

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 49

Mathematics

1. If $C_0,C_1,C_2,\ldots,C_{20}$ are the binomial coefficients in the expansion of $(1+x)^{20}$, then the value $\frac{C_1}{C_0}+2\frac{C_2}{C_1}+3\frac{C_3}{C_2}+\ldots+19\frac{C_{19}}{C_{18}}+20\frac{C_{20}}{C_{10}}$ is

equal to (where C_r represetns . $^n C_r$)

- A. 120
- B. 210
- C. 180
- D. 240

Answer: B

Watch Video Solution

2. If one root is greater than 2 and the other root is less than 2 for the equation $x^2-(k+1)x+\left(k^2+k-8\right)=0$, then the value of k lies between

A.
$$(-2, 2)$$

B.
$$(-2, 4)$$

$$C.(-2,0)$$

D.
$$(-2, 3)$$

Answer: D

Watch Video Solution

3. If $a_1+a_5+a_{10}+a_{15}+a_{24}=225$, then the sum of the first 24 terms of the arithmetic progression $a_1,a_2,a_3...$ is equal to

A. 450

Answer: C

Watch Video Solution

4. The value of $2\alpha+\beta\Big(0<\alpha,\beta<\frac{\pi}{2}\Big)$, satisfying the equation $\cos\alpha\cos\beta\cos(\alpha+\beta)=-\frac{1}{8}$ is equal to

A.
$$\frac{5}{6}\pi$$

B.
$$\frac{\pi}{2}$$

$$\mathsf{C}.\,\pi$$

D.
$$\frac{7\pi}{12}$$

Answer: C

Watch Video Solution

5. A pole is situated at the centre of a regular hexagonal park. The angle of elevation of the top of the vertical pole when observed from each vertex of the hexagon is $\frac{\pi}{3}$. If the area of the circle circumscribing the hexagon is $27m^2$, then the height of the tower is

A.
$$3\sqrt{\frac{3}{\pi}}m$$

B.
$$\frac{3}{\sqrt{\pi}}m$$

C.
$$\sqrt{\frac{3}{\pi}}m$$

D.
$$\frac{9}{\sqrt{\pi}}m$$

Answer: D

Watch Video Solution

6. The value of

$$\lim_{n o\infty} \ rac{[x]+igl[2^2xigr]+igl[3^2xigr]+\ldots+igl[n^2xigr]}{1^2+2^2+3^2+\ldots+n^2}$$
 is equal to

(where [x] represents the greatest integer part of x)

A. x

B. 2x

$$\mathsf{C.}\;\frac{x}{2}$$

D.
$$\frac{x}{6}$$

Answer: A

7. Let
$$I=\int \frac{\cos^3 x}{1+\sin^2 x} dx$$
, then I is equal to (where c is the constant of integration)

A.
$$2 an^{-1}(x)+\sin x+c$$

B.
$$2 an^{-1}(\sin x) - \sin x + c$$

$$\mathsf{C.}\,2\tan^{-1}(x)-x+c$$

D.
$$2 an^{-1}(\sin x)+\sin x+c$$

Answer: B

Watch Video Solution

8. The slope of the tangent (other than the x - axis) drawn from the origin to the curve $y=\left(x-1
ight)^{6}$ is

A.
$$\frac{6^5}{5^4}$$

B.
$$-rac{6^5}{5^5}$$
C. $rac{6^5}{5^5}$

$$\mathsf{C.}~\frac{6^5}{5^5}$$

D.
$$-\frac{6^6}{5^5}$$

Answer: D

The maximum value of the expression 9. $\sin heta \cos^2 heta (\, orall heta \in [0,\pi])$ is

A.
$$\frac{2}{3}$$

B.
$$\frac{2}{\sqrt{3}}$$

B.
$$\frac{2}{\sqrt{3}}$$
C. $\frac{2}{3\sqrt{3}}$
D. $\frac{1}{\sqrt{3}}$

D.
$$\frac{1}{\sqrt{3}}$$

Answer: C

10. The area (in sq. units) bounded by $y=\left\{ \begin{matrix} e^x &: & x\geq 0 \\ e^{-x} &: & x\leq 0 \end{matrix} \right. \quad \text{with} \quad \text{the axis} \quad \text{from}$

$$x = -1$$
 to $x = 1$ is

- A. e
- B. 2e
- $\mathsf{C.}\,2e-2$
- D. 2e + 2

Answer: C

11. The slope of the tangent at any arbitrary point of a curve is twice the product of the abscissa and square of the ordinate of the point. Then, the equation of the curve is (where c is an arbitrary constant)

A.
$$x^2y + y + c = 0$$

B.
$$x^2y + cy + 1 = 0$$

C.
$$xy + y + c = 0$$

$$D. xy^2 + cy + y = 0$$

Answer: B

12. If the system of equations

3x + y + z = 1, 6x + 3y + 2z = 1 and

 $\mu x + \lambda y + 3z = 1$ is inconsistent, then

A.
$$\mu \neq 9, \lambda \neq 5$$

B. $\mu
eq 9, \lambda = 5$

C.
$$\mu=9, \lambda=5$$

D.
$$\mu=9, \lambda
eq 5$$

Answer: D

13. The probability of an event A is $\frac{4}{5}$. The probability of an event B, given that the event A occurs is $\frac{1}{5}$. The probability of event A, given that the event B occurs is $\frac{2}{3}$. The probability that neigher of the events occurs is

- A. $\frac{3}{25}$
- B. $\frac{2}{5}$
- $\mathsf{C.}\ \frac{1}{25}$
- D. $\frac{2}{15}$

Answer: A

14. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three vectors such that

$$\left|\overrightarrow{a}\right|=2,\left|\overrightarrow{b}\right|=1 \text{ and }\left|\overrightarrow{c}\right|=3.$$
 If the projection of \overrightarrow{b} along \overrightarrow{a} is double of the projection of \overrightarrow{c} along \overrightarrow{a} and \overrightarrow{b} , \overrightarrow{c} are perpendicular to each other, then $|\overrightarrow{b}| = 1$

the value of $\dfrac{\left|\overrightarrow{a}-\overrightarrow{b}+2\overrightarrow{c}\right|^2}{2}$ is equal to

$$C.\sqrt{14}$$

Answer: D

15. The distance of the point (2, 3, 2) from the plane

3x+4y+4z=23 measured parallel to the line

$$rac{x+3}{1} = rac{y-6}{-2} = rac{z-1}{1}$$
 is

- A. $\sqrt{108}$ units
- B. 12 units
- C. $\sqrt{54}$ units
- D. $\sqrt{236}$ units

Answer: C

16. Let the equations of the sides PQ, QR, RS and SP of

a quadrilateral PQRS are $x+2y-3=0,\,x-1=0,\,x-3y-4=0$ and

5x+y+12=0 respectively. If heta is the angle between the diagonals PR and QS, then the value of | an heta| is equal to

A. 2

 $\mathsf{B.}-2$

C. 1

D. Not defined

Answer: D

vateri video Solution

17. The locus of the point of intersection of the tangents at the extremities of a chord of the circle $x^2+y^2=r^2$ which touches the circle $x^2+y^2+2rx=0$ is

A.
$$y^2=2r\Big(x-rac{r}{2}\Big)$$

B.
$$y^2= \,-\,2r\Bigl(x+rac{r}{2}\Bigr)$$

C.
$$y^2=2r\Big(x+rac{r}{2}\Big)$$

D.
$$y^2=\,-\,2r\Bigl(x-rac{r}{2}\Bigr)$$

Answer: C

18. Two straight lines having variable slopes m_1 and m_2 pass through the fixed points (a,0) and (-a,0) respectively. If $m_1m_2=2$, then the eccentricity of the locus of the point of intersection of the lines is

- A. $\sqrt{2}$
- B. $\sqrt{3}$
- C. 2
- D. $\sqrt{\frac{3}{2}}$

Answer: B

19. For a complex number Z, if arg $Z=\frac{\pi}{4}$ and $\left|Z+\frac{1}{Z}\right|=4$, then the value of $\left||Z|-\frac{1}{|Z|}\right|$ is equal

to

- A. $\sqrt{14}$
- B. $\sqrt{18}$
- C. 4
- D. $\sqrt{12}$

Answer: A

20. In a factory, workers work in three shifts, say shift 1, shift 2 and shift 3 and they get wages in the ratio 3:4:8 depending on the shift 1, 2 and 3 respectively. Number of workers in the shifts are in the ratio 3:2:5. If the total number of workers working is 1500 and wages per worker in shift 1 is Rs. 300, then the mean wage of a worker is

- A. Rs. 460
- B. Rs. 520
- C. Rs. 570
- D. Rs. 420

Answer: C

21. The value of a+b such that the inequality $a \leq 5\cos\theta + 3\cos\left(\theta + \frac{\pi}{3}\right) + 3 \leq b$ holds true for all the real values of θ is (equality holds on both sides atleast once for real values of θ)

Watch Video Solution

22. If the line $y=-\frac{7}{2}$ is the directrix of the parabola $x^2-ky+8=0$, then the sum of all the possible values of k is equal to

23. Let A be a non - singular square matrix such that

 $A^2=A$ satisfying $\left(I-0.8A
ight)^{-1}=I-lpha A$ where I is a unit matrix of the same order as that of A, then the value of -4α is equal to

to

Watch Video Solution

24. Let

$$f(x) = egin{cases} \left(rac{1-\cos x}{\left(2\pi-x
ight)^2}
ight) \left(rac{\sin^2 x}{\log\left(1+4\pi^2-4\pi x+x^2
ight)}
ight) &: & x
eq 2\pi \ \lambda &: & x = 2\pi \end{cases}$$

is continuous at $x=2\pi$, then the value of λ is equal

25. If $\int_{20}^{40} \frac{\sin x}{\sin x + \sin(60 + x)} dx = k$, then the value of $\frac{k}{4}$ is equal to

