©゙doubtnut

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 87

Mathematics

1. In the expansion of $\left(3 \sqrt{\frac{a}{b}}+3 \sqrt{\frac{b}{\sqrt{a}}}\right)^{21}$, the term containing same powers of $a \& b$ is
A. $11^{\text {th }}$
B. $13^{\text {th }}$
C. $12^{\text {th }}$
D. $6^{t h}$

Answer: B

D Watch Video Solution

2. The least value of $n(n \in N)$, such that the function $f(n, x)=\int n \cos (n x) d x$ satisfies $f\left(n, \frac{\pi}{2}\right)=-1$, is (given, $f(n, 0)=0$)
A. 3
B. 4
C. 5
D. 6

Answer: A

- Watch Video Solution

3. Find the set of all possible real value of a such that the inequality $(x-(a-1))\left(x-\left(a^{2}+2\right)\right)<0$ holds for all $x \in(-1,3)$.
A. $(1, \infty)$
B. $(-\infty,-1)$
C. $(-\infty, 1)$
D. $(0,1)$

Answer: B

- Watch Video Solution

4. The area (in sq. units) of the circle touching the line $x+y=4$ at $(1,3)$ and intersecting $x^{2}+y^{2}=4$ orthogonally is equal to
A. $\frac{9 \pi}{8}$
B. $\frac{7 \pi}{8}$
C. $\frac{5 \pi}{4}$
D. $\frac{4 \pi}{3}$
5. Consider a function $f: R \rightarrow R$ defined by $f(x)=x^{3}+4 x+5$, then
A. f is one - one but not onto
B. f is onto but not one - one
C. f is one - one and onto
D. f is neither one - one nor onto

Answer: C

- Watch Video Solution

6. Let $A=\left[\begin{array}{ccc}-4 & -3 & -3 \\ 1 & a & 1 \\ 4 & b & 3\end{array}\right]$ and $A=A^{-1}$, then $a+2 b$ is equal to
A. 0
B. 4
C. 8
D. 5

Answer: C

- Watch Video Solution

7. An unbiased die is rolled n times. Let $P(A), P(B)$ and $P(C$) be the probability of occurrence of an odd number exactly one, two and three times respectively in n trials.

If $P(A), P(B), P(C)$ are in arithmetic progression, then n is equal to
A. 4
B. 5
C. 6
D. 7

Answer: D
8. Let $A=\left[a_{i j}\right]_{3 \times 3}$ be a square matrix such that
$A A^{T}=4 I,|A|<0$.
$\left|\begin{array}{ccc}a_{11}+4 & a_{12} & a_{13} \\ a_{21} & a_{22}+4 & a_{23} \\ a_{31} & a_{32} & a_{33}+4\end{array}\right|=5 \lambda|A+I|$. Then λ is equal to
A. $\frac{4}{5}$
B. $-\frac{4}{5}$
C. $\frac{8}{5}$
D. $-\frac{8}{5}$

Answer: D
9.
$\frac{x-3}{2}=\frac{y-5}{2}=\frac{z-4}{\lambda}$ and $\frac{x-2}{\lambda}=\frac{y-6}{4}=\frac{z-5}{2}$
intersect at a point (α, β, γ), then the greatest value of
λ is equal to
A. 0
B. 2
C. -2
D. 4

Answer: A

- Watch Video Solution

10. Let $f:(-1,1) \rightarrow R$ be a function defind by $\mathrm{f}(\mathrm{x})$ =max. $\left\{-|x|,-\sqrt{1-x^{2}}\right\}$. If K is the set of all points at which f is not differentiable, then K has set of all points at which f is not differentible, then K has exactly
A. one element
B. two elements
C. five elements
D. three elements

Answer: C

D Watch Video Solution

11. Number of ordered pairs (a, x) satisfying the equation $\sec ^{2}(a+2) x+a^{2}-1=0 ;-\pi<x<\pi$ is
A. 1
B. 2
C. 3
D. 4

Answer: C

D Watch Video Solution

12. Which of the following option is incorrect?
A. $\sim(p \Leftrightarrow \sim q) \equiv p \Leftrightarrow q$
B. $\sim(p \Leftrightarrow q) \equiv(p \rightarrow \sim q) \wedge(\sim q \rightarrow p)$
C. $\sim(p \Leftrightarrow q) \equiv \sim p \Rightarrow q$
D. $\sim(p \Rightarrow q) \equiv p \wedge \sim q$

Answer: C

- Watch Video Solution

13. The value of $2 \cos ^{-1} \sqrt{\frac{2}{3}}-2 \cos ^{-1} \cdot \frac{\sqrt{6}+1}{2 \sqrt{3}}$ is equal to
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{6}$

Answer: A

D Watch Video Solution

14. If a tangent drawn at $P\left(\alpha, \alpha^{3}\right)$ to the curve $y=x^{3}$ meets it again at $Q\left(\beta, \beta^{3}\right)$, then $2 \beta+\alpha$ is equal to
A. 0
B. -3α
C. 3α
D. 4α

D Watch Video Solution

15. The slope of normal at any point P of a curve (lying in the first quadrant) is reciprocal of twice the product of the abscissa and the ordinate of point P. Then, the equation of the curve is (where, c is an arbitrary constant)
A. $y^{2}=x+c$
B. $y=c e^{-x^{2}}$
C. $y=c e^{-x}$
D. $y^{2}=\ln x+c$

- Watch Video Solution

16. A shopkeeper has 11 copies each of nine different
books, then the number of ways in which atleast one book can be selected is
A. $9^{11}-1$
B. $10^{10}-1$
C. $11^{9}-1$
D. 10^{9}

Answer: C

17. Let $\left|z_{1}\right|=3,\left|z_{2}\right|=2$ and $z_{1}+z_{2}+z_{3}=3+4 i$. If the real part of $\left(z_{1} \overline{z_{2}}+z_{2} \overline{z_{3}}+z_{3} \overline{z_{1}}\right)$ is equal to 4 , then $\left|z_{3}\right|$ is equal to (where, $i^{2}=-1$)
A. 1
B. 2
C. 3
D. 4

Answer: B

18. From a point P, two tangents $P A$ and $P B$ are drawn to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If the product of the slopes of these tangents is 1 , then the locus of P is a conic whose eccentricity is equal to
A. 1
B. 2
C. $\sqrt{2}$
D. $\frac{1}{2}$

Answer: C
19. If $\sin 2 A=\frac{1}{2}$ and $\sin 2 B=-\frac{1}{2}$, then which of the following is false?
A. $\sin (A+B)$ may be 0
B. $\cos (A-B)$ may be 0
C. $\sin (A+B)$ or $\cos (A-B)$ is zero
D. $\sin (A+B)=0$

Answer: D

D Watch Video Solution

20. Let B and C are the points of intersection of the parabola $x=y^{2}$ and the circle $y^{2}+(x-2)^{2}=8$. The
perimeter (in units) of the triangle OBC, where O is the origin, is
A. 8
B. $4 \sqrt{5}$
C. $4 \sqrt{5}+2$
D. $4(\sqrt{5}+1)$

Answer: D

- Watch Video Solution

21. If the tenth term of the sequence $S=1+5+13+29+\ldots \ldots$ is k , then $\frac{k}{500}$ is equal to
22. In a $\triangle A B C$, the sides BC, CA and AB are consecutive positive integers in increasing order. Let \vec{a}, \vec{b} and \vec{c} are position vectors of the vertices A, B and C respectively. If $(\vec{c}-\vec{a}) \cdot(\vec{b}-\vec{c})=0$, then the value of $|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|$ is equal to

D Watch Video Solution

23. The value of $\lim _{x \rightarrow \frac{5 \pi}{4}} \frac{\cot ^{3} x-\tan x}{\cos \left(x-\frac{5 \pi}{4}\right)}$ is equal to

- Watch Video Solution

24. The area bounded by $f(x)= \begin{cases}\sin (2 x) & x \geq 0 \\ \cos (2 x) & x<0\end{cases}$ with the x - axis, $x=-\frac{\pi}{4}$ and $x=\frac{\pi}{4}$ is k square units. Then, the value of 4 k is equal to

- Watch Video Solution

25. Let in $\triangle A B C$ the coordinates of A are $(0,0)$. Internal angle bisector of $\angle A B C$ is $x-y+1=0$ and mid point of $B C$ is $(-1,3)$. Then, the ordinate of C is

- Watch Video Solution

