

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 69

Mathematics

1. Let $P_1: x+y+2z=3$ and $P_2: x-2y+z4$ be two planes. Let A(2,45) and B(4,3,8) be two points in space. The equation of plane P_3 through the line of intersection of P_1 and P_2 such that the length of the projection upon it of the line segment AB is the least, is

A.
$$2x - y + 3z = 7$$

B.
$$3y + z + 1 = 0$$

C.
$$x + 3y + z + 2 = 0$$

D.
$$3x - 3y + 4z - 11 = 0$$

Answer: A

Watch Video Solution

2. If
$$A=egin{bmatrix}1&1&3\\5&2&6\\-2&-1&-3\end{bmatrix}$$
, where $A^x=O$ (where, O is

a null matrix and $x < 15, x \in N$) then which of the following is true?

A. Greatest value of x is 13

- B. Sum of the values of x is 102
- C. Difference between the largest and the smallest value of x is 10
- D. Number of values of x is 7

Watch Video Solution

3. The area (in sq. units) bounded by $y=\max\left(\sin^2x,\sin^4x\right), x\in\left[0,rac{\pi}{2}
ight]$ with the x - axis, from x=0 to $x=rac{\pi}{2}$ is

A. π

- $\mathsf{B.}\;\frac{\pi}{2}$
- C. $\frac{\pi}{4}$
- D. $\frac{\pi}{6}$

Answer: C

Watch Video Solution

4. A box contains 1 black and 1 white ball. A ball is drawn randomly and replaced in the box with an additional ball of the same colour, then a second ball is drawn randomly from the box containing 3 balls. The probability that the first drawn ball was white given that at least one of the two balls drawn was white is

A.
$$\frac{1}{2}$$

$$\mathsf{B.}\;\frac{3}{4}$$

C.
$$\frac{4}{5}$$
D. $\frac{5}{11}$

Watch Video Solution

5. The number of real solution of
$$\cot^{-1}\sqrt{x(x+3)}+\sin^{-1}\sqrt{x^2+3x+1}=\frac{\pi}{2}$$
 is /are

B. 1

C. 2

D. infinite

Answer: A

Watch Video Solution

6. Suppose the family of lines ax+by+c=0 (where a, b, c are in artihmetic progression) be normal to a family of circles. The radius of the circle of the family which intersects the circle $x^2+y^2-4x-4y-1=0$ orthogonally is

A. $2\sqrt{2}$ units

B. 2 units

 $C. 3\sqrt{2}$ units

D. 4 units

Answer: A

Watch Video Solution

7. If the function $f(x)=rac{\sin 3x+a\sin 2x+b}{x^3}, x
eq 0$ is continuous at x=0 and $f(0)=K, \, orall K\in R$, then b-a is equal to

A. 4

 $\mathsf{B.}\;\frac{5}{2}$

C. 5

D.
$$\frac{3}{2}$$

Answer: D

Watch Video Solution

8. If x = 6 and y = -2 then x - 2y = 9. The contrapositive of this statement is

A. If $x-2y \neq 9$ then $x \neq 6 \,\, {
m or} \,\, y \neq \,\, -2$

B. If x-2y
eq 9 then x
eq 6 and y
eq -2

C. If x-2y=9 then x=6 and y=-2

D. None of these

Answer: A

- **9.** The point on the ellipse $16x^2 + 9y^2 = 400$, where the ordinate decreases at the same rate at which the abscissa increases is (a, b), then a+3b can be
 - A. 16
 - B. 19
 - C. 6
 - D. 9

10. The integral $I=\int_{e}^{e+1} \frac{1+x^2}{1+x^3} dx$ satisfies

A.
$$I>2$$

 $\mathrm{B.}\,I>e$

C. I < 0

D. I < 1

Answer: D

Watch Video Solution

11. The following system of equations

5x - 7y + 3z = 3, 5x + y + 3z = 7 and 5x + 3y + 2z = 5

is

- A. Consistent with trivial solution
- B. Consistent with a unique non trivial solution
- C. Consistent with infinite solutions
- D. Inconsistent with no solution

Watch Video Solution

12. The order of the differential equation of the family of curves $y=rac{a}{c}\sin(bx)+3^{dx}$ where a, b, c, d are arbitrary constants is

A. 4

- B. 3
- C. 2
- D. 1

Watch Video Solution

13. The sum of the rational terms in the expansion of

$$\left(\sqrt{2}+\sqrt[5]{3}
ight)^{10}$$
 is

- A. 31
- B. 41
- C. 51

Watch Video Solution

14. A committee of 12 members is to be formed from 9 women and 8 men. The number of ways of forming the committee with women in majority is

A. 1008

B. 2702

C. 6062

D. 2352

Watch Video Solution

15. If both the roots of the equation $4x^2-2x+m=0$

lie in the interval
$$(-1, 1)$$
, then

A.
$$-3 < m < -2$$

$$\mathsf{C.}\, 2 < m < \frac{5}{2}$$

$$\mathsf{D.} - 2 < m \leq \frac{1}{4}$$

Answer: D

16. The number of solutions in the interval $[0,\pi]$ of the equation $\sin^3 x \cos 3x + \sin 3x \cos^3 x = 0$ is equal to

- A. 7
- B. 6
- C. 5
- D. 4

Answer: C

17. Let A(2,0) and B(-2,0) are two fixed vertices of ΔABC . If the vertex C moves in the first quadrant in such a way that $\cot A + \cot B = 2$, then the locus of the point C is

A.
$$y = 2$$

$$B. x = 4$$

$$\mathsf{C}.\,x=2$$

D.
$$y = 1$$

Answer: A

18. For two data sets, each with size 5, the variances are given to be 3 and 4 and the corresponding means are given 2 and 4, respectively. The variance of the combined data set is

- A. $\frac{11}{2}$
- $\mathsf{B.}\;\frac{9}{2}$
- $\mathsf{C.}\,\frac{13}{2}$
- D. $\frac{5}{2}$

Answer: B

19. If a tangent having slope 2 of the ellipse

$$rac{x^2}{a^2}+rac{y^2}{b^2}=1$$
 is normal to the circle $x^2+y^2+bx+1=0$, then the vlaue of $4a^2+b^2$ is equal to

A. 4

B. 2

C. 16

D. 8

Answer: C

20. If $lpha, eta \in C$ are the distinct roots of the equation

$$x^2-x+1=0$$
, then $lpha^{101}+eta^{107}$ is equal to

- A. 2
- B. 1
- C. 0
- D. 1

Answer: D

Watch Video Solution

21. The volume of a tetrahedron determined by the vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} is $\frac{3}{4}$ cubic units. The volume (in cubic

units) of a tetrahedron determined by the vectors

$$3igg(\overrightarrow{a} imes\overrightarrow{b}igg), 4igg(\overrightarrow{b} imes cigg) \ ext{and} \ 5igg(\overrightarrow{c} imes\overrightarrow{a}igg) \ ext{will be}$$

22. The value of
$$\lim_{x \to 0} \left(\frac{(1-\cos 4x)(5+\cos x)}{x \tan 5x} \right)$$
 is equal to

23. If
$$I=\int \frac{1+x^4}{(1-x^4)^{\frac{3}{2}}}dx=\frac{1}{\sqrt{f(x)}}+C$$
 (where, C is the constant of integration) and $f(2)=\frac{-15}{4}$, then the value of $2f\left(\frac{1}{\sqrt{2}}\right)$ is

watch video Solution

24. If x,y are positive real numbers and 3x+4y=5, then the lagest possible value of $16x^2y^3$ is

Watch Video Solution

25. Let the radius of the circle touching the parabola $y^2=x$ at (1, 1) and having the directrix of $y^2=x$ at (1, 1) and having the directrix of $y^2=x$ as its normal is equal to $k\sqrt{5}$ units, then k is equal to

