

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 73

Mathematics

1.	The	value	of
$(n+2).^nC_0.2^{n+1}$ –	$-(n+1).^nC_1.2^n+(n).$	$C_1 \cdot C_2 \cdot 2^{n-1} - \dots$ to	o $(n+1)$
terms is equal to			

A. 4

B. 4n

 $\mathsf{C.}\,4(n+1)$

 $\mathsf{D.}\,2(n+2)$

Watch Video Solution

2. Let a, b and c satisfy the system of equations

a + 2b + 3c = 6, 4a + 5b + 6c = 12 rad 6a + 9b = 4. If the roots of

the equation $(a+b+c)x^2-abcx$ are lpha and

$$eta + \left(a^{-1} + b^{-1} + c^{-1}
ight) = 0$$
 then $rac{1}{lpha} + rac{1}{eta}$ is equal to

- A. 243
- B. 100
- c. $\frac{243}{12}$
- D. $\frac{100}{243}$

Answer: D

3. If
$$a,b,andc$$
 are in A.P. and one root of the equation $ax^2+bc+c=0is2,$ the find the other root.

A.
$$\frac{3}{4}$$

$$\mathsf{B.}-\frac{3}{4}$$

C.
$$-\frac{5}{4}$$
D. $-\frac{5}{2}$

Answer: C

4. If
$$\sin^6 \theta + \cos^6 \theta + k \cos^2 2\theta = 1$$
, then $k =$

A.
$$\frac{1}{2} \tan^2 2\theta$$

B.
$$\frac{1}{4} \tan^2 2\theta$$

C.
$$4\cot^2 heta$$

D.
$$\frac{3}{4}\tan^2 2\theta$$

Answer: D

Watch Video Solution

- **5.** Let f(x)=|x| and g(x)=[x], (where [.] denotes the greatest integer function) Then, (fog)'(-1) is
 - A. 0
 - B. does not exist
 - $\mathsf{C.}-1$
 - D. 1

Answer: B

Watch Video Solution

6. The length of the radius of the circle which touches the x - axis at the point (1,0) and passes through the point (2,3) is

$$\frac{0}{1}$$
 uni

A. $\frac{10}{3}$ units

B. $\frac{3}{5}$ units

C. $\frac{6}{5}$ units

D. $\frac{5}{3}$ units

Answer: D

Watch Video Solution

7. Let $x_1, x_2, \ldots x_n$ be observations such that n $\Sigma x_i^2 = 500 \, ext{ and } \, \Sigma x_1 = 100.$ Then, an impossible value of n among the

A. 24

following is

B. 18

C. 29

D. 22

Answer: B

8. Two vertical poles AL and BM of height 25 m and 100 m respectively stand apart on a horizontal plane. If A, B be the feet of the poles and AM and BL intersect at P, then the height of P from the horizontal plane is equal to

- A. 20 m
- B. 18 m
- C. 16 m
- D. 15 m

Answer: A

9. A multiple - choice question has 5 options of which only one is correct.

If a student does home work, then he is sure to identify the correct answer, otherwise the answer is chosen at random. Let A ne the event that the student does his home work and B be the event that the student answers correctly. If $P(A)=\frac{2}{3}$, then $P\Big(\frac{A}{B}\Big)$ is euqal to

- A. $\frac{10}{11}$
- $\mathsf{B.}\;\frac{4}{5}$
- c. $\frac{3}{7}$
- $\mathsf{D.}\;\frac{6}{7}$

Answer: A

- **10.** If the line $\frac{x-1}{1} = \frac{y-k}{-2} = \frac{z-3}{\lambda}$ lies in the plane
- 3x+4y-2z=6, then $5|k|+3|\lambda|$ is equal to

- $\mathsf{B.}\ \frac{75}{4}$ C. 15
- D. $\frac{5}{2}$

Answer: B

Watch Video Solution

If

- 11.
- $a_1^2+a_2^2+a_3^2=1, b_1^2+b_2^2+b_3^2=4, c_1^2+c_2^2+c_3^2=9, a_1b_1+a_2b_2+a_3b_3=$
- , then $\left|A\right|^4$ is equal to
 - A. 36
 - B. 49
 - C. 1296
 - D. 216

Answer: C

Watch Video Solution

12. The number of ways of selecting two distinct numbers from the first 15 natural numbers such that their sum is a multiple of 5, is equal to

- A. 20
- B. 36
- C. 21
- D. 16

Answer: C

Watch Video Solution

13. The number of possible straight lines passing through point(2,3) and forming a triangle with coordinate axes whose area is 12 sq. unit is: a. one

b. two c. three d. four A. 1 B. 2 C. 3 D. 4 **Answer: C** Watch Video Solution **14.** If p and q are logical statements, then $(p \wedge q) o (p o q)$ is equivalent to A. $p \wedge q$ B. p o (p ee q) $\mathsf{C}.\, p \vee q$ $\mathsf{D}.\,(p\vee q)\,\leftrightarrow\,(p\wedge q)$

Answer: B

Watch Video Solution

15. The curve having differential equation, $x\cos y\frac{dy}{dx}+\sin y=x$ and passing through the origin, also passes through

A.
$$\left(2, \frac{\pi}{2}\right)$$

B.
$$\left(-2, \frac{\pi}{2}\right)$$

$$\mathsf{C.}\left(4,\,\frac{3\pi}{2}\right)$$

D.
$$\left(-8, \frac{3\pi}{2}\right)$$

Answer: A

Watch Video Solution

16. If z_1,z_2 and z_3 are the vertices of a triangle in the argand plane such that $|z_1-z_2|=|z_1-z_3|$, then $\left|arg\left(\frac{2z_1-z_2-z_3}{z_3-z_2}\right)\right|$ is

where a+b is equal to

A.
$$e^2$$

А. е

A. $\frac{\pi}{3}$

B. 0

C. $\frac{\pi}{2}$

D. $\frac{\pi}{6}$

Answer: C

B.
$$e^2+1$$

C. e + 1

D. $2e^2$

Answer: A

17. The range of the function $f(x) = x^2 \ln(x)$ for $x \in [1,e]$ is [a,b],

Consider
$$I_1 = \int_{10}^{20} \frac{\ln x}{\ln x + \ln(30-x)} dx$$

and

$$I_2=\int_{20}^{30}rac{\ln x}{\ln x+\ln(50-x)}dx.$$
 Then, the value of $rac{I_1}{I_2}$ is

A. 10

B. 2

C. 1

D. $\frac{1}{2}$

Answer: C

Watch Video Solution

between the curve $y^2=x$ is equal to

19. The length of the intercept cut by the line $4x + 4\sqrt{3}y - 1 = 0$

A. 4

21. Let an ant starts from the origin (O) and travels 2 units on negative x - axis, 3 units on positive y - axis and travels 3 units on negative z - axis to reach at point A. If $\overrightarrow{a} = \hat{i} - 3\hat{j} + 2\hat{k}$ and \overrightarrow{b} be such that the resultant of \overrightarrow{a} and \overrightarrow{b} is $3\hat{i} - 4\hat{j} + \hat{k}$, then $\left|\overrightarrow{OA} \times \left(\overrightarrow{a} \times \overrightarrow{b}\right)\right|^2$ is equal to

Watch Video Solution

22. The ellipse E_1 : $\frac{x^2}{9} + \frac{y^2}{4} = 1$ is inscribed in a rectangle R whose sides are parallel to the coordinates axes. Another ellipse E_2 passing through the point (0, 4) circumscribes the rectangle R. The length (in units) of the major axis of ellipse E_2 is

Watch Video Solution

23. Let $I=\int\!\!\frac{dx}{\left(\cos x-\sin x^2\right)}=\frac{1}{f(x)}+C$ (where, C is the constant of integration). If $f\!\left(\frac{\pi}{3}\right)=1-\sqrt{3}$, then the number of solution(s) of

Watch Video Solution

24. If the function $f(x) = \cos^{-1} \left(x^{rac{3}{2}} - \sqrt{1 - x - x^2 + x^3} \right) (ext{ where, } orall 0 < x < 1),$ then the value of $\left|\sqrt{3}f'\left(\frac{1}{2}\right)\right|$ is equal to $\left(\mathrm{take}\ \sqrt{3}=1.73\right)$

Watch Video Solution

25. Let three positive numbers a, b c are in geometric progression, such that a, b+8, c are in arithmetic progression and a,b+8,c+64 are in geometric progression. If the arithmetic mean of a, b, c is k, then $\frac{3}{12}k$ is equal to

