

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 47

Mathematics

1. If
$$A=\left[egin{array}{cc} 3 & -2 \ 7 & -5 \end{array}
ight]$$
 , then the value of $\left|-3A^{2019}+A^{2020}
ight|$ is equal to

A.
$$-14$$

D.
$$2^{2019} \cdot 14$$

Answer: A

2. Let \overrightarrow{a} be a vector in the xy - plane making an angle of 60° with the positive x - axis and $\left|\overrightarrow{a}-\widehat{i}\right|$ is the geometric mean of $\left|\overrightarrow{a}\right|$ and $\left|\overrightarrow{a}-2\widehat{i}\right|$, then the value of $\left|\overrightarrow{a}\right|$ is equal to

A.
$$\sqrt{2}$$

B.
$$\sqrt{2} + 1$$

C.
$$\sqrt{2} - 1$$

D. 2

Answer: C

Watch Video Solution

3. If three normals are drawn from the point (c, 0) to the parabola $y^2=4x$ and two of which are perpendicular, then the value of c is equal to

A. 3
B. 4
C. 5
D. 6
Answer: A Watch Video Solution
4. If the number of ways of selecting 3 numbers out of
$1,2,3,\ldots\ldots,2n+1$ such that they are in arithmetic progression is
441, then the sum of the divisors of n is equal to
A. 21
B. 32
C. 45
D. 60

Answer: B

Watch Video Solution

- **5.** If $\cos 5\theta = 5\cos \theta 2\theta\cos^3 \theta + a\cos^5 \theta + b$, then the value of a+b is
 - A. 20

equal to

- B. 16
- C. 16
- D. 15

Answer: B

Watch Video Solution

6. If $x=\sin\bigl(2\tan^{-1}3\bigr)$ and $y=\sin\biggl(\frac{1}{2}\tan^{-1}\biggl(\frac{4}{3}\biggr)\biggr)$, then

A.
$$2x = 1 - y$$

B.
$$x^2=1-2y$$

$$\mathsf{C.}\,x^2=1+y$$

D.
$$y^2 = 2x - 1$$

Answer: D

Watch Video Solution

7. A tower subtends an angle of 60° at a point on the same level as the foot of the tower and at a second point just 10 meters above the first point the angle of depression of the foot of the tower is 15° . The height of the tower is (in meters)

A.
$$\frac{10}{\sqrt{3}}ig(2-\sqrt{3}ig)$$

B.
$$10\sqrt{3}(2-\sqrt{3})$$

$$\mathsf{C.}\,\frac{10}{\sqrt{3}}\big(2+\sqrt{3}\big)$$

D.
$$10\sqrt{3}ig(2+\sqrt{3}ig)$$

Answer: D

Watch Video Solution

- **8.** The function $f{:}\left(\,-\infty,1
 ight]
 ightarrow\left(0,e^{5}
 ight]$ defined as $f(x)=e^{x^{3}+2}$ is
 - A. Many one and onto
 - B. Many one and into
 - C. one one and onto
 - D. one one and into

Answer: B

Watch Video Solution

9. The function $f(x)=\lim_{n o\infty}rac{(x-2)^{2n}-1}{(x-2)^{2n}+1}(orall n\in N)$ i

B.
$$x = 3$$
 only

C.
$$x = 1$$
 and 3

D.
$$x = 0, 1 \text{ and } 2$$

Answer: C

Watch Video Solution

10. If a and b are positive integers such that $N=\left(a+ib\right)^3-107i$ (where N is a natural number), then the value of a is equal to (where $i^2=-1$)

- A. 4
- B. 5
- C. 6
- D. 9

Answer: C

Watch Video Solution

11. The area (in sq. units) bounded by the curve $y=\{(x.:,x\in[0,1]),(2-x,:,\xi n[1,2]) ext{ with the x-axis from x=0 to}$ x=2 is

- A. 2
- B. $\frac{1}{2}$
- C. 1
- D. 4

Answer: C

Watch Video Solution

12. Let a variable line passing through a fixed point P in the first quadrant cuts the positive coordinate axes at points A and B respectively. If the area of ΔOAB is minimum, then OP is

A. Altitude through vertex O of ΔAOB

B. Median through vertex O of ΔAOB

C. Internal angle bisector through vertex O of ΔAOB

D. None of these

Answer: B

Watch Video Solution

13. A differentiable function f(x) satisfies f(0)=0 and $f(1)=\sin 1$, then (where f' represents derivative of f)

A.
$$f'(c) = \cos c, \ orall c \in [0,1]$$

B.
$$f'(c) = \cos c$$
 for some $\ \in [0,1]$

C.
$$f'(c) = -\cos c, \ orall c \in [0,1]$$

D.
$$f'(c) = 2\cos c, \ orall c \in [0,1]$$

Answer: B

Watch Video Solution

14. If
$$I=\int\!\! rac{dx}{x^3(x^8+1)^{3/4}}=rac{\lambdaig(1+x^8ig)^{rac{1}{4}}}{x^2}+c$$
 (where c is the constant

of integration), then the value of λ is equal to

B.
$$\frac{1}{2}$$

$$\mathsf{C.}-2$$

$$\mathsf{D.}-\frac{1}{2}$$

Answer: D

Watch Video Solution

15. The order of the differential equation of the family of parabolas symmetric about y=1 and tangent to ${\bf x}$ = 2 is

- A. 2
- B. 1
- C. 3
- D. 4

Answer: B

Watch Video Solution

16. The harmonic mean of two positive numbers a and b is 4, their arithmetic mean is A and the geometric mean is G. If $2A+G^2=27, a+b=\alpha$ and $|a-b|=\beta$, then the value of $\frac{\alpha}{\beta}$ is equal to

A. 1

C.
$$\frac{5}{2}$$

Answer: B

Watch Video Solution

17. The shortest distance between the lines
$$\frac{x-2}{2}=\frac{y-3}{2}=\frac{z-0}{1} \text{ and } \frac{x+4}{-1}=\frac{y-7}{8}=\frac{z-5}{4} \text{ lies in the}$$
 interval

A.
$$[0, 1)$$

C.(2,3]

Answer: C

If

 $\left| x^{2a}y^{3b} = e^{5m}, x^{3c}y^{4d} = e^{2n}, \Delta_1 = \left| egin{array}{cc} 5m & 3b \ 2n & 4d \end{array}
ight|, \Delta_2 = \left| egin{array}{cc} 2a & 5m \ 3c & 2n \end{array}
ight| ext{ and } \Delta_3 = 0$, then the values of x and y are

A.
$$\frac{\Delta_1}{\Delta_3}$$
, $\frac{\Delta_2}{\Delta_3}$

B. $\frac{\Delta_2}{\Delta_1}$, $\frac{\Delta_3}{\Delta_1}$

C. $\log\left(\frac{\Delta_1}{\Delta_3}\right)$, $\log\left(\frac{\Delta_2}{\Delta_3}\right)$

D. $e^{\frac{\Delta_1}{\Delta_3}}$, $e^{\frac{\Delta_2}{\Delta_3}}$

Answer: D

Watch Video Solution

19. For the equation $\left|x^2-2x-3\right|=b$, which of the following statements is true?

B. For b = 0, there are three solutions

A. For b < 0, there are no solutions

C. For 0 < b < 4, there are two solutions

D. For b = 4, there are four solutions

Answer: A

Watch Video Solution

20. The converse of $p \Rightarrow (q \Rightarrow r)$ is

A. $(q \wedge -r) \vee p$

B. $(\neg q \lor r) \lor p$

C. $(q \wedge \neg r) \wedge \neg p$

D. $(q \wedge \neg r) \wedge p$

Answer: A

Watch Video Solution

21. If 4x+3y-12=0 touches $(x-p)^2+(y-p)^2=p^2$, then the sum of all the possible values of p is

22. If A and B are two events such that $P(A)=\frac{4}{7}, P(A\cap B)=\frac{3}{28}$ and the conditional probability $P\bigg(\frac{A}{A^c\cup B^c}\bigg)$ (where A^c denotes the compliment of the event A) is equal to λ , then the value of $\frac{26}{\lambda}$ is equal to

23. If the number of terms free from radicals in the expansion of $\left(7^{\frac{1}{3}}+11^{\frac{1}{9}}\right)^{6561}$ is k, then the value of $\frac{k}{100}$ is equal to

24. Let $y = \sqrt{x \log_e x}$. If the value of $\frac{dy}{dx}$ at $x = e^4$ is k, then the value of

$$4e^3k$$
 is (use e = 2.7)

25. If the value of the integral $I=\int_{rac{\pi}{4}}^{rac{\pi}{3}} ~ \max ~ (\sin x, \tan x) dx$ is equal to ln k, then the value of k^2 is equa to

