

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 81

Mathematics

1. If the function f(x) is symmetric about the line x=3,

then the value of the integral

$$I=\int_{-2}^8rac{f(x)}{f(x)+f(6-x)}dx$$
 is

A. 0

- B. 5
- C. 10
- D. 16

Watch Video Solution

2. The normal to the parabola $y^2=8ax$ at the point (2, 4) meets the parabola again at eh point

- A. (-18, -12)
- B. (-18, 12)
- C. (18, 12)

D.
$$(18, -12)$$

Answer: D

Watch Video Solution

- **3.** The number of values of $x \in [\,-2\pi,2\pi]$ which satisfy the equation $\csc {
 m x} = 1 + \cot x$ is equal to
 - A. 0
 - B. 2
 - C. 4
 - D. 6

Answer: B

4. If the integral

$$I=\int\!\!rac{x\sqrt{x}-3x+3\sqrt{x}-1}{x-2\sqrt{x}+1}dx=f(x)+C$$
 (where,

x>0 and C is the constant of integration) and $f(1)=rac{-1}{3}$, then the value of f(9) is equal to

A. 3

B. 6

C. 9

D. 12

Answer: C

5. The number of ways of arranging the letters AAAAA, BBB, CCC, D, EE and F in a row, if the letters B are separated from one another, is equal to

- A. $\frac{13!}{5!3!3!2!}$
- B. $\frac{14!}{3!3!2!}$
- c. $\frac{15!}{(3!)^2 2! 5!}$
- D. . 13 $C_3 imes rac{12!}{5!3!2!}$

Answer: D

6. If $a,b,c\in R^+$ such that a+b+c=27, then the maximum value of $a^2b^3c^4$ is equal to

- A. 2^8 . 3^{10}
- $B. 2^9.3^{12}$
- $\mathsf{C.}\,2^{10}.3^{12}$
- D. $2^{11}.3^{13}$

Answer: C

Watch Video Solution

7. Find the degrees and radians the angle between the hour hand and the minute hand of a clock at half past

three.

A. 90°

B. 80°

C. 75°

D. 60°

Answer: C

Watch Video Solution

8. If $f(x)=2\sin x-x^2$, then in $x\in[0,\pi]$

A. f(x) has no local maximum

B. f(x) has one local minimum

- C. f(x) has 2 local maxima
- D. f(x) has one local maximum

Answer: D

- 9. 15 coins are tossed. If the probability of getting at least
- 8 heads is equal to p, then $\frac{8}{p}$ is equal to
 - A. 2
 - B. 4
 - C. 8
 - D. 16

Answer: D

Watch Video Solution

10. A normal line with positive direction cosines to the plane P makes equal angles with the coordinate axis. The distance of the point A(1, 2, 3) from the line $\frac{x-1}{1}=\frac{y+2}{1}=\frac{z-3}{2} \text{ measured parallel to the plane}$ P is equal to

A. 3 units

- B. $\sqrt{13}$ units
- C. $\sqrt{14}$ units
- D. $2\sqrt{5}$ units

Answer: C

Watch Video Solution

11. Let $A=\left[a_{ij}
ight]_{3 imes3}$ be a scalar matrix whose elements are the roots of the equation $x^9-15x^8+75x^7-125x^6=0.$

If $|A.\ adjA|=k$, then the vlaue of k is equal to

- A. 5^{12}
- $\mathsf{B.}\,5^9$
- $C. 3^{12}$
- D. 3^{9}

Answer: B

12. For three non - zero vectors $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} , if

$$\left[\stackrel{
ightarrow}{a} \stackrel{
ightarrow}{b} \stackrel{
ightarrow}{c}
ight] = 4$$
, then

$$\left[\overrightarrow{a} imes\left(\overrightarrow{b}+2\overrightarrow{c}
ight) \quad \overrightarrow{b} imes\left(\overrightarrow{c}-3\overrightarrow{a}
ight) \quad \overrightarrow{c} imes\left(3\overrightarrow{a}+\overrightarrow{b}
ight)
ight]$$

is equal to

A. 12

B. 16

C. 84

D. 144

Answer: D

13. Let $f\colon\![-1,1]\Rightarrow B$ be a function defined as

$$f(x)=\cot^{-1}igg(\cotigg(rac{2x}{\sqrt{3}(1+x^2)}igg)igg)$$
 . If f is both one -

one and onto, then B is the interval

A.
$$\left(0, \frac{\pi}{3}\right)$$

B.
$$\left[0, \frac{2\pi}{3}\right)$$

$$\mathsf{C.}\left[\frac{\pi}{3},\frac{2\pi}{3}\right]$$

D.
$$\left(\frac{\pi}{3},\pi\right)$$

Answer: C

14. If p, q are r are three logical statements, then the truth value of the statement $(p \wedge q) \vee ({}^{\sim}q \to r)$, where p is true, is

- A. True if q is false
- B. False if q is false
- C. True if q is true
- D. False if q is true

Answer: C

15. If
$$f(x)=\left\{egin{array}{ll} rac{e^{\left[2x
ight]+2x+1}-1}{\left[2x
ight]+2x+1} &: & x
eq 0 \ 1 &: & x=0 \end{array}
ight.$$
 , then (where $[.\,]$

represents the greatest integer function)

A.
$$\lim_{x\, o\,0^+}\,f(x)=1$$

B.
$$\lim_{x
ightarrow0^{-}}f(x)=e-1$$

C.
$$f(x)$$
 is continuous at $x = 0$

D.
$$f(x)$$
 is discontinuous at x = 0

Answer: D

- A. $A\cap B$
- B. $A \cap C'$
- $\mathsf{C}.\,B\cup C$
- $\mathsf{D}.\,B\cap C$

Answer: C

- **17.** Let the circumcentre of ΔABC is S(-1,0) and the midpoints of the sides AB and AC are $E(1,\,-2)$ and $F(\,-2,\,-1)$ respectively, then the coordinates of A are
 - A. (0, -3)
 - B.(0,3)

$$C.(-3,0)$$

Watch Video Solution

18. For a ΔABC the vertices are A(0,3), B(0,12) and C(x,0). If the circumcircle of ΔABC touches the x - axis, then the area (in sq. units) of the ΔABC is

A. 36

B. 27

C. 30

Watch Video Solution

19. The solution of the differential equation

$$\left(rac{dy}{dx}
ight)^4 - \left(rac{dy}{dx}
ight)^2 - 2 = 0 \, ext{ is } \, y = \, \pm \sqrt{\lambda}x + C \, \, ext{(where,}$$

C is an arbitrary constant). Then, λ^2 is equal to

A. 2

B. 4

C. 8

D. 16

Watch Video Solution

20. For the complex number z satisfying the condition

$$\left|z+rac{2}{z}
ight|=2$$
, the maximum value of $|z|$ is

A.
$$\sqrt{3} - 1$$

B.
$$\sqrt{3} + 1$$

$$\mathsf{C.}\,\sqrt{2}+\sqrt{3}$$

D.
$$\sqrt{3}$$

Answer: B

21. If the area bounded by $y \leq e - |x - e| ext{ and } y \geq 0$ is A sq. units, then $\log_e(A)$ is equal is

Watch Video Solution

22. If the middle term in the expansion of $\left(\frac{1}{x} + x \sin x\right)^{10}$ is equal to $7\frac{7}{8}$, then the number of values of x in $[0, 2\pi]$ is equal to

Watch Video Solution

23. Let
$$A=\begin{bmatrix}2&-1&1\\-2&3&-1\\-4&4&-x\end{bmatrix}$$
 be a matrix. If $A^2=A$,

then the value of x is equal to

24. The value of $\lim_{x\to 0} \left(\cos x + \sin x\right)^{\frac{1}{x}}$ is equal to to (take e = 2.71)

Watch Video Solution

25. A tangent of slope 2 of the ellipse $\frac{x^2}{a^2}+\frac{y^2}{1}=1$ passes through (-2,0). Then, three times the square of the eccentricity of the ellipse is equal to

