

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 71

Answer: A

2. If the numbers 3^{2a-1} , 14, $3^{4-2a}(0 < a < 1)$ are the first three terms of an arithmetic progression, then its fifth term is equal to

A. 33

B. 43

C. 53

D. 63

Answer: C

3. If
$$y = \sin^{-1} \left(rac{2x}{1+x^2}
ight), ext{then} rac{dy}{dx}$$
 is equal to

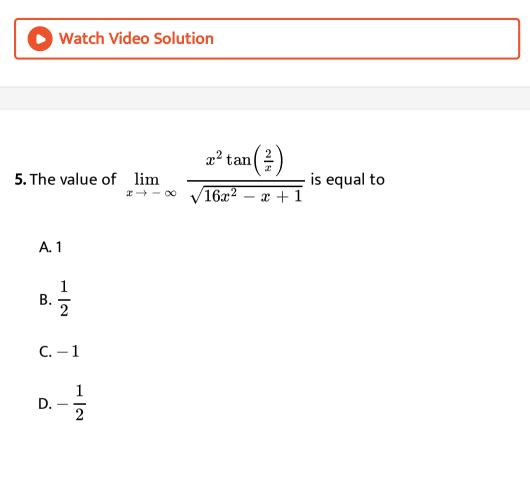
A.
$$\displaystyle rac{-2}{1+x^2}$$
 for all x
B. $\displaystyle rac{2}{1+x^2}$ for all $|x|<1$
C. $\displaystyle rac{2}{1+x^2}$ for all $|x|>1$

D. None of these

Answer: B

4. The domain of the function $f(x) = \log_3 ig[1 - \log_6 ig(x^2 - 7x + 16 ig) ig]$

is


A. (2, 5)

 $B.(\infty,5)$

 $\mathsf{C}.[2,\infty)$

 $\mathsf{D}.\,[2,\,5]$

Answer: A

Answer: D

6. The compound statement $(p
ightarrow {}^{\sim} q) \lor (p \land q)$ is logically equivalent

A. $p \Leftrightarrow q$

 $\mathsf{B.}\,p\wedge q$

C. Tautology

D. Contradication

Answer: C

Watch Video Solution

7. The angular elevation of tower CD at a point A due south of it is 60° and at a point B due west of A, the elevation is 30° . If AB = 5 km, then the height of the tower is (where, C, B and A are on the same ground level)

A. $2\sqrt{3}km$

B. $2\sqrt{6}km$

C.
$$\frac{5\sqrt{3}}{2}km$$

D.
$$\frac{5\sqrt{3}}{2\sqrt{2}}km$$

Answer: D

Watch Video Solution

8. If
$$x = \sin(2\tan^{-1}2\sqrt{3})$$
 and $y = \sin(\frac{1}{2}\tan^{-1}, \frac{12}{5})$, then

A.
$$x = 1 - y$$

B.
$$x^2=1-2y$$

C.
$$x^2=1+y$$

D.
$$y^2=rac{x}{\sqrt{3}}$$

Answer: D

9. The points on the curve $f(x)=rac{x}{1-x^2}$, where the tangent to it has slope equal to unity, are $(x_1,y_1),(x_2,y_2)$ and $(x_3,y_3).$ Then, $x_1+x_2+x_3$ is equal to

A. 0

B.
$$\frac{\sqrt{3}}{2}$$

C. $\frac{\sqrt{3}}{4}$

D. $\sqrt{3}$

Answer: A

Watch Video Solution

10. Which of the following statements is correct?

A. If f(x) is an odd function, then $g(x) = \int_a^x f(t) dt$ is an even

function.

B. If f(x) is an odd function, then $g(x) = \int_a^x f(t)dt$ is also odd. C. If f(x) is a periodic function, then $g(x) = \int_a^x f(t)dt$ is also periodic.

D. If f(x) is periodic, then $g(x) = \int_{a}^{x} f(t)dt$ is always non - periodic.

Answer: A

Watch Video Solution

11. The area (in sq. units) bounded between the curves $y = e^x \cos x$ and $y = e^x \sin x$ from $x = \frac{\pi}{4}$ to $x = \frac{\pi}{2}$ is A. $\frac{e\pi}{2}$

B.
$$\frac{e^{\frac{\pi}{4}}}{\sqrt{2}}$$

C. $\frac{e^{\lambda}}{\sqrt{2}}$
D. $\frac{e^{\lambda}}{2}$

Answer: B

12. The curve passing through
$$Pig(2,rac{7}{2}ig)$$
 and having place $1-rac{1}{x^2}$ at P

(x,y) also passes through

A.
$$\left(-2, \frac{2}{3}\right)$$

B. $\left(-2, -\frac{3}{2}\right)$
C. $(-2, 1)$
D. $(-2, 6)$

Answer: B

13. A bag contains 2 red, 3 white and 5 black balls, a ball is drawn its colour is noted and replaced. If the probability of getting a red ball for the first time at the n^{th} trial is atleast $\frac{2}{25}$, then the greatest value of n is equal to

A. 4 B. 5 C. 6

Answer: B

D. 7

Watch Video Solution

14. If a, b, c are non - zero real numbers, the system of equations

y+z=a+2x, x+z=b+2y, x+y=c+2z is consistent and

 $b=4a+rac{c}{4},$ then the sum of the roots of the equation $at^2+bt+c=0$ is

A. 3

B. 2

 $\mathsf{C}.-2$

 $\mathsf{D.}-3$

Answer: D

Watch Video Solution

15. Let A be a matrix of order 3 such that $A^2=3A-2I$ where, I is an

identify matrix of order 3. If $A^5=lpha a+eta I$, then lphaeta is equal to

A. 2025

 $\mathsf{B.}-2025$

C. - 930

D. - 640

Answer: C

Watch Video Solution

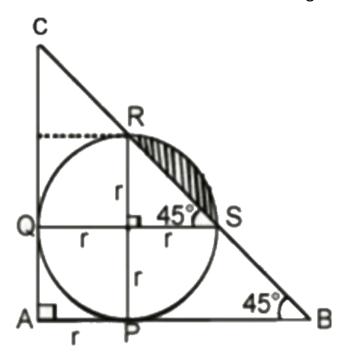
16. A line L lies in the plane 2x - y - z = 4 such that it is perpendicular to the line $\frac{x-2}{2} = \frac{y-3}{1} = \frac{z-4}{5}$. The line L passes through the point of intersection of the given line and given plane. Which of the following points does not satisfy line L?

A.
$$\left(-5, -\frac{1}{2}, -\frac{27}{2}\right)$$

B. $(3, 1, 6)$
C. $\left(0, \frac{29}{2}, \frac{-37}{2}\right)$
D. $\left(-4, \frac{5}{2}, \frac{-29}{2}\right)$

Answer: B

17. A line 4x + y = 1 passes through the point A(2,-7) and meets line BC at B whose equation is 3x - 4y + 1 = 0, the equation of line AC such that AB = AC is (a) 52x +89y +519=0(b) 52x +89y-519=0 c) 82x +52y+519=0 (d) 89x +52y -519=0


A.
$$-\frac{519}{52}$$

B. $\frac{519}{52}$
C. $-\frac{519}{89}$
D. $\frac{519}{89}$

Answer: A

18. ABC is a right triangle, right - angled at the vertex A. A circle is drawn to touch the sides AB and AC at points P and Q respectively

such that the other end points of the diameters passing through P and Q lie on the side BC. IF AB = 6 units, then the area (in sq. units) of the circular sector which lies inside the triangle is

A. $3\pi + 2$

 $\mathrm{B.}\,\pi+3$

 $\mathsf{C}.\,\pi-2$

 $\mathsf{D.}\,\pi+2$

Answer: A

19. If e_1 and e_2 are the eccentricities of the ellipse $\frac{x^2}{18} + \frac{y^2}{4} = 1$ and the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$ respectively and (e_1, e_2) is a point on the ellipse $15x^2 + 3y^2 = k$, then the value of k is equal to

- A. 16
- B. 17
- C. 15
- D. 14

Answer: A

20. Two points P and Q in the argand plane represent the complex numbers z and 3z + 2 + u. If |z| = 2, then Q moves on the circle, whose centre and radius are (here, $i^2 = -1$)

A. -2 + i, 6B. 2 - i, 3C. 2 + i, 6D. 2 + i, 2

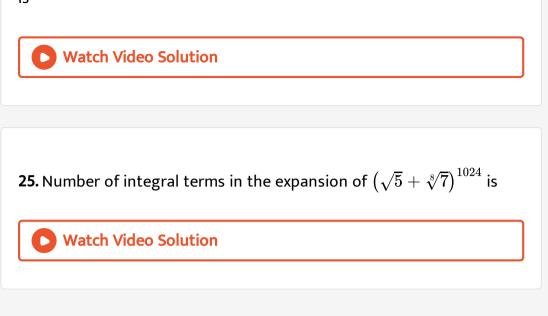
Answer: C

Watch Video Solution

21. Let AB is the focal chord of a parabola and D and C be the foot of the perpendiculars from A and B on its directrix respectively. If CD = 6 units and area of trapezium ABCD is 36 square units, then the length (in units) of the chord AB is

22. A total of 6 Boys and 6 girls are to sit in a row alternatively and in a circle. Let m be the number of arrangements in the row and n be the number of arrangements in the circle. If $k = \frac{m}{10_n}$, then the value of k is

> Watch Video Solution


23. Let

$$\overrightarrow{a} = \hat{i} + 2\hat{j} + 3\hat{i}, \quad \overrightarrow{b} = \hat{i} - \hat{j} + 2\hat{k} \text{ and } \quad \overrightarrow{c} = (x - 2)\hat{i} - (x - 3)\hat{j} - \hat{k}$$

. If \overrightarrow{c} lies in the plane of \overrightarrow{a} and \overrightarrow{b} , then $\frac{1}{x}$ is equal to

Watch Video Solution

24. If
$$I=\int\!\!\frac{dx}{x^2\sqrt{1+x^2}}=rac{f(x)}{x}+C,$$
 $(\,orall\,x>0)$ (where, C is the

constant of integration) and $f(1)= -\sqrt{2}$, then the value of $\left|f\left(\sqrt{3}
ight)
ight|$

