

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 78

1. If the 6th term in the expansion of $\begin{bmatrix} -a \\ a \end{bmatrix}$	$\left[\frac{1}{2^{rac{8}{3}}} + x^2 \log_{10} x ight]^8$ is 5600, then x
=	
A. 2	
B. $\sqrt{5}$	
C. $\sqrt{10}$	
D. 10	

Answer: D

2. A committee consisting of at least three members is to be formed from a group of 6 bays and 6 girlssuch that it always has a boy and a girl. The number of ways to form such committee is: (K + 2)

A. $2^{12} - 2^7 - 13$ B. $2^{11} - 2^6 - 13$ C. $2^{11} - 2^7 - 35$ D. $2^{12} - 2^7 - 35$

Answer: D

3. A is a square matrix of order 3×3 . The matrices $A, 4A^{-1}, A^T$ all have the same value of the determinant. If $(adjA) = 2A^T$. then $|3A^{-1}|$ is equal to

A.
$$\frac{3}{2}$$

B. $\frac{9}{4}$
C. $\frac{27}{8}$

Answer: C

D. 3

Watch Video Solution

4. The equation of a straight line passing through the point (3, 6) and cuting the curve $y = \sqrt{x}$ orthogonally

A. 4x + y - 18 = 0

B. x + y - 9 = 0

C.
$$4x - y - 6 = 0$$

D.
$$x-y+3=0$$

Answer: A

5. The value of
$$\lim_{x o 0} \left(rac{1 + \tan x}{1 + \sin x}
ight)^{rac{2}{\sin x}}$$
 is equal to

A. 0

B. 1

C. -1

D. None of these

Answer: A

6. If
$$f(x) = \begin{cases} rac{e^{rac{2}{x}}-1}{e^{rac{2}{x}}+1} & : x
eq 0 \\ 0 & : x = 0 \end{cases}$$
, then f(x) is

A. Continuous as well as differentiable at x = 0

B. Continuous but not differentiable at x = 0

C. Differentiable but not continuous at x = 0

D. None of these

Answer: D

Watch Video Solution

7. If
$$\phi(x) = \log_8 \log_3 x$$
, then $\phi'(e)$ is equal to

A. $e \log 8$

 $\mathsf{B.}-e\log 8$

$$\mathsf{C}.\,\frac{1}{e\log 8}$$

D. None of these

Answer: D

8. If the trigonometric equation $an^{-1}x=2\sin^{-1}a$ has a solution, then

the complete set of values of a is

A.
$$\displaystyle rac{1}{2} < |a| < \displaystyle rac{1}{\sqrt{2}}$$

B. all real values of a

C.
$$|a| < rac{1}{2}$$

D. $|a| < rac{1}{\sqrt{2}}$

Answer: D

9. The negation of the statement "If I will become famous then I will open

a school" is

A. I will become famous and I will not open a school

B. Either I will not become famous or I will not open a school.

C. Neither I will not become nor I will open a school

D. I will not become famous or I will open a school.

Answer: A

Watch Video Solution

10. A weighted coin with the probability of showing a head is $\frac{2}{3}$ is tossed. If head appears, then a number is selected from the the first 20 natural numbers otherwise a number is selected from the first 9 natural numbers. The probability of getting an even number is

A.
$$\frac{1}{2}$$

B. $\frac{13}{27}$
C. $\frac{10}{27}$
D. $\frac{5}{13}$

Answer: B

11. If the volume of the parallelepiped formed by the vectors $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ is 36 cubic units, then the volume (in cubic units) of the tetrahedron formed by the vectors $\vec{a} + \vec{b}, \vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ is equal to

A. 12

B. 6

C. 2

D. 1

Answer: C

12.	The	system	of	equations
kx + (k +	2)y+(k-2)z=	=0,(k+2)x+ky	u+(k+4)z=	= $0(k-2)x$ +
has a non -	trivial solution fo	or		
A. exact	y one real value o	of k		
B. exact	y two real values	of k		
C. infinit	e real values of k			
D. no rea	al value of k			
Answer: A				
C Wato	h Video Solution			

13. If
$$f(x) = ax^2 + bx + c, f(-1) > rac{1}{2}, f(1) < -1$$
 and $f(-3) < -rac{1}{2}$, then

A. a = 0

 $\mathsf{B.}\,a<0$

 $\mathsf{C}.\,a>0$

D. Sign of a can not be determined

Answer: B

14. The function
$$f(x)=2\sin x-e^x,\,orall x\in[0,\pi]$$
 has

A. no local maximum

B. 2 local minima

C. 1 local maximum

D. 1 local minimum

Answer: C

15. The area (in sq. units) bounded between $y = 2x \ln x$ and y = -x

from x = e to x = 2e is

A. $e^e \ln(16)$

B. $e^2 \ln(16e^3)$

C. $e^3 \ln(16)$

D. $e^3 \ln(16e^3)$

Answer: B

Watch Video Solution

16. A curve is such that the x - intercept of the tangent drawn to it the point P(x, y) is reciprocal of the abscissa of P. Then, the equation of the curveis (where, c is the constant of integration and x > 1)

A.
$$y=cig(x^2-1ig)$$

B. $y=cig(x^2+1ig)$

C.
$$y=c\sqrt{x^2-1}$$

D.
$$\sqrt{y} = c\sqrt{x-1}$$

Answer: C

Watch Video Solution

17. P lies on the line y = x and Q lies on y = 2x. The equation for the locus of the mid point of PQ, if |PQ| = 4, is $25x^2 - \lambda xy + 13y^2 = 4$, then λ equals

- A. $25x^2 + 36xy + 13y^2 = 4$
- $\mathsf{B}.\,25x^2 36xy + 13y^2 = 4$
- $\mathsf{C.}\, 25x^2 36xy 13y^2 = 4$
- D. $25x^2 + 26xy 13y^2 = 4$

Answer: B

18. The range of the function $f(x) = rac{\sin(\pi |x+1|)}{x^4 + 1}$ (where [.] is the greatest integer function) is

A. [0,1]

- B.[-1,1]
- $\mathsf{C}.\left\{0\right\}$
- D. None of these

Answer: C

Watch Video Solution

19. The area of triangle formed by the lines x - y = 0, x + y = 0 and

any tangent to the hyperbola $x^2 - y^2 = 16$ is equal to

A. 2 sq. units

B. 4 sq. units

C. 8 sq. units

D. 16 sq. units

Answer: D

Watch Video Solution

20. For a complex number z, the product of the real parts of the roots of

the equation $z^2-z=5-5i$ is (where, $i=\sqrt{-1}$)

A. - 25

 $\mathsf{B.}-6$

C.-5

D. 25

Answer: B

21. If the sum of the first n terms of an arithmetic progression, whose first term is the sum of the first n positive integers and whose common difference is n, is $(8n^2 - 11n - 20)$, then the sum of all the possible values of n is

Watch Video Solution

22. Given four points A(2, 1, 0)mB(1, 2, 3), C(3, 1, 1) and D(0, 1, 3). Point D lies on the line L which is perependicular to the plane determined by the points A, B, C. If the point of intersection of the plane determined by the points A, B, C and the line L is (a, b, c), then 9(a + b + c) is equal to

Watch Video Solution

23. Each side of a square subtends an angle of 60° at the top of a tower 5 meters high standing at the center of the square. If a meters is the length of each side of the square, then a is equal to (use $\sqrt{2} = 1.41$)

24. If the definite integral $I = \int_0^{\pi} \sin[x] dx = \sum_{\varepsilon=0}^n a_{\varepsilon} \sin \varepsilon$. (where, [.] is the greatest integer function), then the value of $\frac{a_n + n}{\pi}$ is equal to

25. If the minimum distance of the point (sec α , cosec α) from the circle $x^2 + y^2 = 3$ can be expressed as $A - \sqrt{b}$, where $a, b \in N$, then the vlaue of $\frac{b}{a}$ is