© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 90

Mathematics

1. Consider three statements
p : Aman will come today
q : Aditi will be at her home
r : They will go to party.

Then, the statement $(q \wedge \sim r) \Rightarrow p$ is logically equivalent to
A. If Aman will not come today then they will go to party.
B. If Aman will not come today then they will not go to party.
C. Aman will come today or Aditi will not be at her home or they will go to party.
D. Aman will come today or Aditi will go to party.

Answer: C

2. Let $f(x)= \begin{cases}\frac{1+\cos x}{(\pi-x)^{2}} \cdot \frac{\sin ^{2} x}{\ln \left(1+\pi^{2}-2 \pi x+x^{2}\right)} & x \neq \pi \\ \lambda & x=\pi\end{cases}$
A. 1
B. -1
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: C

D Watch Video Solution

3. The set $(A \cup B \cup C) \cap\left(A \cap B^{\prime} \cap B^{\prime}\right)^{\prime} \cap C$ is equal to
A. $A \cap B$
B. A
C. $B \cap C^{\prime}$
D. C

Answer: D

- Watch Video Solution

4. Consider the following two statements P and Q .
$P: \cos ^{-1}\left(\cos \frac{4 \pi}{3}\right)=\frac{4 \pi}{3}$
$Q: \sec ^{2}\left(\cot ^{-1} \cdot \frac{1}{2}\right)+\operatorname{cosec}^{2}\left(\tan ^{-1} \cdot \frac{1}{3}\right)=15$
Then, which of the following true?
A. Both P and Q are true
B. P is true, but Q is false
C. P is false, but Q is true
D. Both P and Q are false

Answer: C

D Watch Video Solution

5. Let \vec{a} and \vec{b} be two orthogonal unit vectors and \vec{c} is a vector such that $\vec{c} \times \vec{b}=\vec{a}-\vec{c}$, then $|\vec{c}|$ is equal to
A. 1
B. $\sqrt{2}$
C. $\frac{1}{\sqrt{2}}$
D. 2

Answer: C

D Watch Video Solution

6. The angle between the tangents drawn from the point
$(4,1)$ to the parabola $x^{2}=4 y$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: C

- Watch Video Solution

7. Let A and B be two symmetric matrices. prove that $A B=B A$ if and only if $A B$ is a symmetric matrix.

D Watch Video Solution

8. A biased coin is tossed repeatedly until a tail appears
for the first time. The head is 3 times likely to appear as
the tail. The probability that the number of tosses
required will be more than 4 , given that in first two toss no tail has occur, is
A. $\frac{3}{4}$
B. $\frac{7}{8}$
C. $\frac{9}{16}$
D. $\frac{11}{32}$

Answer: C

D Watch Video Solution

9. The remainder obtained when 51^{25} is divided by 13 is
A. 3
B. 7
C. 12
D. 11

Answer: C

- Watch Video Solution

$$
\begin{aligned}
& \text { 10. } \frac{5}{1^{2} \cdot 4^{2}}+\frac{11}{4^{2} \cdot 7^{2}}+\frac{17}{7^{2} \cdot 10^{2}}+ \\
& \text { A. } \frac{1}{2} \\
& \text { B. } \frac{1}{3}
\end{aligned}
$$

C. 2
D. 3

- Watch Video Solution

11. If the area bounded by the curves $\left\{(x, y) \mid x^{2}-y+1 \geq 0\right\}$ and $\{(x, y) \mid x+y-3 \geq 0\}$ is k square units, then the value of $3 k$ is equal to
A. 27
B. 9
C. $\frac{9}{2}$
D. $\frac{27}{2}$

Answer: D

12. Find the number of ordered pairs of (x, y) satisfying the equation $y=|\sin x|$ and $y=\cos ^{-1}(\cos x)$, where $x \in[-\pi, \pi]$
A. 1
B. 2
C. 3
D. 4

Answer: C

13. Let $P \equiv(a, 0), Q \equiv(-1,0)$ and $R \equiv(2,0)$ are three given points. If the locus of the point S satisfying the reaction $S Q^{2}+S R^{2}=2 S P^{2}$ is $2 x+3=0$. Then the sum of all possible values of a is
A. 1
B. -4
C. 3
D. -3

Answer: D
14. The equation of the plane which passes through the point of intersection of $\frac{x-1}{3}=\frac{y-2}{1}=\frac{z-3}{2}$ and $\frac{x-3}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ and perpendicular to $4 \hat{i}+3 \hat{j}+5 \hat{k}$, is
A. $4 x+3 y+5 z=50$
B. $4 x+3 y+5 x=25$
C. $4 x+3 y+5 z=10$
D. $4 x-3 y+5 z=50$

Answer: A
15. If the common tangets of
$x^{2}+y^{2}=r^{2}$ and $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ form a square, then the area (in sq. units) of the square is
A. 50
B. 100
C. 25
D. 40

Answer: A

- Watch Video Solution

16. If z_{i} (where $i=1,2, \ldots \ldots \ldots \ldots \ldots \ldots \ldots .6$) be the roots of the equation $z^{6}+z^{4}-2=0$, then $\Sigma_{i=1}^{6}\left|z_{i}\right|^{4}$ is equal to
A. 4
B. 6
C. 8
D. 10

Answer: D

17. The cosine of the acute angle between the curves
$y=\left|x^{2}-1\right|$ and $y=\left|x^{2}-3\right|$ at their points of intersection is
A. $\frac{1}{3}$
B. $\frac{7}{9}$
C. $\frac{11}{9 \sqrt{2}}$
D. $\frac{2}{7}$

Answer: B
18. The integral $I=\int\left(\frac{1}{x \cdot \sec x}-\ln \left(x^{\sin x}\right)\right) d x$ simplifies to (where, c is the constant of integration)
A. $(\ln x)(\sin x)+c$
B. $(\ln x)(\cos x)+c$
C. $x \ln (\sin x)+c$
D. $x \ln (\cos x)+c$

Answer: B

(D) Watch Video Solution

19. If $0<\alpha<\frac{\pi}{3}$, then $\alpha(\sec \alpha)$ is
A. less than $\frac{\pi}{3}$
B. greater than $\frac{\pi}{3}$
C. less than $\frac{2 \pi}{3}$
D. greater than $\frac{2 \pi}{3}$

Answer: C

- Watch Video Solution

20. If the curve satisfies the differential equation $x . \frac{d y}{d x}=x^{2}+y-2$ and passes through $(1,1)$, then is also passes through the point
A. $(4,4)$
B. $(3,3)$
C. $(2,2)$
D. $(0,0)$

Answer: C

D Watch Video Solution

21. If $\lim _{x \rightarrow 0} \frac{\sin 2 x-a \sin x}{\left(\frac{x}{3}\right)^{3}}=L$ exists finitely, then the absolute value of L is equal to
22. Let $A=\left[a_{i j}\right]_{5 \times 5}$ is a matrix such that $a_{i j}=\left\{\begin{array}{ll}3 & \forall i=j \\ 0 & \text { Aai } \neq j\end{array}\right.$. If $\left|\frac{\operatorname{adj}(\operatorname{adj} A)}{3}\right|=(\sqrt{3})^{\lambda}$, then λ is equal to (where, $\operatorname{adj}(M)$ represents the adjoint matrix of matrix M)

D Watch Video Solution

23. If the number of solutions of the equation $x+y+z=20$, where $1 \leq x<y<z$ and $x, y, z \in I$ is k, then $\frac{k}{10}$ is equal to

D Watch Video Solution

24. From the point $A(0,3)$ on the circle $x^{2}+4 x+(y-3)^{2}=0$, a chord AB is drawn and extended from point B to a point M such that $A M=2 A B$.

The perimeter of the locus of M is $p \pi$ units. Then, the value of p is

- Watch Video Solution

25. $I=\int_{0}^{2} \frac{e^{f(x)}}{e^{f(x)}+e^{f(2-x)}} d x$ is equal to

- Watch Video Solution

