

MATHS

BOOKS - NTA MOCK TESTS

NTA JEE MOCK TEST 95

Mathematics

1. 5 boys & 4 girls sit in a straight line. Find the number of ways in which they can be seated if 2 girls aretogether & the other 2 are also together but separate from the first 2.:

A. 5400

B. 10800

C. 21600

D. 43200

Answer: D

Watch Video Solution

- 2. Let A and B are two non singular matrices such that
- $AB=BA^2,\,B^4=I\, ext{ and }\,A^k=I$, then k can be equal to

A. 5

- B. 10
- C. 15
- D. 16

3. If
$$g(x)$$
 is a differentiable function such that

$$\int_1^{\sinlpha}x^2g(x)dx=(\sinlpha-1),\ oralllpha\in\left(0,rac{\pi}{2}
ight)$$
, then the value of $gigg(rac{1}{3}igg)$ is equal to

$$\mathsf{B.}\;\frac{4}{3}$$

$$\operatorname{C.}\frac{\sqrt{3}}{2}$$

D. 9

Answer: D

4. Let
$$f(heta)=rac{1}{1+(an heta)^{2021}}$$
, then the value of $\sum_{ heta=1^{\circ}}^{89^{\circ}}f(heta)$ is

equal to

c.
$$\frac{89}{2}$$

D.
$$\frac{91}{2}$$

Answer: C

Watch Video Solution

5. If the circle $x^2+y^2=4x+8y+5$ intersects the line 3x-4y=m at two distinct points, then the number of possible integral values of m is equal to

- A. 51
- B. 50
- C. 49
- D. 48

Watch Video Solution

- 6. Let 2 planes are being contained by the vectors $lpha\hat{i}+3\hat{j}-\hat{k},\,\hat{i}+(lpha-1)\hat{j}+2\hat{k}$ and $3\hat{i}+5\hat{j}+2\hat{k}$. If the angle between these 2 planes is heta, then the value of $\cos^2 heta$ is equal to

A. $\frac{15}{17}$

C.
$$\frac{289}{2151}$$
D. $\frac{17}{2151}$

Watch Video Solution

triplet pair of the form
$$(x,\,y,\,z)$$
 which satisfy all the equations

7. If (1, 2, p), (2, 8, -6) and $(\alpha^2 - 2\alpha, p, 1)$ are ordered

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1, \frac{x}{b} + \frac{y}{c} + \frac{z}{a} = 1 \text{ and } \frac{x}{c} + \frac{y}{a} + \frac{z}{b} = 1,$$
 then the sum of all the values of α is equal to (where, $ab + bc + ca \neq 0$)

A. 3

B. 2

C. 0

Answer: B

Watch Video Solution

8. If α,β and γ are the roots of the equation $x^3-px^2+qx-r=0$, then the value of $\frac{\alpha\beta}{\gamma}+\frac{\beta\gamma}{\alpha}+\frac{\gamma\alpha}{\beta}$ is equal to

A.
$$pq + 3r$$

B.
$$pq + r$$

$$\mathsf{C.}\ pq-3r$$

D.
$$\frac{q^2-2pr}{r}$$

Answer: D

9. Let p, q and r be three statements. Consider two compound statements

$$S_1\!:\!(p\Rightarrow q)\Rightarrow r\equiv p\Rightarrow (p\Rightarrow r)$$

$$S_2\!:\!(p\Leftrightarrow q)\Leftrightarrow r\equiv p\Leftrightarrow (q\Leftrightarrow r)$$

State in order, whether $S_1,\,S_2$ are true of false.

(where, T represents true F represents false)

A. TT

B. TF

C. FT

D. FF

Answer: A

10. Two poles standing on a horizontal ground are of height x meters and 40 meters respectively. The line joining their tops makes an angle of 30° with the ground and the distance between the foot of the poles is $30\sqrt{3}$ meters, then the value of x can be

- A. 20
- B. 30
- C. 10
- D. 50

Answer: C

the function $f: R \to A$ defined

as

 $f(x) = \sin^{-1}\left(\frac{x}{1+x^2}\right)$ is a surjective function, then the set

A is

11.

A.
$$\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$$

B.
$$\Big[-rac{\pi}{2},rac{\pi}{2}\Big]$$

$$\mathsf{C.}\left[\,-\,\frac{\pi}{3},\,\frac{\pi}{6}\right]$$

D.
$$\left[0, \frac{\pi}{3}\right]$$

Answer: A

Watch Video Solution

If function $f(x) = \left\{ egin{array}{ll} a\sqrt{x+7} & 0 \leq x < 2 \ bx+1 & x \geq 2 \end{array}
ight.$ is differentiable $a \geq 0$, then the 2a + 4b is equal to

- **A.** 1
- B. 5
- C. 4
- D. 9

Answer: A

Watch Video Solution

13. The integral $I=\int\!\!\frac{2\sin x}{(3+\sin 2x)}dx$ simplifies to (where, C is the constant of integration)

A.
$$\ln\left|rac{2+\sin x-\cos x}{2-\sin x+\cos x}
ight|- an^{-1}(\sin x+\cos x)+C$$

$$\mathsf{B.} \ln(\sin x) + \sin 2x + C$$

$$\mathsf{C.}\sin(2x) - \ln(\cos x) + C$$

D.

$$rac{1}{4} \mathrm{ln} \Big| rac{2 + \sin x - \cos x}{2 - \sin x + \cos x} \Big| - rac{1}{\sqrt{2}} \mathrm{tan}^{-1} \Bigg(rac{\sin x + \cos x}{\sqrt{2}} \Bigg) + C$$

Answer: D

Watch Video Solution

- 14. The least positive term of an arithmetic progression whose first two term are $\frac{5}{2}$ and $\frac{23}{12}$ is
 - A. 6

 - B. 5
 - c. $\frac{1}{6}$
 - D. $\frac{37}{7}$

Answer: C

y=0 to x=1 is equal to

15. Let
$$f(x)=\min\left(x+1,\sqrt{1-x}
ight)orall x\leq 1.$$
 Then, the area (in sq. units(bounded by $y=f(x),y=0$ and $x=0$ from

A.
$$\frac{1}{3}$$

$$\mathsf{B.}\;\frac{2}{3}$$

c.
$$\frac{4}{9}$$

D. 1

Answer: B

16. The solution of the differential equation $ydx-xdy+\ln xdx=0$ is (where, C is an arbitrary constant)

$$\mathsf{A.}\, y = (\ln x)^2 + C$$

B.
$$y = (\ln x + 1) + C$$

C.
$$y = -(\ln x + 1) + C$$

$$\mathsf{D}.\,y = (\ln x)(x+C)$$

Answer: D

17. The perpendicular bisector of the line segment joining A(1, 4) and B(t, 3) has y - intercept equal to -4. Then, the product of all possible values of t is equal to

- **A.** 1
- B. 2
- C. 16
- D.-4

Watch Video Solution

18. Dice A has 4 red and 2 white faces whereas dice B has 3 red and 3 white faces. A coin is tossed once, if it falls head then the game continues by throwing the dice A and if it falls tail then the dice B is to be used. If red turns up at first 3 throws, then the probability that dice A is being used is

A. $\frac{1}{37}$

$$\mathsf{B.}\ \frac{64}{91}$$

C.
$$\frac{9}{41}$$

$$\mathsf{D.}\;\frac{27}{35}$$

Answer: B

Watch Video Solution

19. If the normals at two points (x_1,y_1) and (x_2,y_2) of the parabola $y^2=4x$ meets again on the parabola, where $x_1+x_2=8$ then $|y_1-y_2|$ is equal to

A.
$$\sqrt{2}$$

B. 3

Watch Video Solution

20. If the locus of the complex number z given by $arg(z+i)-arg(z-i)=\frac{2\pi}{3}$ is an arc of a circle, then the length of the arc is

A.
$$\frac{4\pi}{3}$$

$$\mathsf{B.}\,\frac{4\pi}{3\sqrt{3}}$$

C.
$$\frac{2\sqrt{3}}{3}$$

$$\mathrm{D.}~\frac{2\pi}{3\sqrt{3}}$$

Answer: B

21. The coefficient of the $(2m+1)^{ ext{th}}$ and $(4m+5)^{ ext{th}}$ terms in the expansion of $(1+x)^{100}$ are equal, then the value of $\frac{m}{2}$ is equal to

22. If the line $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}$ intersect the xy and yz plane at points A and B respectively. If the volume of the tetrahedron OABC is V cubic units (where, O is the origin) and point C is (1, 0, 4), then the value of 102V is equal to

23. The value of
$$\lim_{x\to 0} \frac{\sin^2 3x}{\sqrt{3+\sec x-2}}$$
 is equal to

24. If the acute formed between y - axis and the tangent drawn to the curve $y=x^2+4x-17$ at the point $P\Big(\frac{5}{2},\ -\frac{3}{4}\Big)$ is θ , the value of $\cot\theta$ is equal to

25. Let C_1 be the graph of xy=1 and the reflection of C_1 in the line y=2x is C_2 . If the equation of C_2 is expressed as $12x^2+bxy+cy^2+d=0$, then the value of (b+c+d) is equal to

