MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 88

Mathematics

1. The solution of the equation

$$(an^2 x - 1)^{-1} = 1 + 2\cos 2x$$
 is

A.
$$x=n\pi-rac{\pi}{2}$$

B.
$$x=n\pi\pm rac{\pi}{4}$$

C.
$$x=n\pi\pmrac{\pi}{3}$$

D.
$$x=n\pi$$

Answer: C

Watch Video Solution

2. Consider
$$f(x)=egin{cases} -2,&-1\leq x<0\ x^2-2,&0\leq x\leq 2 \end{cases}$$
 and $g(x)=|f(x)|+f(|x|).$ Then, in the interval $(-2,2),g(x)$ is

A. not differentiable at one point

B. differentiable at all points

C. not continuous

D. not differentiable at two points

Answer: A

Watch Video Solution

3. The differential equation of the family of curves $y=k_1x^2+k_2$ is given by (where, k_1 and k_2 are arbitrary constants and $y_1=\frac{dy}{dx},\,y_2=\frac{d^2y}{dx^2}$)

$$\mathsf{A.}\ y_1=x^2y_2$$

$$\mathtt{B.}\left(y_{1}\right)^{2}=xy_{2}$$

$$\mathsf{C.}\,xy_2=y_1$$

D.
$$y_1y_2=x$$

Answer: C

Watch Video Solution

4. If
$$\sin^{-1}\left(\frac{2a}{1+a^2}\right) + \sin^{-1}\left(\frac{2b}{1+b^2}\right) = 2\cot^{-1}\left(\frac{1}{x}\right)$$

, then x is equal to $[\,orall a,b\in(0,1)]$

A.
$$\frac{a-b}{1+ab}$$

B.
$$\frac{b}{1+ab}$$

$$\mathsf{C.}\; \frac{b}{1-ab}$$

D.
$$\frac{a+b}{1-ab}$$

Answer: D

5. Let the incentre of
$$\Delta ABC$$
 is $I(2,5)$. If $A=(1,13)$ and $B=(-4,1)$, then the sum of the slopes of sides AC and BC is

A.
$$\frac{3}{4}$$

$$\mathsf{B.}-\frac{4}{3}$$

$$\mathsf{C.}\ \frac{4}{3}$$

C.
$$\frac{4}{3}$$
D. $-\frac{3}{4}$

Answer: B

Watch Video Solution

6. Let there are 4 sections of 25 students each in a coaching class. Now, out of 150 students 100 are to be selected randomly and entrolled in these sections. Then, the probability that the students A and B (both present in 150 students) are selected

and placed in the same section, is

A. $\frac{10}{13}$

B. $\frac{16}{149}$

c. $\frac{2}{33}$

D. $\frac{5}{149}$

Answer: B

7. If the equation of the plane passing through (1, 2, 3) and situated at a maximum distance from point (2, 3, 4) is P = 0, then the distance (in units) of P = 0 from origin is

A.
$$\sqrt{3}$$

B.
$$2\sqrt{3}$$

$$\mathsf{C.}\,\sqrt{6}$$

D.
$$3\sqrt{2}$$

Answer: B

8. Consider the matrix $A=egin{bmatrix} x & 2y & z \ 2y & z & x \ z & x & 2y \end{bmatrix}$ and

 $\begin{bmatrix} z & x & 2y \end{bmatrix}$ $AA^T = 9I$. If Tr(A) > 0 and $xyz = \frac{1}{6}$, then the vlaue of $x^3 + 8y^3 + z^3$ is equal to (where, Tr(A), I and A^T denote the trace of matrix A i.e. the sum of all the principal diagonal elements, the identity matrix of the same order of matrix A and the transpose of matrix A respectively)

A. 20

B. 22

C. 26

D. 28

Answer: D

Watch Video Solution

9. If

$$\left(1+x+x^2
ight)^{25} = a_0 + a_1 x + a_2 x^2 + \, + a_{50}. \, x^{50}$$

then $a_0+a_2+a_4+...+a_{50}$ is :

A. even

B. odd and the form 3n

C. odd and of the form (3n-1)

D. odd and of the form (3n+1)

Answer: A

Watch Video Solution

10. A student has to answer 10 out of 13 questions in an examination. The number of ways in which he can answer if he must answer atleast 3 of the first five questions is 276 b. 267 c. 80 d. 1200

A. 276

B. 600

C. 840

D. 640

Answer: A

Watch Video Solution

11. If $an heta=3 an\phi$, then the maximum value of $an^2(heta-\phi)$ is

A. 1

 $\mathsf{B.}\,\frac{1}{3}$

C. 2

D. 4

Answer: B

12. Consider a relation R defined as aRb if 2+ab>0 where a, b are real numbers. Then, the relation R is

A. reflexive and symmetric

B. symmetric and transitive

C. transitive and reflexive

D. None of these

Answer: A

13. The length of the longest interval in which the function $f(x)=x^3-3a^2x+4$ is decreasing is $(\,orall a>0)$

A. a

B. 2a

C. 3a

D. 4a

Answer: B

14. The integral $I=\int\!\!\left(e^{\left(e^{\sin x}+\sin x\right)}\right)\!\cos xdx$ simpllifies to (where, c is the constant of integration)

A.
$$e^{\sin x} + c$$

B.
$$e^{\sin x + \cos x} + c$$

C.
$$e^{e^{\cos x}}+c$$

D.
$$e^{e^{\sin x}} + c$$

Answer: D

15. The mean and variance of 7 observations are 7 and 22 respectively. If 5 of the observations are 2, 4, 10, 12, 14, then the remaining 2 observations are

- A. 4, 3
- B. 2, 5
- C. 6, 1
- D. 4, 2

Answer: C

16. The maximum area (in sq. units) bounded by

$$y=\sin x, y=ax(\,orall a\in[1,4])$$
 and then line

$$\pi-2x=0$$
 is

A.
$$\pi^2$$

B.
$$\frac{\pi^2}{2}-1$$

$$C.\pi+2$$

D.
$$\pi^{2} - 4$$

Answer: B

17. If z_1, z_2, z_3 are 3 distinct complex such that

$$rac{3}{|z_1-z_2|}=rac{5}{|z_2-z_3|}=rac{7}{|z_3-z_1|}$$
, then the value of $rac{9ar{z}_3}{z_1-z_2}+rac{25ar{z}_1}{z_2-z_3}+rac{49ar{z}_2}{z_3-z_1}$ is equal to

A. 0

. .

B. 1

C. -1

D. 15

Answer: A

18. The line 2x+y=3 cuts the ellipse $4x^2+y^2=5$ at points P and Q. If θ is the acute angle between the normals at P and Q, then θ is equal to

A.
$$\tan^{-1}\left(\frac{4}{5}\right)$$

$$\mathsf{B.}\sin^{-1}\!\left(\frac{3}{\sqrt{34}}\right)$$

$$\mathsf{C.}\cos^{-1}\!\left(\frac{3}{\sqrt{34}}\right)$$

D.
$$\cot^{-1}\left(\frac{3}{4}\right)$$

Answer: C

19. Let
$$\overrightarrow{a} = x^2 \hat{i} - 3\hat{j} + (x-3)\hat{k}$$
 and

$$\overrightarrow{b} = \hat{i} + 3\hat{j} - (x - 3)\hat{k}$$
 be two vectors such that $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right|$. If angle between $4\overrightarrow{a} + 7\overrightarrow{b}$ and $7\overrightarrow{a} - 4\overrightarrow{b}$ is equal to θ . Then

 $\cos 2 heta$ is equal to

A.
$$-\frac{1}{2}$$

$$B. \frac{\sqrt{3}}{2}$$

$$C. -1$$

D.
$$\frac{1}{5}$$

Answer: C

20. Let D is a point on the line $l_1: x+y-2=0$, S(3,3) is a fixed point and line l_2 is the perpendicular to DS and passing through S. If MK is another point on the line l_1 (other than D), then the locus of the point of intersection of l_2 and angle bisector of the angle MDS is a conic whose length of latus rectus rectum is equal to

A.
$$4\sqrt{2}$$

B. 4

C. 8

D.
$$2\sqrt{2}$$

Answer: A

Watch Video Solution

21. The value of $\lim_{xrar2\pi} \frac{\cos x - (\cos x)^{\cos x}}{1 - \cos x + \ln(\cos x)}$ is equal to

Watch Video Solution

22. Let A be a non - singular matrix of order 3 such that $Aadj(3A)=5AA^T$, then $\sqrt[3]{\left|A^{-1}\right|}$ is equal to

23. If
$$f(n+1)=rac{2f(n)+1}{2}$$
 for $n=1,2,3...$ and $f(1)=2$, then $rac{f(101)}{10}$ is equal to

24. If the integral
$$I=\int_0^{19\pi}\frac{dx}{1+e^{\cos^3x}}$$
 has the value, $\frac{k\pi}{2}$, then $\frac{k}{2}$ is equal to

25. The line $L_1\equiv 3x-4y+1=0$ touches the circles C_1 and C_2 . Centers of C_1 and C_2 are $A_1(1,2)$ and $A_2(3,1)$ respectively Then, the length (in units) of the transverse common tangent of C_1 and C_2 is equal to

