and γ are the roots of the equation $x^3+x+2=0$, then the equation whose roots are $(\alpha-\beta)(\alpha-\gamma),(\beta-\gamma)(\beta-\gamma)$ and $(\gamma-\alpha)(\gamma-\alpha)$ is

$$A. x^3 - 6x^2 + 216 = 0$$

B.
$$x^3 - 3x^2 + 112 = 0$$

$$\mathsf{C.}\,x^3 + 6x^2 - 216 = 0$$

D.
$$x^3 + 3x^2 - 112 = 0$$

Answer: D

- **2.** (A) Number of values of a for which the common chord of the circles $x^2+y^2=8$ and $(x-a)^2+y^2=8$ subtends a right angle at the origin is
 - A. 0
 - B. 2
 - C. 5
 - D. 3

Answer: B

Watch Video Solution

3. If λ is the remainder when 2^{2021} is divided by 17, then the value of λ must be equal to

A. 3

B. 7

C. 13

D. 15

Answer: D

4. Number of ways in which 5 boys and 4 girls can be arranged on a circular table such that no two girls sit together and two particular boys are always together: (A) 276 (B) 288 (C) 296 (D) 304

- A. 288
- B. 44
- C. 720
- D. 540

Answer: A

5. Let
$$f(n,x)=\int n\cos(nx)dx$$
, with $f(n,0)=0$. If the expression $\sum_{x=1}^{89}f(1,x)$ simplifies to $\frac{\sin a\sin b}{\sin c}$, then the value of $\frac{b}{ac}$ is (where $a>b$)

B. 89

c.
$$\frac{89}{45}$$

D.
$$\frac{45}{89}$$

Answer: C

Watch Video Solution

6. Consider $A=\int_{0}^{rac{\pi}{4}}rac{\sin(2x)}{x}dx,$ then

A.
$$A>rac{\pi}{2}$$

B.
$$A=rac{\pi}{2}$$

C.
$$A<rac{\pi}{2}$$

D. $A>\pi$

Answer: C

Watch Video Solution

7. The locus of the mid - points of the chords of the hyperbola $3x^2-2y^2+4x-6y=0$ which are parallel to the line y=2x+4 is

$$A. \, 3x - 2y = 4$$

$$\mathsf{B.}\,4x-4y=3$$

C.
$$3y - 4x + 4 = 0$$

D.
$$3x - 4y = 2$$

Answer: A

Watch Video Solution

8. The difference between the maximum and minimum values of the function

 $f(x)=\sin^3 x-3\sin x,\ orall x\in\left[0,rac{\pi}{6}
ight]$ is

B. $\frac{1}{2}$

c. $\frac{11}{8}$

D. $\frac{7}{6}$

Answer: C

Watch Video Solution

9. The solution of the differential equation $\dfrac{dy}{dx}=\dfrac{x-y}{x+4y}$ is (where C is the constant of integration)

$$A. xy + y^2 = x + C$$

$$B. xy - y^2 = x^2 + C$$

$$\mathsf{C.}\, xy + 2y^2 = x^2 + C$$

D.
$$2xy + 4y^2 = x^2 + C$$

Answer: D

10. The value of $\lim_{x \to 0} \frac{1 - \cos^3(\sin x)}{\sin x \sin(\sin x) \cos(\sin x)}$

A.
$$\frac{3}{2}$$

B. 1

C. 0

D. 2

Answer: A

Watch Video Solution

11. Let the normals at points $A(4a,\,-4a)$ and $B(9a,\,-6a)$ on the parabola $y^2=4ax$ meet at the point

P. The equation of the nornal from P on $y^2=4ax$ (other than PA and PB) is

A.
$$5x + y - 135a = 0$$

B.
$$5x - y + 115a = 0$$

C.
$$5x + y + 115 = 0$$

D.
$$5x - y - 115a = 0$$

Answer: A

Watch Video Solution

12. The number of real solution(s) of the equation $\sin^{-1}\sqrt{x^2-5x+5}+\cos^{-1}\sqrt{4x-x^2-3}=\pi$ is/are

A. one

B. two
C. zero
D. infinite
Answer: A
Watch Video Solution
13. ABC is an acute angled triangle with circumcenter O
and orthocentre H. If AO=AH, then find the angle A.

A. 30°

B. 60°

C. 75°

D.
$$90^{\circ}$$

Answer: B

- **14.** Consider a skew symmetric matrix $A=\begin{bmatrix}a&b\\-b&c\end{bmatrix}$ such that a, b and c are selected from the set $S=\{0,1,2,3,\ldots\ldots12\}$. If |A| is divisible by 3, then the number of such possible matrices is
 - A. 4
 - B. 5
 - C. 6
 - D. 12

Answer: B

Watch Video Solution

15. Let $A=|a_{ij}|$ be a 3 imes 3 matrix where

$$a_{ij} = egin{cases} ig(i^j - j^i + 2ijig)x & i < j \ 1 & i > j, ext{, then the minimum} \ 0 & i = j \end{cases}$$

value of $\left|A\right|$ is equal to (where x is a real number)

A.
$$\frac{1}{4}$$

$$\mathsf{B.}-\frac{8}{33}$$

$$\mathsf{D.} - \frac{4}{33}$$

Answer: D

16. Consider on experiment of a single throw of a pair of unbiased normal dice. Let three events $\varepsilon_1, \varepsilon_2$ and ε_3 are defined as follows ε_1 : getting prime numbered face on each dice

 $arepsilon_2\colon$ getting the same number on each dice

 $arepsilon_3$: getting the sum of 4 on two dice which of the following is not true?

A. The probabilities $P(arepsilon_1), P(arepsilon_2), P(arepsilon_3)$ are arithmetic progression.

B. The events εg_1 and ε_2 are dependent

$$\mathsf{C.}\,P\!\left(\frac{\varepsilon_3}{\varepsilon_1}\right) = \frac{2}{9}$$

$$\operatorname{D.}P\bigg(\frac{\varepsilon_3}{\varepsilon_1}\bigg) = \frac{1}{9}$$

Answer: C

Watch Video Solution

- **17.** Which of the following statements is false when p is true and q is false?
 - A. $(p \Rightarrow q) \Leftrightarrow r$
 - B. $(\Leftrightarrow q) \Rightarrow r$
 - $\mathsf{C.}\left(q\Rightarrow r\right)\Rightarrow p$
 - D. $(r\Rightarrow p)\Rightarrow q$

Answer: D

18. For a comple number Z, if |Z-1+i|+|Z+i|=1, then the range of the principle argument of Z is (where principle arg $(Z)\in (-\pi,\pi]$)

A.
$$\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$$

B.
$$\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$$

$$C.\left[-\frac{\pi}{2},-\frac{\pi}{4}\right]$$

D.
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Answer: C

19. Let $f\colon A o B$ is a function defined by $f(x)=rac{2x}{1+x^2}.$ If the function f(x) is a bijective function, than the correct

A.
$$A = B = [-1, 1]$$

statement can be

B.
$$A=B=[\,-2,2]$$

C.
$$A = [-1, 1], B = [-2, 2]$$

D.
$$A = [-2, 2], B = [-1, 1]$$

Answer: A

Watch Video Solution

20. Two data sets each of size 10 has the variance as 4 and k and the corresponding means as 2 and 4 respectively. If of k is equal to A. 5 B. 6 C. 4

the variance of the combined data set is 5.5, then the value

Answer: A

D. 3

21. If
$$S = 1(25) + 2(24) + 3(23) + \ldots + 24(2) + 25(1)$$
 then the value of $\frac{S}{900}$ is equal to

If

22. The area (in sq. units) bounded by the curve
$$f(x)=\max{(|x|-1,1-|x|)}$$
 with the x- axis from $x=-1$ to $x=1$ is

23. Let
$$f(x)= an^{-1}igg(rac{x^3-1}{x^2+x}igg)$$
, then the value of $17f'(2)$ is equal to

24. Let P(1,2,3) be a point in space and Q be a point on the line $\frac{x-1}{2}=\frac{y-3}{5}=\frac{z-1}{3}$ such that PQ is parallel to 5x-4y+3z=1. If the length of PQ is equal to k units, then the value of k^2 is equal to

Watch Video Solution

25. Let the lengths of the altitudes from the vertices A(-1,1), B(5,2), C(3,-1) of ΔABC are p_1,p_2,p_3 units respectively then the value of $\frac{\left(\frac{1}{p_1}\right)^2+\left(\frac{1}{p_3}\right)^2}{\left(\frac{1}{p_2}\right)^2}$ is equal to

