© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 86

Mathematics

1. The coefficient of x^{n-2} in the polynomial
$(x-1)(x-2)(x-3) \ldots(x-n)$ is
A. $\frac{n\left(n^{2}+2\right)(3 n+1)}{24}$
B. $\frac{n\left(n^{2}-1\right)(3 n+2)}{24}$
C. $\frac{n\left(n^{2}+1\right)(3 n+4)}{24}$
D. $\frac{n\left(n^{2}-2\right)(3 n-2)}{24}$

Answer: B

- Watch Video Solution

2. The number of ways in which three numbers in arithmetic progression can be selected from $\{1,2,3, \ldots \ldots \ldots . ., 50\}$ is
A. 276
B. 600
C. 840
D. 640

Answer: B

- Watch Video Solution

3. If $a>2$, then the roots of the equation $(2-a) x^{2}+3 a x-1=0$ are
A. one positive and one negative
B. both negative
C. both positive
D. both imaginary

Answer: C

- Watch Video Solution

4. If $\sin 2 \beta$ is the geometric mean between $\sin \alpha$ and $\cos \alpha$, then $\cos 4 \beta$ is equal to
A. $2 \sin ^{2}\left(\frac{\pi}{4}-\alpha\right)$
B. $2 \cos ^{2}\left(\frac{\pi}{4}-\alpha\right)$
C. $2 \cos ^{2}\left(\frac{\pi}{2}+\alpha\right)$
D. $2 \sin ^{2}\left(\frac{\pi}{4}+\alpha\right)$
5. In the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ the equation $\log _{\sin \theta}(\cos 2 \theta)=2$ has
A. no solution
B. a unique solution
C. two solutions
D. infinite many solutions

Answer: B

Watch Video Solution

6. A line passing through the point $(2,2)$ encloses an area of 4 sq. units with coordinate axes. The sum of intercepts made by the line on the x and y axis is equal to
A. 1
B. $2 \sqrt{2}$
C. $\sqrt{2}$
D. 2

Answer: C

- Watch Video Solution

7. The angle between the chords of the circle $x^{2}+y^{2}=100$, which passes through the point $(7,1)$ and also divides the circumference of the circle into two arcs whose length are in the ratio $2: 1$, is equal to
A. $\frac{7}{12}$
B. $\frac{12}{-7}$
C. $\frac{-7}{12}$
D. $\frac{-12}{7}$
8. Let the focus S of the parabola $y^{2}=8 x$ lie on the focal chord PQ of the same parabola. If the length $Q S=3$ units, then the ratio of length $P Q$ to the length of the laturs rectum of the parabola is
A. $\frac{2}{\sqrt{5}}$
B. $\frac{4}{5}$
C. $\frac{5}{4}$
D. $\frac{9}{8}$

Answer: D

- Watch Video Solution

9. If the tangents $P Q$ and $P R$ are drawn from a variable point P to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, such that the fourth point S of the parallelogram

PQSR lies on the circumcircle of the $\triangle P Q R$, then the area (in sq. units) of the locus of P is
А. 7π
B. 16π
C. 25π
D. 9π

Answer: C

- Watch Video Solution

10. Let $f(x)=\left\{\begin{array}{ll}\max \left\{|x|, x^{2}\right\} & |x| \leq 3 \\ 12-|x| & 3<|x| \leq 12\end{array}\right.$. If S is the set of points in the interval $(-12,12)$ at which f is not differentiable, then S is
A. equal to $\{-3,3\}$
B. equal to $\{-3,-1,1,3\}$
C. an empty set
D. equal to $\{-3,-1,0,1,3\}$

Answer: D

- Watch Video Solution

11. Let a function $f:(0, \infty) \rightarrow[0, \infty)$ be defined by $f(x)=\left|1-\frac{1}{x}\right|$. Then f is
A. injective but not surjective
B. both injective as well as surjective
C. not injective but it is surjective
D. neiher injective nor surjective

Answer: B

- Watch Video Solution

12. The logical statement $[\sim(\sim p \vee q) \vee(p \wedge r)] \wedge(\sim q \wedge r)$ is equivalent to (a) $(\sim p \wedge \sim q) \wedge r$ (b) $\sim p \vee r$ (c) $(p \wedge r) \wedge \sim q$ (d) $(p \wedge \sim q) \vee r$
A. $(p \wedge q) \vee r$
B. $\sim p \vee r$
C. $(\sim p \wedge q) \wedge r$
D. $(p \wedge r) \wedge \sim q$

Answer: D

- Watch Video Solution

13. A flagstaff stands vertically on a pillar, the height of the flagstaff being double the height of the pillar. A man on the ground at a distance finds that both the pillar and the flagstaff subtend equal angles at his eyes. The ratio of the height of the pillar and the distance of the man from the pillar is
A. $\sqrt{3}: 1$
B. $1: \sqrt{3}$
C. $2: \sqrt{3}$
D. 1: $\sqrt{2}$

Answer: D

- Watch Video Solution

14. The function $f(x)=e^{\sin x+\cos x} \forall x \in[0,2 \pi]$ attains local extrema at $x=\alpha$ and $x=\beta$, then $\alpha+\beta$ is equal to
A. π
B. 2π
C. $\frac{3 \pi}{2}$
D. $\frac{\pi}{2}$

Answer: C

15. If $I=\int \frac{d x}{x^{2}-2 x+5}=\frac{1}{2} \tan ^{-1}(f(x))+C$ (where, C is the constant of integration) and $f(2)=\frac{1}{2}$, then the maximum value of $y=f(\sin x) \forall x \in R$ is
A. 4
B. 2
C. 0
D. -1

Answer: C

- Watch Video Solution

16. If the curve satisfying differential equation $x d y=\left(y+x^{3}\right) d x$ passes through $(1,1)$, then the equation to the curve is
A. $y^{2}=x^{3}-x$
B. $y=x^{2}-x$
C. $2 y=x^{3}$
D. $2 y=x^{3}+x$

Answer: D

- Watch Video Solution

17.

If
the
system
of
equations
$\left(.{ }^{n} C_{3}\right) x+\left(.{ }^{n} C_{4}\right) y+35 z=0,\left(.{ }^{n} C_{4}\right) x+35 y+\left(.{ }^{n} C_{3}\right) z=0$ and $35 x+$ has a non - trivial solution, then the value of n is equal to $(\forall n \in N, n \geq 4)$
A. 6
B. 7
C. 8
D. 9

Answer: B

D Watch Video Solution

18. A box contains 3 coins B_{1}, B_{2}, B_{3} and the probability of getting heads on the coins are $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}$ respectively. If one of the coins is selected at random and tossed for 3 times and exactly 3 times and exactly 3 heads appeared, then the probability that it was coin B_{1} is
A. $\frac{9}{73}$
B. $\frac{10}{73}$
C. $\frac{36}{73}$
D. $\frac{64}{73}$

Answer: D

19. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]$ are two matrices such that $\mathrm{AB}=$ BA and $r \neq 0$, then the value of $\frac{3 p-3 s}{5 q-4 r}$ is equal to
A. $\frac{3}{2}$
B. 4
C. $\frac{9}{2}$
D. 5

Answer: C

- Watch Video Solution

20. If a line passing through $(-2,1, \alpha)$ and $(4,1,2)$ is perpendicular to the vector $3 \hat{i}-4 \hat{j}+5 \hat{k}$ and parallel to the plane containing vectors $\hat{i}+2 \beta \hat{k}$ and $2 \beta \hat{i}+\alpha \hat{k}(\forall \beta \neq 0)$, then $10(\alpha+\beta)$ is equal to
A. 53
B. 54
C. 55
D. 56

Answer: A

- Watch Video Solution

21.

$\left(1^{2}-a_{1}\right)+\left(2^{2}-a_{2}\right)+\left(3^{2}-a_{3}\right)+\ldots .+\left(n^{2}-a_{n}\right)=\frac{1}{3} n\left(n^{2}-1\right)$
,then the value of a_{7} is

- Watch Video Solution

22. If $\operatorname{Im}\left(\frac{i z+2}{z+i}\right)=-1$ represents part of a circle with radius r units, then the value of $4 r^{2}$ is (where, $z \in C, z \neq i, \operatorname{lm}(z)$ represents the imaginary part of z and $i^{2}=-1$)
23. For a sample size of 10 observations $x_{1}, x_{2}, \ldots \ldots x_{10}$, if $\Sigma_{i=1}^{10}\left(x_{i}-5\right)^{2}=350$ and $\Sigma_{i=1}^{10}\left(x_{i}-2\right)=60$, then the variance of x_{i} is

- Watch Video Solution

24. If $\int_{0}^{\pi / 4}[\sqrt{\tan x}+\sqrt{\cot x}] d x=\frac{\pi}{\sqrt{m}}$, then the value of m is equal to

- Watch Video Solution

25. A line $\frac{x-a}{2}=\frac{y-b}{3}=\frac{z-c}{4}$ intersects a plane $x-y+z=4$ at a point where the line $\frac{x-1}{2}=\frac{y+3}{5}=\frac{z+1}{2}$ meets the plane. Also, a plane $a x-2 y+b z=3$ meet them at the same point, them $11(a+b+c)$ is equal to

- Watch Video Solution

