

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 91

Mathematics

$$2t^3-(an[x+y+z]\pi)t^2-11t+2020=0$$
, then $egin{bmatrix} x&y&z\ y&z&x\ z&x&y \end{bmatrix}$ is equal to

(where, [x] denotes the greatest integral value less than or equal to x)

A. 20

B. -10

C. 0

D. 1

Answer: C

Watch Video Solution

- **2.** Let $f(x)=\min\Bigl\{\sqrt{4-x^2},\sqrt{1+x^2}\Bigr\}$ orall $x\in[-2,2]$ then the number of points where f(x) is non differentiable is
 - A. 1
 - В. О
 - C. 4
 - D. 2

Answer: C

Watch Video Solution

3. The probability of a problem being solved by 3 students independently are $\frac{1}{2}$, $\frac{1}{3}$ and α respectively. If the probability that the problem is solved

in P(S), then P(S) lies in the interval (where, $\alpha \in (0,1)$)

A.
$$\left(0, \frac{1}{2}\right)$$

$$\mathsf{B.}\left(\frac{1}{3},\frac{1}{2}\right)$$

C.
$$\left(\frac{2}{3}, 1\right)$$
D. $\left(\frac{1}{3}, \frac{2}{3}\right)$

Answer: C

Watch Video Solution

4. Consider a matrix $A=\begin{bmatrix}0&1&2\\0&-3&0\\1&1&1\end{bmatrix}$. If $6A^{-1}=aA^2+bA+cI$, where $a,b,c\in \ \ {
m and}\ \ I$ is an identity matrix, then a+2b+3c is equal to

A. 10

B. -10

C. 8

D. 0

Answer: B

Watch Video Solution

6. The value of the integral $I=\int_{rac{1}{\pi}}^{\sqrt{3}}rac{dx}{1+x^2+x^3+x^5}$ is equal to

If the value of the

sum

 $29ig(.^{30}\ C_0ig) + 28ig(.^{30}\ C_1ig) + 27ig(.^{30}\ C_2ig) + \ldots \ldots + 1ig(.^{30}\ C_{28}ig) + 0.\ ig(.^{30}\ C_{29}ig)$

5.

is equal to $K.2^{32}$, then the value of K is equal to

A. 7

B. 14

 $\mathsf{C.}\,\frac{5}{2}$

Answer: D

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{12}$$

D.
$$\frac{\pi}{6}$$

Answer: C

Watch Video Solution

7. Two circles with centres at A and B touch each other externally at T. Let BD is the tangent at D and TC is a common tangent. If AT has length 3 units and BT has length 2 units, then the length (in units) of CB is

- $\mathsf{C.}\ \frac{5}{3}$
- D. $\frac{7}{4}$

Answer: B

- **8.** Let $a_n=16,4,1,\ldots$ be a geometric sequence. The value of
- $\sum_{n=1}^{\infty} \sqrt[n]{P_n}$, where P_n is the product of the first n terms, is equal to.
 - A. 8
 - B. 16

 - D. 64
- **Answer: C**

9. A curve in the first quadrant is such that the slope of OP is twice the slope of the tangent drawn at P to the curve, where O is the origin and P is any general point on the curve. If the curve passes through (4, 2), then its equation is

A.
$$y = x^2 - 14$$

$$B. u^2 = x$$

$$\mathsf{C.}\, y = x^3 - 62$$

D.
$$y = \sin(x - 4) + 2$$

Answer: B

Watch Video Solution

10. There are six periods in each working day of the school. In how many ways can one arrange 5 subjects such that each subject is allowed at least

one period? A. 210 B. 1800 C. 360 D. 120 **Answer: B** Watch Video Solution **11.** If the maximum area bounded by $y^2=4x$ and the line $y=mx(\,orall m\in[1,3])$ is k square units, then the smallest prime number greater than 3k is A. 3 B. 5 C. 7

Answer: D

Watch Video Solution

12. The indefinite integral $\int e^{e^x} \left(\frac{x e^x \cdot \ln x + 1}{x} \right) dx$ simplifies to (where, c is the constant of integration)

A.
$$x \ln(\ln x) + c$$

B.
$$e^{e^x} + c$$

C.
$$rac{e^{e^x}}{r}+c$$

D.
$$e^{e^x}$$
. $\ln x + c$

Answer: D

13. The line through the points $(m,\,-9)$ and (7,m) has slope m. Then, the x - intercept of this line is

$$A. - 18$$

 $\mathsf{B.}-6$

C. 6

D. 18

Answer: C

Watch Video Solution

14. All the values of m for which both roots of the equation $x^2-2mx+m^2-1=0$ are greater than -2 but less than 4, lie in the interval

A. 0

B. 1

D. more than 2

Answer: D

Watch Video Solution

15. The locus of the midpoint of the chords of the hyperbola $\frac{x^2}{25} - \frac{y^2}{36} = 1$ which passes through the point (2, 4) is a hyperbola, whose transverse axis length (in units) is equal to

- A. $\frac{16}{5}$
- $\mathsf{B.}\;\frac{4}{3}$
- $\mathsf{C.}\ \frac{8}{5}$
- D. $\frac{61}{25}$

Answer: A

16. The real part of the complex number z satisfying $|z-1-2i| \leq 1$ and having the least positive argument, is

- A. $\frac{4}{5}$
- $\mathsf{B.}\,\frac{8}{5}$
- $\mathsf{C.}\,\frac{6}{5}$
- D. $\frac{7}{5}$

Answer: B

Watch Video Solution

17. The mean and variance of 10 observations are found to be 10 and 5 respectively. On rechecking it is found that an observation 5 is incorrect. If the incorrect observation is replaced by 15, then the correct variance is

A. 7

B. 8

C. 9

D. 4

Answer: D

Watch Video Solution

- **18.** The value of $\lim_{x o\pi} rac{ anig(\pi\cos^2xig)}{\sin^2(2xig)}$ is equal to
 - A. 1
 - B. π
 - $\mathsf{C.}-\frac{\pi}{4}$
 - D. $\frac{\pi}{2}$

Answer: C

19. If $f(x)=rac{x^2-\left[x^2
ight]}{x^2-\left[x^2-2
ight]}$ (where, $[.\,]$ represents the greatest integer part of x), then the range of f(x) is

A.
$$[0, 1)$$

B. (-1, 1)

$$\mathsf{C}.\left(0,\infty\right)$$

D.
$$\left[0, \frac{1}{3}\right)$$

Answer: D

- **20.** If the angle between the plane x-3y+2z=1 and the line $\frac{x-1}{2}=\frac{y-1}{-1}=\frac{z-1}{-3}$ is θ , then $\sec 2\theta$ is equal to
- - A. $\frac{107}{11}$
 - B. $\frac{49}{48}$
 - c. $\frac{100}{9}$

D.
$$\frac{87}{79}$$

Answer: B

- **21.** If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three vectors such that $3\overrightarrow{a} + 4\overrightarrow{b} + 6\overrightarrow{c} = \overrightarrow{0}$, $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 3$ and $|\overrightarrow{c}| = 4$, then the value of $-864\left(\frac{\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}}{6}\right)$ is equal to
 - Watch Video Solution

- **22.** If the number of principal solutions of the equation $\tan(7\pi\cos x)=\cot(7\pi\sin x)$ is k, then $\frac{k}{5}$ is equal to
 - Watch Video Solution

23. The number of real values of x that satisfies the equation

$$x^4 + 4x^3 + 12x^2 + 7x - 3 = 0$$
 is

24. If the normals of the parabola $y^2=4x$ drawn at the end points of its latus rectum are tangents to the circle $(x-3)^2+(y+2)^2=r^2$, then the value of r^4 is equal to

25. A man is walking towards a vertical pillar in a straight path at a uniform speed. At a certain point A on the path, he observes that the angle of elevationof the top of the pillar is 30° . After walking for $5(\sqrt{3}+1)$ minutes from A in the same direction, at a point B, he observes that the angle of elevation of the top of the pillar is 45° . Then the time taken (in minutes) by him, to reach from B to the pillar, is (take $\sqrt{3}=1.73$)

