

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 66

Mathematics

1. Let x_1,x_2,\ldots,x_3 be n observations such that $\Sigma x_i^2=300$ and $\Sigma x_1=90$. Then a possible value of n among the following is

A. 25

B. 18

C. 29

D. 22

Answer: C

Watch Video Solution

2. The domain of the function $f(x)=\dfrac{1}{\sqrt{\left[x
ight]^2-\left[x
ight]-20}}$ is (where, $[.\,]$ represents the greatest integer function)

A.
$$(\,-\infty,\,-4)\cup[6,\infty)$$

B.
$$(-\infty,4]\cup[6,\infty)$$

$$\mathsf{C.}\,(\,-\infty,4)\cup(6,\infty)$$

D. None of these

Answer: A

Watch Video Solution

3. The value of $\lim_{x o \infty} \left\lceil \frac{e^2}{\left(1 + \frac{2}{x}\right)^x} \right
vert^x$ is equal to

A.
$$e^2$$

B.
$$e^{-1}$$

C.
$$e^{rac{1}{2}}$$

D.
$$e^{-rac{1}{2}}$$

Answer: A

Watch Video Solution

4. A person standing at the foot of a tower walks a distance of 3 meters from the tower and observes that the angle of elevation of the top of the tower is 30° . He then walks a distance 4 meters perpendicular to the previous direction and observes the angle of elevation to be β . Then, $\cos 2\beta$ is equal to

A.
$$\frac{\sqrt{3}}{2}$$

B.
$$\frac{1}{\sqrt{3}}$$
 C. $\frac{2}{\sqrt{3}}$

C.
$$\frac{2}{\sqrt{3}}$$

D.
$$\frac{11}{14}$$

Answer: D

Watch Video Solution

- **5.** 12 people are asked questions in succession in a random order and exactly 3 out of 12 people know the answer. The probability that the $6^{\rm th}$ person asked is the $2^{\rm nd}$ person to know the answer, is
 - A. $\frac{10}{21}$
 - B. $\frac{3}{22}$
 - c. $\frac{7}{11}$
 - $\mathsf{D.}\;\frac{5}{12}$

Answer: B

6. Let $P_1: x+y+2z-4=0$ and $P_2: 2x-y+3z+5=0$ be the planes. Let A(1,3,4) and B(3,2,7) be two points in space. The equation of a third plane P_3 through the line of intersection of P_1 and P_2 and parallel to AB is

A.
$$x - 4y - 2z + 3 = 0$$

B.
$$x - 4y - 2z + 9 = 0$$

C.
$$2x - 3y + 4z + 9 = 0$$

D.
$$3y + z - 13 = 0$$

Answer: D

Watch Video Solution

7. A point P moves such that the chord of contact of P with respect to the circle $x^2+y^2=4$ passes through the point (1, 1). The coordinates of P when it is nearest to the origin are

B.(2,2)

C.(3,3)

D. $(\sqrt{2}, \sqrt{2})$

Answer: B

Watch Video Solution

8. If A and B are square matrices of the same order such that

 $A=\,-\,B^{-1}AB$ then $(A+3B)^2$ is equal to

A. A+3B

B. $A^2 + 9B^2$

C. $A^2 + 6AB + AB^2$

D.O

Answer: B

9. The point P(2,1) is shifted through a distance of $3\sqrt{2}$ units measured perpendicular to the line x-y=1 in the direction of decreasing ordinates, to reach at Q. The image of Q with respect to be line y+x=1 is

A.
$$(3, -4)$$

B.
$$(-3, 2)$$

C.
$$(0, -1)$$

D.
$$(5, -2)$$

Answer: A

Watch Video Solution

value of $\lambda \in R$ such that The 10. $(x,y,z)
eq (0,0,) ext{ and } \Big(2\hat{i}+3\hat{j}-4\hat{k}\Big)x+\Big(3\hat{i}-\hat{j}+2\hat{k}\Big)y+\Big(i-2\hat{j}\Big)z=0$

lies in

- A. (1, 2)
- B. (2, 3)
- C. (3, 4)
- D. (0, 1)

Answer: C

Watch Video Solution

11. Let there be two prabolas $y^2=4x \ {
m and} \ y^2=-8x$. Then the locus of the mid - points of the intercepts between the parabolas made on the lines parallel to the common axis is

- A. $y^2=16x$
- $\mathrm{B.}\,x^2=16y$
- $\mathsf{C.}\,y^2=\,-\,8x$
- $\mathrm{D.}\,x^2=8y$

Watch Video Solution

12. If $z_1=2+3i, z_2=3-2i \ ext{and} \ z_3=-1-2\sqrt{3}i$, then which of the following is true? (where, $i^2=-1$)

A.
$$argigg(rac{z_2}{z_3}igg) = argigg(rac{z_2-z_1}{z_3-z_1}igg)$$

B.
$$argigg(rac{z_2}{z_3}igg)=argigg(rac{z_3}{z_1}igg)$$

C.
$$rac{1}{2} argigg(rac{z_2}{z_3}igg) = argigg(rac{z_2-z_1}{z_3-z_1}igg)$$

D.
$$2argigg(rac{z_3}{z_2}igg)=argigg(rac{z_3-z_1}{z_2-z_1}igg)$$

Answer: C

13. If
$$\left| \frac{x^2 + mx + 1}{x^2 + x + 1} \right| < 3$$
 for all real x, then

A.
$$m < -1$$

B. -1 < m < 6

C. -1 < m < 5

D. m > 6

Answer: C

Watch Video Solution

14. The arithmetic mean of two numbers is $18\frac{3}{4}$ and the positive square root of their product is 15. The larger of the two numbers is

A. 24

C. 20

B. 25

D. 30

Answer: D

15. The area (in sq. units) bounded by $x^2+y^2=1$ and the curve $y^2\geq x^2$, above the x - axis is

A.
$$\frac{1}{4}$$

$$\operatorname{B.}\frac{\pi}{4}$$

c.
$$\frac{1}{6}$$

D.
$$\frac{\pi}{6}$$

Answer: B

Watch Video Solution

16. If $0<\alpha<\frac{\pi}{16}$ and $(1+\tan\alpha)(1+\tan4\alpha)=2$, then the value of α is equal to

A.
$$\frac{\pi}{18}$$

$$\mathsf{B.}\;\frac{\pi}{20}$$

C.
$$\frac{\pi}{24}$$

D.
$$\frac{\pi}{30}$$

Answer: B

Watch Video Solution

17. If
$$f'ig(x^2-4x+3ig)>0$$
 for all $x\in(2,3)$ then f(sinx) is increasing on

A.
$$x\in(0,\pi)$$

B.
$$x \in \left(0, rac{\pi}{2}
ight)$$

C.
$$x \in \left(\pi, rac{5\pi}{4}
ight)$$

D.
$$x \in \left(rac{3\pi}{2}, 2\pi
ight)$$

Answer: D

18. If the value of the limit $\lim_{n\to\infty} \frac{1^{10}+2^{10}+\dots n^{10}}{n^{11}}$ is equal to K, then the value of $\left[\frac{1}{2K}\right]$ is equal to (where, $[.\,]$ represents the greatest integer function)

A. 4

B. 5

C. 10

D. 11

Answer: B

Watch Video Solution

19. The solution of the differential equation $y\cos x.\ dx = \sin x.\ dy + xy^2 dx$ is (where, c is an arbitrary constant)

$$A.\sin x = xy^2 + c$$

 $\mathtt{B.}\,2\sin x = x^2y + cy$

 $\mathsf{C.}\,2\sin x = xy^2 + c$

 $\mathsf{D.}\sin x = x^2y + cy$

Answer: B

Watch Video Solution

20. $5^2 5^4 5^6$ $5^{2x} = (0.04)^{-28}$,

A. 7

B. 5

C. 6

D. 3

Answer: A

21. If $\tan^{-1} \cdot \frac{x}{\pi} \leq \frac{\pi}{6}$, then the maximum value of $\sqrt{3}x$ is $(\mathrm{Use} \ \pi = 3.14)$

22. Let A be a square matrix of order 3, A^T be the transpose matrix of matrix A and $AA^T=4I$. If $d=\left|\frac{2A^T+AA^T+adjA}{2}\right|$, then the value of 12d is equal to (|A|<0)

23. Values of m, for which the line $y=mx+2\sqrt{5}$ is a tangent to the hyperbola $16x^2-9y^2=144$, are the roots of the equation $x^2-(a+b)x-4=0$, then the value of (a+b) is equal to

24. If $K=.^{11}\,C_2+2igl[.^{10}\,C_2+.^9\,C_2+.^8\,C_2+.^2\,C_2igr]$ then the value of $\frac{K}{100}$ is equal to

Watch Video Solution

25. Let $\int\!\!\!\sin(2x)\ln(\cos x)dx=f(x)\cos^2x+C$, (where, C is the constant of integration) and $f(0)=\frac{1}{2}$, If $f\left(\frac{\pi}{3}\right)$ is equal to $\frac{1}{a}+\ln b$, then the value of a+b is

