©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 94

Mathematics

1. Consider the cubic $f(x)=x^{3}-3 x+a$
where $\quad a \in(0,2)$. Then, the equation
$f(x)=0$ has
A. 3 real solutions
B. 2 real solutions
C. 1 real solutions
D. no real solutions

Answer: A

D Watch Video Solution

2. The integral $I=\int \frac{\sin ^{3} \theta \cos \theta}{\left(1+\sin ^{2} \theta\right)^{2}} d \theta$
simplifies to (where, c is the constant of
integration)

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \ln (\sin \theta)+\frac{1}{1+\sin ^{2} \theta}+c \\
& \text { B. } \frac{1}{2} \ln \left(1+\sin ^{2} \theta\right)+\frac{1}{1+\sin ^{2} \theta}+c \\
& \text { C. } \ln (\sin \theta)+\frac{1}{1+\sin ^{2} \theta}+c \\
& \text { D. } \ln \left(\sin ^{2} \theta+1\right)+\frac{1}{\sin ^{2} \theta+2}+c
\end{aligned}
$$

Answer: B

D Watch Video Solution

3. For how many values of ' x ' in the closed

interval | $[-4,-1]$ |
| :---: | is the

$\left[\begin{array}{ccc}3 & -1+x & 2 \\
3 & -1 & x+2 \\
x+3 & -1 & 2\end{array}\right]$ singular?
A. 1
B. 3
C. 4
D. 5

Answer: A
4. Consider the
function
$f(x)=\cos ^{-1}\left(\left[2^{x}\right]\right)+\sin ^{-1}\left(\left[2^{x}\right]-1\right)$, then
(where [.] represents the greatest integer part function)
A. the domain of $f(x)$ is $x \in(-\infty, 0]$
B. the range of $f(x)$ is singleton
C. $f(x)$ is an even function
D. $\mathfrak{f}(x)$ is an odd function

- Watch Video Solution

5. Consider three statements

p : person 'A' passed in mathematics exam
q : Person 'A' passed in physics exam
r : Person 'A' passed in chemistry exam,

Then the statement
$-((-(p \Rightarrow q)) \Rightarrow r)$ is equivalent to
A. Person A passed only in mathematics
among mathematics, physics and
chemistry.
B. Person B failed only in physics among mathematics, physcis and chemistry.
C. Person A passed in all the three subjects
mathematics and physics and chemistry.
D. Person A passed in chemistry but failed
in mathematics and physics.

Answer: B

D Watch Video Solution

6. If $f(x)$ is continuous in $[0,1]$ and
$f\left(\frac{1}{3}\right)=12$, then the value of
$\lim _{n \rightarrow \infty} f\left(\frac{\sqrt{n}}{3 \sqrt{n}+1}\right)$ is equal to
A. 2
B. 3
C. 12
D. None of these

Answer: C
7. For $x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, the range of values of
values
$f(x)=2+\sin x+\sin ^{3} x+\sin ^{5} x \ldots \ldots \infty$
A. $(0,1)$
B. $(-\infty, \infty)$
C. $(-2,2)$
D. None of these

Answer: B
8. A biased coin is tossed 10 times. The head is

2 times more likely to appear than the tail. The
probability that $2^{\text {nd }}$ tail and $4^{\text {th }}$ tail occur at
$4^{\text {th }}$ and $10^{\text {th }}$ tosses respectively is

$$
\begin{aligned}
& \text { A. } \frac{16}{3^{9}} \\
& \text { B. } \frac{320}{3^{10}} \\
& \text { C. } \frac{320}{3^{9}} \\
& \text { D. } \frac{160}{3^{10}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

9. If the line $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-m}{2}$ lies in
the plane $2 x+l y+z=7$, then the value of $m+2 l$ is equal to
A. 1
B. 2
C. -1
D. -2

Answer: C

- Watch Video Solution

10. The least positive integral value of k for
which $\left[\begin{array}{cc}\cos . \frac{2 \pi}{7} & -\sin \cdot \frac{2 \pi}{7} \\ \sin . \frac{2 \pi}{7} & \cos . \frac{2 \pi}{7}\end{array}\right]^{k}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is
A. 0
B. 3
C. 7
D. 14

Answer: C

D Watch Video Solution

11. The solution of the differential equation
$x d x+y \sin ^{2} x d y=y d y+x \sin ^{2} y d x$ is
(where, c is an arbitrary constant)
A. $x \tan x=\sec y+c$
B. $x \tan y=\sec x+c$
C.
$x \tan x-\ln |\sec x|=y \tan y-\ln |\sec y|+c$

D. $x \tan x=\ln |\sec y|+c$

Answer: C

D Watch Video Solution

12. There are fifty persons among whom 2 are brothers. The number of ways they can be arranged in a circle, if there is exactly one person between the two brothers, is
A. 2×48 !
B. 12
C. 360
D. 7×8 !

Answer: A

D Watch Video Solution
13. The product of the roots of the equation whose roots are greater by unity than the equation $x^{3}-5 x^{2}+6 x-3=0$ is equal to
A. 3
B. 12
C. 15
D. 18

Answer: C

D Watch Video Solution

14. The focal chord of $y^{2}=64 x$ is tangent to $(x-4)^{2}+(y-2)^{2}=4$, th en the square
root of the length of this focal chord is equal
to
A. $\frac{74}{9}$
B. $\frac{37}{3}$
C. $\frac{74}{3}$
D. $\frac{37}{9}$

Answer: C
(Watch Video Solution
15.
$\frac{(1+\cos 2 x)}{\sin 2 x}+3\left(1+(\tan x) \tan \cdot \frac{x}{2}\right) \sin x=4$
then the value of $\tan x$ can be equal to
A. 2
B. $\frac{1}{2}$
C. 3
D. $\frac{1}{3}$

Answer: D

16. Let $0<\theta_{1}<\theta_{2}<\theta_{3}<\ldots . . .$.

denotes the positive solutions of the equation
$3+3 \cos \theta=2 \sin ^{2} \theta$. If $\theta_{3}+\theta_{7}=a \pi$, where
a is an integer, then the value of a is equal to
A. 6
B. 7
C. 8
D. 4

Answer: A
17. If the point $P\left(\frac{3 a}{2}, 1\right)$ lies between the two different lines $x+y=a$ and $x+y=2 a$, then the least integral value of $|a|$ is equal to
A. 1
B. 2
C. 3
D. 4
18. 50th term of the sequence
$3+12+25+42+$ is 5145 b. 5148 c. 5142 d.

5195

A. 5145
B. 5148
C. 5142
D. 5195

Answer: B

- Watch Video Solution

19. A hyperbola having the transverse axis of length $\sqrt{2}$ units has the same focii as that of ellipse $3 x^{2}+4 y^{2}=12$, then its equation is

$$
\begin{aligned}
& \text { A. } 2 x^{2}-2 y^{2}=1 \\
& \text { B. } 2 x^{2}-2 y^{2}=3 \\
& \text { C. } x^{2}-y^{2}=-2 \\
& \text { D. } x^{2}-y^{2}=2
\end{aligned}
$$

- Watch Video Solution

20. An insect starts from the origin in the argand plane and goes $4 \mathrm{~km}\left(N 45^{\circ} E\right)$ then it moves $3 \mathrm{~km}\left(N 45^{\circ} W\right)$ and then takes an angular movement of $\frac{\pi}{3}$ about origin in the anticlockwise direction. The final position of the insect is

$$
\begin{aligned}
& \text { A. }(4-3 i) e^{\frac{-5 \pi}{6}} \\
& \text { B. }(4+3 i) e^{\frac{-5 \pi}{6}} \\
& \text { C. }(4-3 i) e^{\frac{i 3 \pi}{4}}
\end{aligned}
$$

D. $(4+3 i) e^{\frac{-7 \pi}{12}}$

Answer: D

D Watch Video Solution

$$
\begin{aligned}
& \text { 21. If the area enclosed by } \\
& y^{2}=2 x \text { and } x^{2}+4+4 x=4 y^{2} \text { is } \mathrm{k} \text { square }
\end{aligned}
$$

units, then the value of 3 k is equal to
22. If $\lim _{x \rightarrow 0}\left(1+p x+q x^{2}\right)^{\operatorname{cosec} x}=2048$,
then the value of $\frac{p}{11}$ is equal to (take $\ln 2=0.69)$

- Watch Video Solution

23.

Let
$\overrightarrow{P R}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\overrightarrow{S Q}=\hat{i}-3 \hat{j}-4 \hat{k}$
represent the diagonals of the parallelogram
PQRS. If $\overrightarrow{P T}=2 \hat{i}-\hat{j}+\hat{k}$ is another vector,
then the volume (in cubic units) of the
parallelepiped formed by the vectors $\overrightarrow{P T}, \overrightarrow{P Q}$ and $\overrightarrow{P S}$ is

D Watch Video Solution

24. The value of the expression
$\Sigma_{k=0}^{27} k .{ }^{27} C_{k}\left(\frac{1}{3}\right)^{k}\left(\frac{2}{3}\right)^{27-k}$ is equal to

D Watch Video Solution

25. Let P and Q be 2 circles externally touhing each other at point X. Line segment $A B$ is a
direct common tangent to circle P and Q at
points A and B respectively. Another common
tangent to P and Q at X intersects line $A B$ at a
point Y . If $\mathrm{BY}=10$ units and the radius of P is 9
units, then the value of the reciprocal of the radius of the radius of the circle Q is equal to
