

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 46

Mathematics

1. If
$$-3<\dfrac{x^2-\lambda x-2}{x^2+x+1}<2$$
 for all $x\in R$,

then the value of λ belongs to

A.
$$(-1, 7)$$

B.
$$(-6, 2)$$

$$\mathsf{C.}\,(\,-1,2)$$

D.
$$(-6, 7)$$

Answer: C

Watch Video Solution

2. Three numbers a, b and c are in geometric progression. If 4a, 5b and 4c are in arithmetic

progression and a+b+c=70, then the value of |c-a| is equal to

A. 10

B. 20

C. 30

D. 40

Answer: C

3. The exponent of 7 in $100C_{50}$ is

A. 0

B. 1

C. 2

D. 3

Answer: A

4. If α and β are the solution of $\sin x=-\frac{1}{2}$ in $[0,2\pi]$ and α and γ are the solutions of $\cos x=-\frac{\sqrt{3}}{2}$ in $[0,2\pi]$, then the value of $\frac{\alpha+\beta}{|\beta-\gamma|}$ is equal to

A. 1

B. 2

C. 3

D. 4

Answer: C

Watch Video Solution

$$I=\int_0^\pi [|{\sin x}|+|{\cos x}|]dx,$$
 (where $[.\,]$

denotes the greatest integer function) is equal to

A. 1

B. 2

 $\mathsf{C}.\,\pi$

D. 2π

Answer: C

- **6.** The value of $\lim_{x \to 0} \frac{\left(\sec x + \tan x\right)^1}{x}$ is equal to
 - A. e
 - B. e^2
 - $\mathbf{C.}\,e^{\,-1}$
 - D. 1

Answer: A

Watch Video Solution

7. The minimum value of the function

$$f(x)=rac{ an x}{3+2 an x},\ orall x\in\left[0,rac{\pi}{2}
ight)$$
 is

A. 0

B. $\frac{1}{2}$

 $\mathsf{C.}\ \frac{1}{3}$

D. $\frac{1}{6}$

Answer: A

Watch Video Solution

8. The solution of the differential equation

$$y(\sin^2 x)dy + (\sin x\cos x)y^2dx = xdx$$
 is

(where C is the constant of integeration)

A.
$$\sin^2 x$$
. $y = x^2 + C$

B.
$$\sin^2 x$$
. $y^2 = x^2 + C$

$$\mathsf{C.}\sin x.\,y^2=x^2+C$$

D.
$$\sin^2 x$$
. $y^2 = x + C$

Answer: B

Watch Video Solution

9. The negation of $({ ilde{ ilde{-}}} p \wedge q) \vee (p \wedge { ilde{ ilde{-}}} q)$ is

A.
$$(p \lor extstyle extstyle q) \land (extstyle p \lor q)$$

B.
$$(p \wedge { ilde{\hspace{1pt}\hbox{-}}\hspace{1pt}} q) \wedge ({ ilde{\hspace{1pt}\hbox{-}}\hspace{1pt}} p ee q)$$

C.
$$(p \wedge { ilde{\hspace{1pt}\hbox{-}\hspace{1pt}}} q) \wedge (p \vee { ilde{\hspace{1pt}\hbox{-}\hspace{1pt}}} q)$$

D. both
$$SO_4^{2-}$$
 and NO_3^{-}

Answer: B

10. If
$$f(x) = \left\{ egin{array}{ll} rac{e^{\,|x|\,+\,|x|\,-\,1}}{|x|\,+\,|x|} & : & x
eq 0 \ -1 & : & x = 0 \end{array}
ight.$$
 (where

[.] denotes the greatest integer integer function), then

A. f(x) is continuous at x = 0

B.
$$\lim_{x o 0^+} f(x) = -1$$

C.
$$\lim_{x o 0^-} f(x) = 1$$

D.
$$\lim_{x \to 0^+} f(x) = 1$$

Answer: D

11. If
$$\int\!\!\frac{dx}{x^2+x}=\ln\!|f(x)|+C$$
 (where C is the constant of integration), then the range of $y=f(x),\ orall x\in R-\{-1,0\}$ is

A.
$$R - \{1\}$$

B.
$$R - \{0\}$$

C.
$$R - \{0, 1\}$$

D.
$$R - \{0, -1\}$$

Answer: C

Watch Video Solution

12. Let
$$\overrightarrow{a}=2\hat{i}+3\hat{j}+4\hat{k}, \overrightarrow{b}=\hat{i}-2\hat{j}+j\hat{k}$$
 and $\overrightarrow{c}=\hat{i}+\hat{j}-\hat{k}.$ If $\overrightarrow{r} imes\overrightarrow{a}=\overrightarrow{b}$ and

$$\overrightarrow{r}$$
 . $\overrightarrow{c}=3, ext{ then the value of } \left|\overrightarrow{r}
ight|$ is equal to

A.
$$\sqrt{155}$$

B.
$$\sqrt{17}$$

C.
$$2\sqrt{17}$$

D. 3

Answer: A

Watch Video Solution

13. The chords passing through (2, 1) intersect the hyperbola $\frac{x^2}{16}-\frac{y^2}{9}=1$ at A and B. The locus of the point of intersection of tangents at A and B on the hyperbola is

A.
$$x - y = 1$$

B.
$$x + y = 3$$

C.
$$9x - 8y = 72$$

D.
$$9x + 8y = 7$$

Answer: C

Watch Video Solution

14. If
$$egin{array}{c|cccc} \cos \theta & -1 & 1 \ \cos 2\theta & 4 & 3 \ 2 & 7 & 7 \ \end{array} = 0$$
, then the number

of values of θ in $[0,1\pi]$ is

A. 1

B. 2

C. 3

D. 4

Answer: B

Watch Video Solution

15. A box contains x red balls and 10 black balls. 3 balls are drawn one by one without replacement. If the probability of choosing 3 red balls is equal to the probability of

choosing 2 red and 1 black ball, then the possible value of x can be

- A. 1
- B. 32
- C. 53
- D. 40

Answer: B

16. The equation of the external bisector of

$$\angle BAC$$
 to ΔABC with vertices

$$A(5,2), B(2,3)$$
 and $C(6,5)$ is

A.
$$2x + y + 12 = 0$$

B.
$$x + 2y - 12 = 0$$

C.
$$2x + y - 12 = 0$$

D.
$$x - 2y - 1 = 0$$

Answer: D

17. Chord joining two distinct point

P(a,4b) and $Q\left(c,-\frac{16}{b}
ight)$ (both are variable points) on the parabola $y^2=16x$ always passes through a fixed point (α,β) .

Then, which of the following statements is correct?

A.
$$\alpha+\beta=2$$

B.
$$\alpha-\beta=4$$

$$\mathsf{C}.\,|\alpha|+|\beta|=8$$

D.
$$|\alpha| = |\beta|$$

Answer: B

Watch Video Solution

18. A plane P = 0 passing through the point (1, 1, 1) is perpendicular to the planes 2x-y+2z=5 and 3x+6y-2z=7. If the distance of the point (1, 2, 3) from the plane P = 0 is k units, then the value of $34k^2$ is equal to

A.
$$\frac{8}{\sqrt{17}}$$

B. 16

C. 64

D. 128

Answer: D

Watch Video Solution

19. Let the complex numbers Z_1, Z_2 and Z_3 are the vertices A, B and C respectively of an isosceles right - angled triangle ABC with right angle at C, then the value of $rac{\left(Z_1-Z_2
ight)^2}{\left(Z_1-Z_3
ight)\left(Z_3-Z_2
ight)}$ is equal to

B. 1

 $\mathsf{C}.-2$

D. - 1

Answer: A

Watch Video Solution

20. Let A be the centre of the circle $x^{2} + y^{2} - 2x - 4y - 20 = 0$. If the tangents at the points B (1, 7) and $D(4,\,-2)$ on the circle meet at the point C, then the perimeter of the quadrilateral ABCD is

- A. 60 units
- B. 20 units
- C. 40 units
- D. 50 units

Answer: C

21. If the coefficient of x^6 in the expansion of $(2+x)^3(3+x)^2(5+x)^3$ is K, then the value of $\frac{K}{100}$ is

Watch Video Solution

22. The maximum value of x that satisfies the equation $\sin^{-1}\left(\frac{2\sqrt{15}}{|x|}\right) = \cos^{-1}\left(\frac{14}{|x|}\right)$ is

23. The number of all possible symmetric matrices of order 3×3 with each entry 1 or 2 and whose sum of diagonal elements is equal to 5, is

Watch Video Solution

24. The mean of 40 observations 20 and their standard deviation is 5. If the sum of the square of the observations k, then the value of $\frac{k}{k}$ is

Watch Video Solution

25. If
$$I_n=rac{d^n}{dx^n}(x^n\ln x)$$
, then the value of $rac{1}{50}(I_7-7I_6)$ is equal to

