



# MATHS

# **BOOKS - NTA MOCK TESTS**

# NTA JEE MOCK TEST 87

Mathematics

1. In the expansion of 
$$\left(3\sqrt{rac{a}{b}}+3\sqrt{rac{b}{\sqrt{a}}}
ight)^{21}$$
 , the term

containing same powers of a & b is

A.  $11^{\mathrm{th}}$ 

 $\text{B.}\,13^{\rm th}$ 

C.  $12^{\rm th}$ 

 $\mathsf{D.}\,6^{th}$ 

Answer: B

Watch Video Solution

2. The least value of  $n(n \in N)$ , such that the function  $f(n,x)=\int\!\!n\cos(nx)dx$  satisfies  $f\!\left(n,rac{\pi}{2}
ight)=-1$ , is (given, f(n,0)=0)

A. 3

B. 4

C. 5

D. 6

#### Answer: A

## **Watch Video Solution**

3. Find the set of all possible real value of a such that the inequality  $(x-(a-1))ig(x-ig(a^2+2ig)ig)<0$  holds for all  $x\in(-1,3)$ .

A.  $(1,\infty)$ 

 $\mathsf{B.}\,(\,-\infty,\,-1)$ 

 $\mathsf{C.}\left( -\infty,1
ight)$ 

D.(0,1)

#### Answer: B



**4.** The area (in sq. units) of the circle touching the line x + y = 4 at (1, 3) and intersecting  $x^2 + y^2 = 4$  orthogonally is equal to

A. 
$$\frac{9\pi}{8}$$
  
B.  $\frac{7\pi}{8}$   
C.  $\frac{5\pi}{4}$   
D.  $\frac{4\pi}{3}$ 

#### Answer: A



- 5. Consider a function  $f \colon R o R$  defined by
- $f(x)=x^3+4x+5$ , then
  - A. f is one one but not onto
  - B. f is onto but not one one
  - C. f is one one and onto
  - D. f is neither one one nor onto



6. Let 
$$A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & a & 1 \\ 4 & b & 3 \end{bmatrix}$$
 and  $A = A^{-1}$ , then

a+2b is equal to

A. 0

B. 4

C. 8

D. 5



**7.** An unbiased die is rolled n times. Let P(A), P(B) and P(C ) be the probability of occurrence of an odd number exactly one, two and three times respectively in n trials. If P(A), P(B), P(C ) are in arithmetic progression, then n is equal to

A. 4

B. 5

C. 6

D. 7

#### Answer: D



| 8. Let $A=ig[a_{ij}ig]_{3	imes 3}$                  | be                             | а | square        | matrix | such | th | at |
|-----------------------------------------------------|--------------------------------|---|---------------|--------|------|----|----|
| $AA^T=4I,  A <0.$                                   |                                |   |               |        |      |    | lf |
| $egin{array}{c ccccccccccccccccccccccccccccccccccc$ | $a_{13} \\ a_{23} \\ a_{33} +$ | 4 | $=5\lambda A$ | I+I .  | Then | λ  | is |
| equal to                                            |                                |   |               |        |      |    |    |

A. 
$$\frac{4}{5}$$
  
B.  $-\frac{4}{5}$   
C.  $\frac{8}{5}$   
D.  $-\frac{8}{5}$ 

#### Answer: D





**10.** Let  $f:(-1,1) \to R$  be a function defind by f(x)=max.  $\left\{ -|x|, -\sqrt{1-x^2} \right\}$ . If K is the set of all points at which f is not differentiable, then K has set of all points at which f is not differentiable, then K has exactly

A. one element

B. two elements

C. five elements

D. three elements

Answer: C

11. Number of ordered pairs (a, x) satisfying the equation  $\sec^2(a+2)x + a^2 - 1 = 0; \; -\pi < x < \pi$  is A. 1 B. 2 C. 3 D. 4 Answer: C Watch Video Solution

12. Which of the following option is incorrect?

#### Answer: C

Watch Video Solution

**13.** The value of 
$$2\cos^{-1}\sqrt{\frac{2}{3}} - 2\cos^{-1}$$
.  $\frac{\sqrt{6}+1}{2\sqrt{3}}$  is

equal to

A. 
$$\frac{\pi}{3}$$
  
B.  $\frac{\pi}{4}$ 

C. 
$$\frac{\pi}{2}$$
  
D.  $\frac{\pi}{6}$ 

Answer: A

Watch Video Solution

14. If a tangent drawn at  $Pig(lpha,lpha^3ig)$  to the curve  $y=x^3$  meets it again at  $Qig(eta,eta^3ig)$ , then 2eta+lpha is equal to

A. 0

 $\mathrm{B.}-3\alpha$ 

C.  $3\alpha$ 

D.  $4\alpha$ 

#### Answer: B



**15.** The slope of normal at any point P of a curve (lying in the first quadrant) is reciprocal of twice the product of the abscissa and the ordinate of point P. Then, the equation of the curve is (where, c is an arbitrary constant)

A. 
$$y^2 = x + c$$
  
B.  $y = ce^{-x^2}$   
C.  $y = ce^{-x}$   
D.  $y^2 = \ln x + c$ 

## Answer: B



**16.** A shopkeeper has 11 copies each of nine different books, then the number of ways in which atleast one book can be selected is

- A.  $9^{11} 1$
- B.  $10^{10} 1$
- $C. 11^9 1$
- D.  $10^{9}$



17. Let  $|z_1|=3, |z_2|=2$  and  $z_1+z_2+z_3=3+4i$ . If the real part of  $(z_1\overline{z_2}+z_2\overline{z_3}+z_3\overline{z_1})$  is equal to 4, then  $|z_3|$  is equal to (where,  $i^2=-1$ )

A. 1

B. 2

C. 3

D. 4

Answer: B

**18.** From a point P, two tangents PA and PB are drawn to the hyperbola  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ . If the product of the slopes of these tangents is 1, then the locus of P is a conic whose eccentricity is equal to

B. 2

A. 1

C.  $\sqrt{2}$ 

D.  $\frac{1}{2}$ 



**19.** If  $\sin 2A = \frac{1}{2}$  and  $\sin 2B = -\frac{1}{2}$ , then which of the following is false?

A. 
$$\sin(A+B)$$
 may be 0

B.  $\cos(A - B)$  may be 0

C. sin(A + B) or cos(A - B) is zero

 $\mathsf{D.}\sin(A+B)=0$ 

#### Answer: D



**20.** Let B and C are the points of intersection of the parabola  $x = y^2$  and the circle  $y^2 + (x-2)^2 = 8$ . The

perimeter (in units) of the triangle OBC, where O is the

origin, is

A. 8

B.  $4\sqrt{5}$ 

 $\mathsf{C.}\,4\sqrt{5}+2$ 

D.  $4\left(\sqrt{5}+1\right)$ 

#### Answer: D



**22.** In a  $\triangle ABC$ , the sides BC, CA and AB are consecutive positive integers in increasing order. Let  $\overrightarrow{a}$ ,  $\overrightarrow{b}$  and  $\overrightarrow{c}$  are position vectors of the vertices A, B and C respectively. If  $(\overrightarrow{c} - \overrightarrow{a})$ .  $(\overrightarrow{b} - \overrightarrow{c}) = 0$ , then the value of  $|\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}|$  is equal to

Watch Video Solution

23. The value of 
$$\lim_{x o rac{5\pi}{4}} rac{\cot^3 x - \tan x}{\cos\left(x - rac{5\pi}{4}
ight)}$$
 is equal to

24. The area bounded by  $f(x) = \begin{cases} \sin(2x) & x \ge 0\\ \cos(2x) & x < 0 \end{cases}$  with the x - axis,  $x = -\frac{\pi}{4}$  and  $x = \frac{\pi}{4}$  is k square

units. Then, the value of 4k is equal to

Watch Video Solution

**25.** Let in  $\triangle ABC$  the coordinates of A are (0, 0). Internal

angle bisector of  $\angle ABC$  is x-y+1=0 and mid -

point of BC is (-1, 3). Then, the ordinate of C is