

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 63

Mathematics

1. The slopes of the tangents to the curve y=(x+1)(x-3) at the points where it cuts the x - axis, are m_1 and m_2 , then the value of m_1+m_2 is equal to

A. 8

B.-2

C. 2

Answer: D

Watch Video Solution

- **2.** How many 3×3 matrices M with entries from $\{0,1,2\}$ are there, for which the sum of the diagonal entries of M^TMis5 ? 126 (b) 198 (c) 162 (d) 135
 - A. 198
 - B. 126
 - C. 135
 - D. 162

Answer: A

3. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are perpendicular to \overrightarrow{b} + \overrightarrow{c} , \overrightarrow{c} + \overrightarrow{a} and \overrightarrow{a} + \overrightarrow{b}

$$a$$
 , b , c are perpendicular to $b+c$, $c+a$ and $a+b$

respectively and if
$$|\rightarrow\rangle$$

4. Let $f(x) = \int_0^x (t-1)(t-2)^2 dt$. If $f(x) \ge k$ for all x and for

(A) $5\sqrt{2}$ (B) 50 (C) $10\sqrt{2}$ (D) 10

Watch Video Solution

some k, then the set of exhaustive value of k is

A. $5\sqrt{5}$

B. 50

D. 10

Answer: D

C. $10\sqrt{2}$

respectively and if
$$\left|\overrightarrow{a} + \overrightarrow{b}\right| = 6, \left|\overrightarrow{b} + \overrightarrow{c}\right| = 8 \text{ and } \left|\overrightarrow{c} + \overrightarrow{a}\right| = 10, then \left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right|$$

3. If
$$a'$$
, b , c' are perpendicular to $b+c'$, $c'+a'$ and $a'+c'$

$$(\overrightarrow{b},\overrightarrow{c})$$
 are perpendicular to $\overrightarrow{b}+\overrightarrow{c},\overrightarrow{c}+\overrightarrow{a}$ and $\overrightarrow{a}+\overrightarrow{c}$

A.
$$(0, \infty)$$

B.(0,2)

 $C.(1,\infty)$

D.
$$\left(-\infty, -\frac{17}{12}\right]$$

Answer: D

5. If
$$y(x)$$
 is a solution of $\dfrac{dy}{dx}-\dfrac{xy}{1+x}=\dfrac{1}{1+x}$ and $y(0)=-1$, then the value of $y(2)$ is

A.
$$-\frac{1}{2}$$

$$A. - \frac{1}{2}$$

$$B. - \frac{1}{3}$$

$$C.-\frac{1}{4}$$

D.
$$-\frac{1}{5}$$

Answer: B

Watch Video Solution

- **6.** The area enclosed by the curve $y^2=x^4ig(1-x^2ig)$ is
 - A. $\frac{\pi}{6}$ sq. units
 - B. $\frac{\pi}{4}$ sq. units
 - C. $\frac{\pi}{3}$ sq. units
 - D. $\frac{\pi}{2}$ sq. units

Answer: B

Watch Video Solution

Let x_1, x_2, \ldots, x_n be n observation such that

$$\sum \left(x_i
ight)^2 = 400 \, ext{ and } \, \sum x_i = 40$$
, then a possible value of n among

the following is

A. 5

B. 1

C. 2

D. 3

Answer: A

- **8.** The line L given by $\frac{x}{5}+\frac{y}{b}=1$ passes through the point (13,32).the line K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$ then the distance between L and K is
 - A. $\frac{23}{\sqrt{15}}$ units
 - B. $\sqrt{17}$ units

A. $15^{\,\circ}$

B. 30°

C. 45°

D. $22\frac{1^{\circ}}{2}$

D. $\frac{23}{\sqrt{17}}$ units

C. $\frac{17}{\sqrt{15}}$ units

Answer: D

Watch Video Solution

If

then A =

10. P_1 and P_2 are corresponding points on the ellipse

$$rac{x^2}{16}+rac{y^2}{9}=1$$
 and its auxiliary circle respectively. If the normal at P_1

to the ellipse meets OP_2 in Q (where O is the origin), then the length of OQ is equal to

A. 3 units

B. 9 units

C. 4 units

D. 7 units

Answer: D

11. The direction ratios of the normal to the plane passing through

the points
$$(1,-2,3),(-1,2,-1)$$
 and parallel to the line $rac{x-2}{2}=rac{y+1}{3}=rac{z}{4}$ are proportional to

$$\mathsf{C.}-2,\,0,\,-1$$

$$D. 2, 0, -1$$

Answer: D

12. The line y=2x+c is tangent to the parabola $y^2-4y-8x=4$ at a point whose abscissa is lpha, then the ordered pair (lpha,C) isn

A.
$$\left(-\frac{1}{2},4\right)$$

B.
$$x=2$$

Answer: B

 $B.\left(-\frac{1}{2},5\right)$

D. $\left(-\frac{1}{2}, \frac{1}{2}\right)$

C.(4,5)

Watch Video Solution

equation
$$f(x) = f^{-1}(x)$$
 is

A.
$$x=1$$

$$\mathsf{C.}\,x=\frac{1}{2}$$

D. x = 3

Answer: A

13. Let $f(x)=x^2-x+1,\ \forall x\geq \frac{1}{2},$ then the solution of the

14. what are the truth values of
$$(\neg p \Rightarrow \neg q)$$
 and $\neg (\neg p \Rightarrow q)$ respectively, when p and q always speak true in any argument ?

D. F, T

Answer: A

Watch Video Solution

Let α , β and γ are the roots of 15. the equation $2x^2+9x^2-27x-54=0$. If $lpha,eta,\gamma$ are in geometric progression, then the value of $|\alpha| + |\beta| + |\gamma| =$

A.
$$\frac{19}{2}$$

B.
$$\frac{21}{2}$$

D. 11

Answer: B

Watch Video Solution

16. The value of $\lim_{n o\infty}\left(rac{e^{rac{1}{n}}}{n^2}+rac{2e^{rac{2}{n}}}{n^2}+rac{3e^{rac{3}{n}}}{n^2}+\ldots+rac{2e^2}{n}
ight)$ is

A.
$$e^2 - 1$$

$$\mathsf{B}.\,e^2+1$$

$$\mathsf{C.}\, 2e^2+1$$

D.
$$2e^2-1$$

Answer: B

17. The number of numbers, lying between 99 and 1000 that can be made from the digits 2, 3, 7, 0, 8 and 6 when the digits occur only once in each number, is

- A. 100
- B. 90
- C. 120
- D. 80

Answer: A

18. If z(1+a) = b + ic and $a^2 + b^2 + c^2 = 1$, then

$$[(1+iz)/(1-iz)=rac{a+ib}{1+c}$$
 b. $rac{b-ic}{1+a}$ c. $rac{a+ic}{1+b}$ d. none of these

- A. $\frac{a+ib}{1+c}$
- B. $\frac{b-ic}{1+c}$
- C. $\frac{a+ic}{1+b}$
- D. None of these

Answer: A

Watch Video Solution

- **19.** The value of $\lim_{x o \infty} \left(\frac{3x-4}{3x+2} \right)^{\left(\frac{x+1}{3} \right)}$ is
 - B. $e^{-2/3}$

A. $e^{-1/3}$

 $\mathsf{C.}\,e^{-1}$

D. e^{-2}

Answer: B

Watch Video Solution

- **20.** If x^y . $y^x=16$, then the value of $\dfrac{dy}{dx}$ at (2, 2) is
 - A. -1
 - B. 0
 - C. 1
 - D. None of these

Answer: A

21. The ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^n$ is $\sqrt{6}\colon 1$ If $n=\frac{20}{\lambda}$, then the value of λ is

Watch Video Solution

- **22.** Let A and B are two independent events such that $P(B)=\frac{1}{2}$ and $P(A\cap B)=\frac{1}{10}$, then the value of $9P\Big(\frac{\overline{A}}{A\sqcup B}\Big)$ is
 - Watch Video Solution

23. Find the number of common tangent to the circles

$$x^2 + y^2 + 2x + 8y - 23 = 0$$
 and $x^2 + y^2 - 4x - 10y + 9 = 0$

24. Let
$$A=egin{bmatrix} 0 & 2y & z \ x & y & -z \ x & -y & z \end{bmatrix}$$
 such that $A^TA=I$, then the value of

$$ig \lfloor x - y - z ig
brace x^2 + y^2 + z^2$$
 is

- **25.** If range of function $f(x)=\sin^{-1}x+2\tan^{-1}x+x^2+4x+1$ is [p,q], then the value of (p+q) is
 - Watch Video Solution