

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 76

Mathematics

1. The domain of the fuction
$$f(x) = 2\sin^{-1}\Bigl\{\log_2\Bigl(rac{1}{2}x^2\Bigr)\Bigr\}$$
 is

A.
$$[-2, -1] \cup (1, 2]$$

B.
$$(-2, -1] \cup [1, 2]$$

$$C.[-2, -1] \cup [1, 2]$$

D.
$$(-2, -1) \cup (1, 2)$$

Answer: C

2. Which of the following is a function whose graph is symmetrical about the origin ?

A.
$$f(x)=\left(2^x+2^{-x}
ight)$$

B.
$$f(x) = \left[\log\!\left(x + \sqrt{1 + x^2}
ight)
ight]^2$$

C.
$$f(x+y) = f(x) + f(y) \, orall x, y \in R$$

D. None of these

Answer: C

Watch Video Solution

3. Let the function $f(x)=x^2\sin\left(\frac{1}{x}\right),\ \forall x\neq 0$ is continuous at x = 0.

Then, the vaue of the function at x = 0 is

A. 0

C. 1
D. indeterminate
Answer: A
Watch Video Solution
4. All the students of a class performed poorly in Mathematics. The
teacher decided to give grace marks of 12 to the entire class. Which of the
following statistical measures will not change even after the grace marks
were given?
A. Median
B. Mode
C. Variance
D. Mean

B. - 1

Answer: C

Watch Video Solution

- **5.** If p,q and r are simple propositions with truth values T,F and T , respectively, then the truth value of $(\neg p \lor q) \land \neg r \to p$ is
 - A. True if the truth values of p, q, r are T,F,T respectively
 - B. False if the truth values of p, q, r are T,F,T respectively
 - C. False if the truth values of p, q, r are T,F,F respectively
 - D. True if the truth values of p, q, r are F,T,F respectively

Answer: A

Watch Video Solution

6. A bag contains 5 white balls, 3 black balls, 4 yellow balls. A ball is drawn from the bag, its colour is noted and put back into the bag with 5

additional balls of the same colour. The process is repeated. The probability that a yellow ball is drawn in the $1^{\rm st}$ draw given that a white ball is drawn in the $2^{\rm nd}$ draw is

- A. $\frac{9}{55}$
- $\mathsf{B.}\;\frac{4}{17}$
- $\mathsf{C.}\,\frac{1}{5}$
- $\mathsf{D.}\;\frac{2}{11}$

Answer: B

Watch Video Solution

angle 60° with L, then the length of PQ is

7. Let $P(1,7,\sqrt{2})$ be a point and the equation of the line L is $\frac{x-1}{\sqrt{2}}=\frac{y-7}{1}=\frac{z-\sqrt{2}}{-1}.$ If PQ is the distnace of the plane $\sqrt{2}x+y-z=1$ from the point P measured along a line inclined at an

A. 3 units

B. $3\sqrt{2}$ units

C. 6 units

D. 8 units

Answer: C

Watch Video Solution

8. Let $x=\begin{bmatrix}2&1\\0&3\end{bmatrix}$ be a matrix. If $X^6=\begin{bmatrix}a&b\\c&d\end{bmatrix}$, then the number of divisors of (a+b+2020c+d) is equal to

A. 7

B. 14

C. 21

D. 28

Answer: B

Watch Video Solution

9. Let
$$A=egin{bmatrix} x&2&-3\ -1&3&-2\ 2&-1&1 \end{bmatrix}$$
 be a matrix and $|adj(adjA)|=(12)^4$, then

the sum of all the values of x is equal to

A. - 24

B. 24

C. - 18

D. 1

Answer: C

Watch Video Solution

10. Let the coordinates of two points P and Q be (1, 2) and (7, 5) respectively. The line PQ is rotated thorugh 315° is clockwise direction about the point of trisection of PQ which is nearer to Q. The equation of the line in the new position is

A.
$$2x - y - 6 = 0$$

B.
$$x - y - 1 = 0$$

C.
$$3x - y - 11 = 0$$

D.
$$3x - y - 9 = 0$$

Answer: C

Watch Video Solution

11. If the circles $(x-3)^2+(y-4)^4=16$ and $(x-7)^2+y-7\Big)^2=9$ intersect at points A and B, then the area (in sq. units) of the quadrilateral C_1AC_2B is equal to (where, C_1 and C_2 are centres of the given circles)

A. 6

B. 12

C. 18

D. 24

Answer: B

Watch Video Solution

12. If the eccentricity of the hyperbola $x^2-y^2\sec^2\alpha=5$ is $\sqrt{3}$ times the eccentricity of the ellipse $x^2\sec^2\alpha+y^2=25$, then $\tan^2\alpha$ is equal to

- A. 2
- B. 1
- C. 3
- D. $\frac{1}{2}$

Answer: B

Watch Video Solution

13. Number of complex numbers satisfying equation $z^3 = \bar{z} \& arg(z+1) = \frac{\pi}{4} \text{ simultaneously is}$

B.1 + 2i

 $\mathsf{C.}\,2+3i$

 $\mathsf{D.}\,3+4i$

Answer: A

Watch Video Solution

14. The coefficient of x^6 in $\left\{(1+x)^6+(1+x)^7+......+(1+x)^{15}\right\}$

is

A. $.^{16}$ C_9

B. $.^{16}$ C_5 - $.^{16}$ C_5

 $\mathsf{C..}^{16}\ C_6-1$

Answer: A

D. . 16 C_6

15. The position vector of a point P is $\overrightarrow{r}=x\hat{i}+y\hat{j}+z\hat{k}$ where $x,y,z\varepsilon N$ and $\overrightarrow{a}=\hat{i}+\hat{j}+\hat{k}$. If \overrightarrow{r} . $\overrightarrow{a}=10$, then the number of possible position of P is

- A. 36
- B. 72
- C. 66
 - D. 54

Answer: A

Watch Video Solution

16. If the equation $2x^2-7x+9=0$ and $ax^2+bx+18=0$ have a common root, then $(a,b\in R)$

A.
$$a = 2, b = -7$$

$$b = -$$

$$\mathtt{B.}\,a=\frac{-7}{2},b=1$$

C.
$$a = 4, b = -14$$

D.
$$a = 4, b = -7$$

Answer: C

Watch Video Solution

17. Consider the integral $I_n = \int_0^{\frac{n}{4}} \frac{\sin(2n-1)x}{\sin x} dx$, then the value of $I_{20} - I_{19}$ is

$$\mathsf{A.}\;\frac{1}{20}$$

B.
$$\frac{-1}{19}$$

c.
$$\frac{-1}{25}$$

D.
$$\frac{1}{19}$$

Answer: B

18. The area (in sq. units) bounded between
$$y=3\sin x$$
 and $y=-4\sin^3 x$ from $x=0$ to $x=\pi$ is

19. If f(x) is a differentiable function satisfying $|f'(x)| \leq 2 \, \forall x \in [0,4]$

A.
$$4\pi$$

B.
$$34\pi$$

D.
$$\frac{34}{3}$$

Answer: D

Watch Video Solution

- and f(0) = 0, then
 - A. f(x) = 18 has no solution in $x \in [0, 4]$

B. f(x)=18 has more than 2 solutions in $x\in[0,4]$

C. f(x) = 14 has 3 solutions in $x \in [0, 4]$

D. f(x) = 20 has 2 solutions in $x \in [0, 4]$

Answer: A

Watch Video Solution

20. The equation of the curve satisfying the differential equation

$$rac{dy}{dx}+rac{y}{x^2}=rac{1}{x^2}$$
 and passing through $\left(rac{1}{2},e^2+1
ight)$ is

A.
$$y=e^x+1$$

B.
$$y=e^{rac{1}{x}}-1$$

$$\mathsf{C.}\,y = 1 + e^{\frac{1}{x}}$$

D.
$$y = 1 + e^{-x}$$

Answer: C

Watch Video Solution

21. If from the top of a tower, 60 meters high, the angles of depression of the top an floor of a house are 3° and 60° respectively, then the height (in meters) of the house is

Watch Video Solution

22. Let \overrightarrow{p} , \overrightarrow{q} , \overrightarrow{r} , \overrightarrow{s} are non - zero vectors in which no two of them are perpenedicular and no three of them coplanar. are

perpenedicular and no three of them are coplanar. If
$$\left(\overrightarrow{p}\times\overrightarrow{r}\right).\left(\overrightarrow{p}\times\overrightarrow{s}\right)+\left(\overrightarrow{r}\times\overrightarrow{p}\right).\left(\overrightarrow{q}\times\overrightarrow{s}\right)=k\Big[\left(\overrightarrow{p}\times\overrightarrow{q}\right).\left(\overrightarrow{s}\times\overrightarrow{r}\right)\Big]$$

, then the value of $\frac{k}{2}$ is equal to

Watch Video Solution

23. A point P on the parabola $y^2=4x$, the foot of the perpendicular from it upon the directrix and the focus are the vertices of an equilateral triangle. If the area of the equilateral triangle is β sq. units, then the value of β^2 is

24. Let the sets $A=\{2,4,6,8.\dots\}$ and $B=\{3,6,9,12\dots\}$ such that n(A)=200 and n(B)=250. If $n(A\cup B)=k$, then $\frac{k}{100}$ is equal to

25. The area (in sq. units) bounded by the curve $e^xy-2=0$ with the x - axis from x = 0 to x = ln 2 is

