©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 84

Mathematics

1. If p and q are logical statements, then
$(\sim p) \rightarrow(p \rightarrow q)$ is equivalent to

A. $p \wedge q$

B. $p \rightarrow(p \vee q)$
C. $p \vee q$
D. $(p \vee q) \Leftrightarrow(p \wedge q)$

Answer: B

D Watch Video Solution

2. The projection of $2 \hat{i}-3 \hat{j}+4 \hat{k}$ on the line whose equation is
$\vec{r}=(3+\lambda) \hat{i}+(3-2 \lambda) \hat{j}+(5+6 \lambda) \hat{k}$,
where λ is a scalar parameter, is

$$
\begin{aligned}
& \text { A. } \frac{6}{\sqrt{41}} \\
& \text { B. } \frac{32}{\sqrt{41}} \\
& \text { C. } \frac{16}{\sqrt{41}} \\
& \text { D. } \frac{7}{5}
\end{aligned}
$$

Answer: B
3. $f(x)=\lim _{n \rightarrow \infty} \cos ^{2 n}\left(\pi x^{2}\right)+[x]$ (where, $[$. denotes the greatest integer function and $n \in N$) is
A. continuous at $x=1$ but discontinuous at x

$$
=0
$$

B. continuous at $x=1$ and $x=0$
C. discontinuous at $x=1$ and $x=0$
D. discontinuous at $x=1$ but continuous at x

$$
=0
$$

- Watch Video Solution

4. Two straight roads $O A$ and $O B$ intersect at O.

A tower is situated within the angle formed by them and subtends angles of 45° and 30° at the points A and B where the roads are nearest to it. If $\mathrm{OA}=100$ meters and $\mathrm{OB}=50$ meters, then the height of the tower is
A. $25 \sqrt{2}$ meters
B. 50 meters
C. $25 \sqrt{6}$ meters

D. $25 \sqrt{3}$ meters

Answer: C

D Watch Video Solution

5. The coefficient of x^{4} in the expansion of $\left(1+5 x+9 x^{2}+13 x^{3}+17 x^{4}+\ldots.\right)\left(1+x^{2}\right)^{11}$ is equal to

$$
\text { A. }{ }^{11} C_{2}+4 .{ }^{11} C_{1}+3
$$

$$
\text { B. }{ }^{11} C_{2}+3 \cdot{ }^{11} C_{1}+4
$$

C. $3 .{ }^{11} C_{2}+4 .{ }^{11} C_{1}+3$
D. 171

Answer: D

- Watch Video Solution

6. Consider $I=\int_{0}^{1} \frac{d x}{1+x^{5}}$. Then, I satisfies
A. $I>1$
B. $I=1$
C. $I<1$

D. $I+1<0$

Answer: C

D Watch Video Solution

7. If the sum to infinty of the series, $1+4 x+7 x^{2}+10 x^{3}+\ldots$, is $\frac{35}{16}$, where $|x|<1$, then ' x ' equals to

> А. $\frac{19}{7}$
> B. $\frac{1}{5}$
C. $\frac{1}{4}$
D. $\frac{4}{7}$

Answer: B

D Watch Video Solution

8. Two circles of radii r_{1} and r_{2}, are both touching the coordinate axes and intersecting each other orthogonally. The value of $\frac{r_{1}}{r_{2}}$ (where $r_{1}>r_{2}$) equals -
A. 2
B. $2+\sqrt{3}$
C. $3+\sqrt{2}$
D. 4

Answer: D

D Watch Video Solution

9. If $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ are consecutive terms of an arithmetic progression with common difference 3 , then the value of $\left|\begin{array}{lll}a_{3}^{2} & a_{2} & a_{1} \\ a_{4}^{2} & a_{3} & a_{2} \\ a_{5}^{2} & a_{4} & a_{3}\end{array}\right|$ is
A. 0
B. 27
C. 81
D. 162

Answer: D

D Watch Video Solution

10. The number of real solution of
$\cot ^{-1} \sqrt{x(x+4)}+\cos ^{-1} \sqrt{x^{2}+4 x+1}=\frac{\pi}{2}$
is equal to
A. 0
B. 1
C. 2
D. Infinite

Answer: C

11. The plane containing the line
$\frac{x-3}{2}=\frac{y-b}{4}=\frac{z-3}{3}$ passes through the
points $(a, 1,2),(2,1,4),(2,3,5)$, then $3 a+5 b$ is equal to
A. 4
B. 16
C. -16
D. -4

Answer: C

D Watch Video Solution
12. If $A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 3 & 5 & 2 \\ 1 & 6 & 1\end{array}\right]$, then $\operatorname{tr}(\operatorname{Aadj}(\operatorname{adj} A))$
is equal to (where, $\operatorname{tr}(\mathrm{P})$ denotes the trace of the matrix P i.e. the sum of all the diagonal elements of the matrix P and $\operatorname{adj}(P)$ denotes the adjoint of matrix P)
A. 7
B. 18
C. -58
D. -1624

D Watch Video Solution

13. The area (in sq. units) covered by
$[x-y]=-3$ with the coordinate axes is
(where [.] is the greatest integer function)
A. 2
B. 4
C. $\frac{5}{2}$
D. $\frac{11}{4}$

Answer: C

- Watch Video Solution

14. The number of different ways in which five
alike dashes and eight alike dots can be arranged using only seen of these dashes and dots is a. 350 b .120 c .1287 d . none of these
A. 1287
B. 119
C. 120
```
D. 1235520
```


Answer: C

D Watch Video Solution

15. The positive difference between the local maximum value and the local minimum value of
the
$f(x)=x^{3}-3 x-1, \forall x \in[-2,3]$ is
A. 20
B. 4

C. 14

D. 22

Answer: B

D Watch Video Solution

16. If $B=\int \frac{1}{e^{x}+1} d x=-f(x)+C$, where C is the constant of integration and $e^{f(0)}=2$,
then the value of $e^{f(-1)}$ is
A. 4
B. $e+1$
C. $2 e$
D. 0

Answer: B

D Watch Video Solution

17. In the equilateral triangle $A B C$, the equation of the side BC is $x+y-2=0$ and the centroid of $\triangle A B C$ is $(0,0)$. If the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$
are in anticlockwise oder, then the midpoint of the line segment joining A and C is

$$
\begin{aligned}
& \text { A. }\left(\frac{-\sqrt{3}+1}{2}, \frac{\sqrt{3}+1}{2}\right) \\
& \text { B. }\left(\frac{-\sqrt{3}-1}{2}, \frac{\sqrt{3}-1}{2}\right) \\
& \text { C. }\left(\frac{-\sqrt{3}-1}{2}, \frac{\sqrt{3}+1}{2}\right) \\
& \text { D. }\left(\frac{-\sqrt{3}+1}{2}, \frac{\sqrt{3}-1}{2}\right)
\end{aligned}
$$

Answer: B

- Watch Video Solution

18.

$\cos \left(\frac{\pi}{11}\right) \cos \left(\frac{2 \pi}{11}\right) \cos \left(\frac{3 \pi}{11}\right) \ldots \cos \left(\frac{11 \pi}{11}\right)=$

$$
\begin{aligned}
& \text { A. }-\frac{1}{32} \\
& \text { B. } \frac{1}{512} \\
& \text { C. } \frac{1}{1024} \\
& \text { D. }-\frac{1}{2048}
\end{aligned}
$$

Answer: C

D Watch Video Solution
19. Let l_{1} and l_{2} be the two lines which are normal to $y^{2}=4 x$ and tangent to $x^{2}=-12 y$ respectively (where, l_{1} and l_{2} are not the x axis). Then, the product of the slopes of l_{1} and l_{2} is
A. 3
B. 2
C. 1
D. $\frac{1}{2}$

Answer: B
20. If $i^{2}=-1$, then for a complex number Z
the
minimum
value
$|Z|+|Z-3|+|Z+i|+|Z-3-2 i|$ occurs
at
A. $Z=2$
B. $Z=2+i$
C. $Z=1$
D. $Z=1+i$

(D) Watch Video Solution

21. The value fo $\lim _{x \rightarrow 0} \frac{1-\cos ^{4} x}{\left(\sin ^{2} x \cos x\right)}$ is equal to

- Watch Video Solution

22. The values of ' a ' for which the quadraic expression $a x^{2}+(a-2) x-2$ is negative for exactly two integral values of x, belongs to
23. A committee of 5 persons is to be randomly
selected from a group of 5 men and 4 women
and a chairperson will be randomly selected
from the committee will have exactly 2 women and 3 men and the chairperson will be a man is
p , then $\frac{1}{p}$ is equal to

D Watch Video Solution

24. The order of the differential equation of the
family of circles touching the y - axis at the
origin is k, then the maximum value of $y=k \cos x \forall x \in R$ is

D Watch Video Solution

25. Let $x^{2}+y^{2}=r^{2}$ and $x y=1$ intersect at
$A \& B$ in first quadrant, If $A B=\sqrt{14}$ then find the value of r.
(D) Watch Video Solution
