©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 82

Mathematics

1. The eqautions of lines L_{1} and L_{2} are $y=m x$ and $y=n x$, respectively. Suppose L_{1} makes twice as large an angle with the horizontal (measured counterclockwise from the positive x -axis) as does L_{2} and $\mathrm{m}=4 \mathrm{n}$, then the value of $\frac{\left(m^{2}+4 n^{2}\right)}{\left(m^{2}-6 n^{2}\right)}$ is equal to (where, $n \neq 0$)
A. 3
B. -3
C. 2
D. -2

Answer: C

- Watch Video Solution

2. If $f(x)=\left\{\begin{array}{ll}e^{2 x^{3+x}} & x>0 \\ a x+b & x \leq 0\end{array}\right.$ is differentiable at $\mathrm{x}=0$, then
A. $a=1, b=-1$
B. $a=-1, b=1$
C. $a=1, b=1$
D. $a=-1, b=-1$

Answer: C

(D) Watch Video Solution

3. Let $I_{1}=\int_{0}^{\alpha} \frac{1+2 \cos x}{1+e^{x}} d x$ and $I_{2}=\int_{0}^{\alpha} \frac{1+e^{x}}{1+2 \cos x} d x$, where α is the root of the equation $2 \cos x-e^{x}=0$. and α is positive Then,
A. $I_{1}=I_{2}$
B. $I_{1}>I_{2}$
C. $I_{1}+I_{2}=0$
D. $I_{1}<I_{2}$

Answer: B

- Watch Video Solution

4. A bag contains 5 white, 4 black and 2 red balls. Balls are drawn one by one without replacement. The probability that the $5^{\text {th }}$ ball is a red ball, is
A. $\frac{2}{11}$
B. $\frac{4}{11}$
C. $\frac{3}{7}$
D. $\frac{6}{11}$

Answer: A

- Watch Video Solution

5. Let L be the line through the intersection of the planes $3 x-y+2 z+1=0$ and $3 x-2 y+z=3$. Then, the equation of the plane passing through $(2,1,4)$ and perpendiculr to the line L is
A. $x+y-z=2$
B. $x+y-z+1=0$
C. $x+y+z-7=0$
D. $2 x-3 y+4 z=17$

Answer: B

- Watch Video Solution

6.

$A(3-x, 3,3), B(3,3-y, 3), C(3,3-y, 3)$ and $C(3,3,3-z) D(2,2,2)$
are coplanar, then $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ is equal to
A. -1
B. 1
C. 3
D. 5

Answer: B

- Watch Video Solution

7. For a matrix A , if $A^{2}=A$ and $B=I-A$ then $A B+B A+I-(I-A)^{2}$ is equal to (where, I is the identity matrix of the same order of matrix A)
A. B
B. A
C. $A B$
D. 1

Answer: B

- Watch Video Solution

8. If only the $4^{\text {th }}$ term in the expansion of $\left(2+\frac{3 \pi}{8}\right)^{10}$ has the greatest numerical value, then the integral values of x are
A. $\{-3,-2,2,3\}$
B. $\{-2,-1,1,2\}$
C. $\{-3,3\}$
D. $\{-3,-2,-1,0,1,2,3\}$

Answer: C

9. The number of ways in which letter of the word 'ARRANGE' can be arranged, such that no two R's are together, is
A. 160
B. 200
C. 360
D. 900

Answer: D

- Watch Video Solution

10. If α and β the roots of the equation $x^{2}-2 x+3=0$, then the sum of roots of the equation having roots as $\alpha^{3}-3 \alpha^{2}+5 \alpha-2$ and $\beta^{3}-\beta^{2}+\beta+5$ is
A. 1
B. 3
C. 5
D. 7

Answer: B

- Watch Video Solution

11. In triangle $A B C$, if $\sin A \cos B=\frac{1}{4}$ and $3 \tan A=\tan B$, then $\cot ^{2} A$ is equal to 2 (b) 3 (c) 4 (d) 5 .
A. 2
B. 3
C. 4
D. 5

Answer: B

12. The average weght of the students in a class of 39 students is 40 kg . If the weight of the teacher is to be included, then the average rises by $\frac{1}{4}$ kg . The weight of the teacher is
A. 40.5 kg
B. 50 kg
C. 41 kg
D. 51 kg

Answer: B

- Watch Video Solution

13. If two parabolas $y^{2}=4 a(x-k)$ and $x^{2}=4 a(y-k)$ have only one common point P, then the coordinates of P are
A. $(2 k, 2 k)$
B. (k, k)
C. $(a, 2 k)$
D. $(k, 2 a)$

Answer: A

- Watch Video Solution

14. The locus of a point $P(\alpha, \beta)$ moving under the condition that the line $y=a x+\beta$ moving under the condtion that the line $y=\alpha x+\beta$ is a tangent to the hyperbola $\frac{x^{2}}{1}-\frac{y^{2}}{b^{2}}=1$ is a conic, with eccentricity equal to
A. 1
B. 2
C. $\frac{1}{2}$
D. $\sqrt{2}$

Answer: D

15. For a complex number Z, if the argument of $3+3 i$ and $(Z-2)(\bar{Z}-1)$ are equal, then the maximum distance of Z from the x -axis is equal to (where, $i^{2}=-1$)
A. $\frac{(1+\sqrt{2})}{2}$ units
B. 2 units
C. $\frac{3}{2}$ units
D. $\frac{(\sqrt{2}+2)}{2}$ units

Answer: A

- Watch Video Solution

16. If the function $f(x)=x^{3}-3 a x$ has a local minimum at $x=\lambda(\lambda \geq 4)$ and $a \in[10,18]$, then the sum of all the possible integral values of a is
A. 50
B. 112
C. 51
D. 16

Answer: C

- Watch Video Solution

17. If the integral $I=\int \frac{2 x^{2}}{4+x^{2}} d x=2 x-f(x)+c$, where $f(2)=\pi$, then the minimum value of $y=f(x) \forall x \in[-2,2]$ is (where, c is the constant of integration)
A. 0
B. $-\pi$
C. 2π
D. -4π

Answer: B

- Watch Video Solution

18. An isosceles triangle of wood of base 10 feet and height $\frac{8}{\sqrt{3}}$ feet is placed vertically with its base on the ground and vertex directly above. The triangle faces the sun whose altitude is 30°. Then, the tangent of the angle at the apex of the shadow is
A. 80
B. $\frac{80}{39}$
C. $\frac{89}{2}$
D. $\frac{80}{217}$

Answer: B

- Watch Video Solution

19. The solution of the differential equation $x d y-y d x+3 x^{2} y^{2} e^{x^{3}} d x=0$ is (where, c is an arbitrary constant)
A. $x=2 y e^{x}+c$
B. $x=y e^{x^{3}}+c y$
C. $x=y^{2} e^{x^{3}}+c$
D. $x y=e^{x^{3}}+c$

Answer: B

- Watch Video Solution

20.

$\cot ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-\ldots \ldots \ldots \ldots ..\right)+\tan ^{-1}\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4}-\ldots \ldots\right.$.
, then x is equal to
A. 0 only
B. 1 only
C. 0,1 both
D. None of these

Answer: B

- Watch Video Solution

21. The value of $\lim _{x \rightarrow 1} \frac{\sqrt[5]{x^{2}}-2 \sqrt[5]{x}+1}{4(x-1)^{2}}$ is equal to

- Watch Video Solution

22. If A be a square matrix of order 3 , such that $|A|=\sqrt{5}$, then
$\left|\operatorname{Adj}\left(-3 A^{-2}\right)\right|$ is equal to

- Watch Video Solution

23.

$$
S=1+\frac{1}{(1+3)}(1+2)^{2}+\frac{1}{(1+3+5)}(1+2+3)^{2}+\frac{1}{(1+3+5+7)}(
$$

if the sum of the first 10 terms is K, then $\frac{4 K}{101}$ is equal to

- Watch Video Solution

24. Consider circles C_{1} and C_{2} touching both the axes and passing through $(4,4)$, then the x-intercept of the common chord of the circles is

- Watch Video Solution

25. The area bounded by $y=\min (x, 2-x)$ with $y=(x-1)^{2}$ is K sq. units, then $[K]$ is equal to (where, [.] is the greatest integer function)

- Watch Video Solution

