

India's Number 1 Education App

BIOLOGY

BOTANY AND ZOOLOGY FOR NEET AND AILMS

PHOTOSYNTHESIS IN HIGHER PLANTS

Exercise I

1. The Correct equation of photosynthesis is

A.
$$6CO_2+6H_2O \xrightarrow[ext{Chlorophylls}]{ ext{Light}} C_6H_{12}O_6+6O_2+6H_2O$$

$$\text{B.}~6CO_2 + 6O_2 \xrightarrow[\text{Chlorophylls}]{\text{Light}} C_6H_{12}O_6 + 6O_2 + 6H_2O$$

$$\mathsf{C.}\ 6CO_2 + 12H_2O \xrightarrow[\text{Chlorophylls}]{\text{Light}} C_6H_{12}O_6 + 6O_2 + 6H_2O$$

D.
$$6CO_2+12H_2O \xrightarrow{ ext{Light}} C_6H_{12}O_6+6O_2+6H_2O$$

Answer: C

watch video Solution

2. It serves as both reactant and a product in the photosynthetic process of higher plants

A. CO_2

B. O_2

 $\mathsf{C}.\,H_2O$

D. glucose

Answer: C

Watch Video Solution

3. In higher plants the by product of photo-synthesis is

A. O_2

 $\operatorname{B.}H_2O$

D. ATP
Answer: A
Watch Video Solution
4. Photosynthesis is
A. Physico biochemical process
B. Anabolic process
C. Endergonic reaction
D. all the above
Answer: D
Watch Video Solution

C. Carbohydrates

5. Oxygenic photosynthesis occurs in
A. Chromatium
B. Chlorella
C. Rhodospirillum
D. Chlorobium
Answer: B
Watch Video Solution
6. In photosynthesis , oxygen is liberated due to
A. Reduction of carbon dioxide
B. Hydrolysis of carbohydrate
C. Photolysis of water
D. Breakdown of chlorophyll

Answer: C

Watch Video Solution

- 7. The first event in photosynthesis is
 - A. Synthesis of ATP
 - B. Photoexcitation of chlorophyll
 - C. Photolysis of water
 - D. Release of oxygen

Answer: B

Watch Video Solution

8. Ultimate source of hydrogen atoms for the synthesis of glucose is

A. H_2O

B. NAPH	
C. FADH	
D. $n(CH_2O)$	
Answer: A	
Watch Video Solution	
9. Plants stone glucose as	
A. Monosaccharides	
B. Cellulose	
C. Starch	
D. Glycogen	
Answer: C	
Watch Video Solution	

(

10. Plants do not store carbohydrates as glucose, because it A. Dissolves an water, thereby altering the osmotic balance B. Attracts insects herbivores C. Is an unstable molecule D. Would replace ribose in DNA synthesis Answer: A **Watch Video Solution** 11. Which one of the following statements about photosynthesis is not true? A. All green plants photosynthesize B. Only green plants photosynthesize C. Carbon dioxide is reduced during photosynthesis

D. Some bacteria also photosynthesize

Watch Video Solution 12. Which organism does not evolve oxygen in photosynthesis? A. Anabaena B. Funaria C. Pisum D. Rhodospirillum **Answer: D Watch Video Solution** 13. Anoxygenic photosynthesis do not involved A. Photosystems

Answer: B

C. CO_2 fixation
D. Photolysis of water
Answer: D
Watch Video Solution
14. Photosynthesis first occurred in
A. Cyanobacteria
B. Green plants
C. Mycoplasma
D. Green algae
Answer: A
Watch Video Solution

B. ATP synthesis

- A. Splitting of CO_2
- B. Production of ATP and reducing power (NADPH)
- C. Combining CO_2 and H_2O
- D. Releasing energy from glucose

Answer: B

Watch Video Solution

16. During the process of photosynthesis , \mathcal{O}_2 in glucose comes from

- A. CO_2
- $\mathsf{B.}\,H_2O$
- C. Both (1) & (2)
- D. O_2 in air

Answer: A

Watch Video Solution

17. The green plants are grown in aquarium for

A. CO_2

 $B.O_2$

C. Fish food

D. None of these

Answer: B

Watch Video Solution

18. Which statement about photosynthesis is false

A. The electron carriers involved in phosphorylation are located on the

thylakoid membranes

B. Photosynthesis is a redox process, in which water is oxidised and

C. The enzymes required for carbon fixation are located on grana of chloroplast

D. In green plants, both PS - I and PS = II are required for the formation ${\sf of}\ NADPH\ +\ H\ ^+$

Answer: C

19. During photosynthesis

A. Water gets oxidised

B. Carbondioxide get reduced

- C. Oxygen is evolved as byproduct D. All the above Answer: D **Watch Video Solution** 20. True statements regarding photosynthesis
- - A. It takes place during day time
 - B. It takes place in all green cells
 - C. It is redox process
 - D. All the above

Answer: D

21. During bacterial photosynthesis

- A. H_2S gets oxidised
- B. Carbondioxide get reduced
- C. Sulphur is evolved as a by product
- D. All the above

Answer: D

Watch Video Solution

22. Major amount of photosynthesis is performed by

- A. Diatoms
- B. Dinoflagellates
- C. Euglenoids
- D. Prozoans

Answer: A

Watch Video Solution

- 23. Engleman's experiments with green algae demonstrated that
 - A. The full spectrum of sunlight is needed for photosynthesis
 - B. Only red wavelength is effective in causing photosynthesis
 - C. Only blue wavelength is effective
 - D. Both blue and red wavelength are effective in causing photosynthesis

Answer: D

Watch Video Solution

24. Who demonstrated experimentally that sun light is essential to plants for purifying the air fouled by burning candle or breathing animals

A. Joseph Priestley B. Jan Ingenhousz C. FF Blackman D. T W Englman **Answer: B Watch Video Solution** 25. Who conducted first action spectrum experiments by using 'Blue and red ' light exposed to' Cladophora' in aerobic bacterial suspension A. Julius von Sachs B. Jan Ingenhousz C. T.W Englemann D. D.Arnon Answer: C

26. Fd-NADP reductase is located

A. in stroma of chloroplast

B. in lumen

C. on the surface of thylakoid membrane towards stroma

D. in periplastidial space

Answer: C

27. Mohl's half leaf experiment demonstrates the importance of

A. Light for Photosynthesis

B. CO_2 for Photosynthesis

C. Chlorophyll for Photosynthesis

D. H_2 for Photosynthesis

Answer: B

Watch Video Solution

- **28.** Choose the incorrect match regarding early experiments on photosynthesis
 - A. Plants take CO_2 and release oxygen Joseph Priestley
 - B. The empirical equation of an oxygenic photo-synthesis -Van Neil
 - C. First action spectrum of Photosynthesis Engelmann
 - D. Evidence for production of glucose in chloroplast Ingenhouz

Answer: D

Watch Video Solution

29. Scientist who first discovered the role of light in photosynthesis
A. Sachs
B. Priestly
C. Senebier
D. Ingen Housz
Answer: D
Watch Video Solution
30. The process of photophosphorylation was discovered by
30. The process of photophosphorylation was discovered by A. Priestley
A. Priestley
A. Priestley B. Warburg

Answer: C

Watch Video Solution

- 31. Variegated leaf experiment demonstrates that
 - A. Water is necessary for Photosynthesis
 - B. Carbon dioxide is necessary for Photosynthesis
 - C. Oxygen is necessary for Photosynthesis
 - D. Chlorophyll necessary for Photosynthesis

Answer: D

Watch Video Solution

32. Radioactive isotope of oxygen (O_{18}) was used to know the source of oxygen released through Photosynthesis by

A. Hill
B. Van Neil
C. Ruben and Kamen
D. Hatch and Slack
Answer: C
Watch Video Solution
33. Which of the following scientists reported that ${\cal O}_2$ comes from water during Photosynthesis by using potassium ferricyanide
A. Van Neil
B. Ruben
C. Hill
D. Ruben and Kamen
Answer: C

- 34. Discovery of Emerson effect has clearly shown the existence of
 - A. Photorespiration
 - B. Photophosphorylation
 - C. Light and dark reaction in Photosynthesis
 - D. Two distinct photochemical reactions or processes

Answer: D

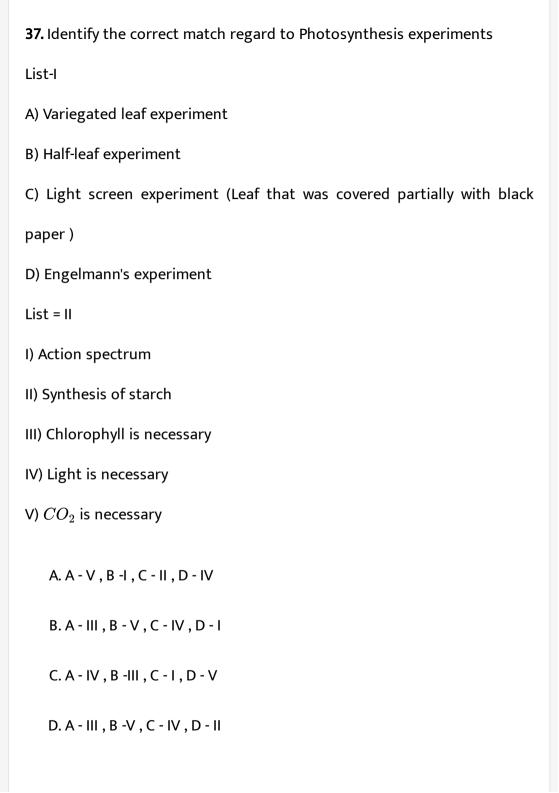
Watch Video Solution

- **35.** A photosynthesising plant is releasing ^{18}O more than the normal . The plant must have been supplied with
 - A. O_3
 - B. H_2O with ^{18}O

- C. CO_2 with ^{18}O
- D. $C_6 H_{12} O_6$ with $^{18} O$

Answer: B

Watch Video Solution


36. For demonstration of Photosynthesis experiments , usually aquatic plant Hydrilla is used not any terrestrial plant, why?

- A. It carries out faster Photosynthesis
- B. O_2 released throughout and can accumulate over the water
- C. It respires slowly
- D. None of the above

Answer: B

Watch Video Solution

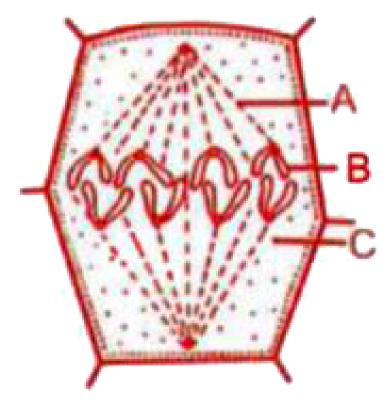
Answer: B Watch Video Solution 38. Which metal ion a constituent of Chlorophyll? A. Iron B. Copper C. Magnesium D. Zinc **Answer: C** Watch Video Solution 39. Which pigment acts directly to convert light energy to chemical energy?

A. Chlorophyll a B. Chlorophyll b C. Xanthophyll D. Carotenoid Answer: A Watch Video Solution 40. Which range of wavelength (in nm) is called photo-synthetically active radiation (PAR)? A. 100 - 390 B. 390 - 430 C. 400 - 700 D. 760 - 100, 00 **Answer: C**

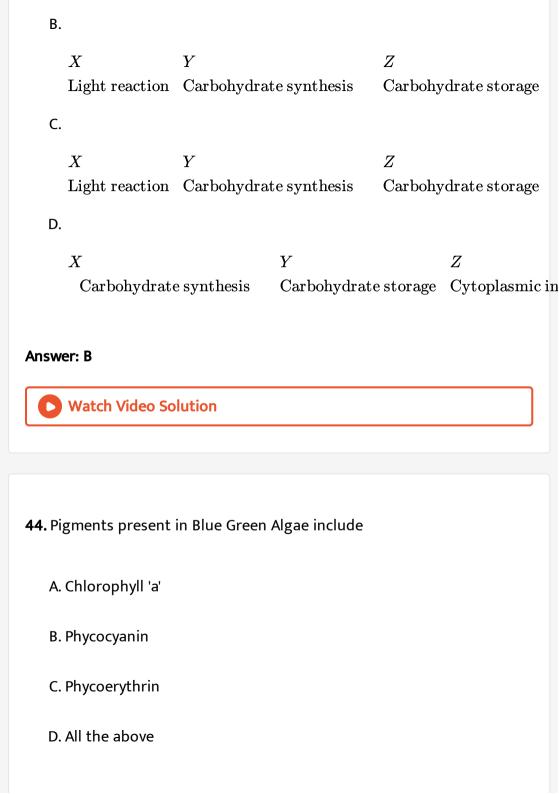
- **41.** Which light range is least effective in Photosynthesis?
 - A. Blue
 - B. Green
 - C. Red
 - D. Violet

Answer: B

- **42.** In mesophyll cells at high light intensity chloroplasts are found
 - A. Scattered in the cell sap
 - B. Aligned around the nucleus
 - C. Aligned along the walls


D. Clustered in the cell

Answer: C



Watch Video Solution

43. Identify the labelled parts of following diagram

A. $\frac{X}{\text{Dark reaction}}$ $\frac{Y}{\text{Light reaction}}$ $\frac{Z}{\text{Cytoplasmic inheritance}}$

Answer: D **Watch Video Solution** 45. Pigments which are not found in higher plants are A. Chlorophyll -a B. Chlorophyll - b C. Carotenoids D. Phycobilins Answer: D **Watch Video Solution** 46. Photo oxidation of chlorophyll-a in the reaction centre is prevented by A. Lutein

C. Phycoerythrin
D. All
Answer: D
Watch Video Solution
47. Chlorophylls don't absorb this wave length of light
A. Red wave length
B. Green wavelength
C. Blue wavelength
D. Organe wavelength
Answer: B
Watch Video Solution

B. eta caroten

A. Phycocyanin
B. Phycoerythrin
C. Plastocyanin
D. P_{680}
Answer: D
Watch Video Solution
49. Energy transuding membrane in chloroplast is
A. Outer unit membrane
B. Inner unit membrane
C. Thylakoid membrane
D. Cristae

48. Blue green pigment is

Answer: C Watch Video Solution 50. In chloroplasts, pigments are bound to A. Proteins B. Carbohydrates C. Lipids D. Cellulose Answer: A **Watch Video Solution** 51. Porphyrin head in Chlorophyll molecule A. Consists of four pyrrole rings

B. Pyrrole rings are linked in a cyclic maner

C. Pyrrole rings are linked with magnesium atom

D. All the above

Answer: D

Watch Video Solution

52. Difference between Chlorophyll'a' and 'b' is regarding this carbon atom of 2^{nd} pyrrole ring

A. 3^{rd}

 $B. 2^{nd}$

 $\mathsf{C.}\,4^{th}$

D. 5^{th}

Answer: A

Watch Video Solution

A. Ester
B. Hydrogen
C. Glycosidic
D. Phosphodiester
Answer: A
Watch Video Solution
54. Pigments which contain oxygen and nitrogen are
(A) Phycobilins (B) Carotenes
(C) Xanthophylls (D) Chlorophylls
A. A, D
B. B,C

53. Bond found in between phytol tail and porphyrin head is

C. A, C, D
D. D only

Answer: A

55. Stroma in the chloroplasts of higher plants contain

- A. light independent reaction enzymes
- B. light dependent reaction enzymes
- C. Coupling factor
- D. Chlorophyll

Answer: A

Watch Video Solution

56. The correct molecular (chemical) formula for Chlorophyll 'a' is

- A. $C_{55}H_{70}O_5N_4Mg$
- $\operatorname{B.}C_{55}H_{70}O_6N_4Mg$
- C. $C_{55}H_{72}O_5N_4Mg$
- D. $C_{55}H_{77}O_6N_4Mg$

Answer: C

Watch Video Solution

57. The correct molecular formula for Chlorophyll 'b' is

- A. $C_{55}H_{72}O_4N_3Mg$
- B. $C_{55}H_{70}O_6N_4Mg$
- C. $C_{55}H_{70}O_5N_4Mg$
- D. $C_{55}H_{77}O_6N_4Mg$

Answer: B

Watch Video Solution

58. Total types of chlorophyll pigments associated with PS-I and PS-II in higher plants are

- A. One
- B. Two
- C. Three
- D. Four

Answer: B

Watch Video Solution

59. In a plant cell, which of the following pigments participates participates directly in the conversation of light energy in photosynthesis

- A. Chlorophyll a
- B. Chlorophyll b
- C. Chlorophyll d
- D. Carotenoids

Answer: A

- **60.** The red, organe and yellow colours of autumn leaves are caused by light reflected from
 - A. Chlorophyll a
 - B. Chlorophyll b
 - C. Chlorophyll d
 - D. Carotenoids

Answer: D Watch Video Solution

61. A solution of Chlorophyll pigments looks red in reflected light because of

- A. Diffraction
- B. Fluorescence
- C. Reflection
- D. Refraction

Answer: B

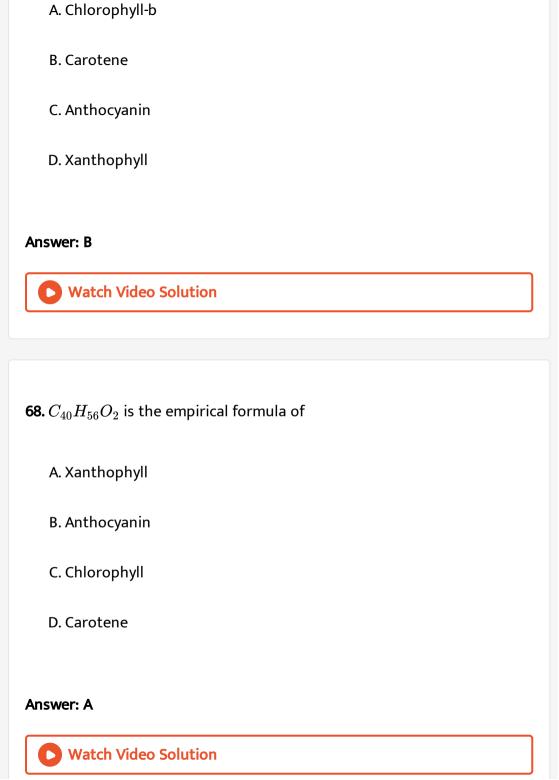
Watch Video Solution

62. Pigments of PSI are present in

A. Appressed part of grana B. Stromal thylakoid & non appressed part of outer membrane of granal thylakoids C. Both (1) and (2) 4) D. None Answer: B **Watch Video Solution** 63. A Photosystem contains A. Pigments, electron acceptor & hydrogen acceptor B. Photons, Protons, Pigments & hydrogen acceptor C. PO_4 , $ADP\&H^+$ D. Both (1) and (2) Answer: A

64. In Chlorophyll 'a' CH_3 group is attached at

- A. 4^{th} pyrrole ring
- B. 2^{nd} pyrrole ring
- C. 3^{rd} pyrrole ring
- D. $\mathbf{1}^{st}$ pyrrole ring


Answer: C

65. In photosynthesis , chlorophyll serves as

- A. Hydrogen acceptor
- B. Hydrogen donor
- C. Energy convertor

D. Raw material				
Answer: C				
Watch Video Solution				
66. The pigment Chlorophyll-a is absent in				
A. Gymnosperms				
B. Bacteria				
C. Algae				
D. Bryophyta				
Answer: B				
Watch Video Solution				
67. $C_{40}H_{56}$ is the empirical formula of				

69. Basic structure of all Chlorophylls comprises

A. Chtochrome system

B. Flavoproteins

C. Porphyrin system

D. Plastocyanin

Answer: C

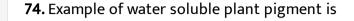
Watch Video Solution

70. Which of the following photosynthetic prokatryote has both PS - I and

PS - II ?

A. Purple sulphur bacteria

B. Cyanobacteria


C. Purple non-sulphur bacteria

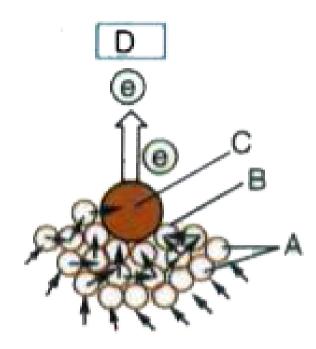
D. Green-sulphur bacteria				
Answer: B				
Watch Video Solution				
71. The head and tail of chlorophyll are made up of				
A. Porphyrin and phytin				
B. Pyrrol and tetrapyrrol				
C. Porphyrin and phytol				
D. Tetrapyrrol and pyrrol				
Answer: C				
Watch Video Solution				

72. Photosynthetic bacteria have

A. Pigment system - I B. pigment system - II C. Both (1) & (2) D. Some other kind of pigment , P_{890} Answer: A **Watch Video Solution** 73. Which of the following provides energy to ETS by absorption of sunlight? A. Chlorophyll B. Mitochondria C. ATP D. Water **Answer: A**

- A. Chlorophyll-a
- B. Chlorophyll-P
- C. Phycobilin
- D. Xanthophyll

Answer: C


75. Chlorophyll in chloroplasts is located in

- A. Grana
- B. Pyrenoid
- C. Stroma

D. Both (1) and (2)
Answer: A
Watch Video Solution
76. In which of the following wavelength , photo system-I is inactive ?
A. 780 nm
B. 680 nm
C. 690 nm
D. 550 nm
Answer: D
Watch Video Solution

77. Given figure depicts the light harvesting complex (LHC) of

Photosystem

Select the correct identification for ${\tt A}$, ${\tt B}$, ${\tt C}$ and ${\tt D}$.

	\boldsymbol{A}	B	\boldsymbol{C}	D
A.	Core	Antenna	P_{680}	${\rm Primary} \;\; e^-$
:	molecules	molecules		acceptor
	A	B	C	D
В.	${ m Antenna}$	Core	P_{700}	${\rm Primary} \;\; e^-$
:	$\operatorname{molecules}$	molecules		acceptor
	\boldsymbol{A}	B	C	D
C.	${ m Antenna}$	Core	P_{700}	Plastocyanin
	$\operatorname{molecules}$	molecules		
	A	B	C	D
D.	Core	Reaction	P_{680}	Plastocyanin
:	$\operatorname{molecules}$	centre		

Watch Video Solution 78. Chemosynthetic bacteria obtain energy from A. Sun B. infra red rays C. organic substances D. inorganic chemical **Answer: D Watch Video Solution** 79. Energy required for ATP synthesis in PSII comes from A. proton gradient

Answer: B

- B. electron gradient C. reduction of glucose D. oxidation of glucose Answer: A **Watch Video Solution**
- 80. During light reaction in Photosynthesis the following are formed
 - A. ATP and sugar
 - B. hydrogen O_2 and sugar
 - C. ATP hydrogen donor and O_2
 - D. ATP, hydrogen and ${\it O}_2$ donor

Answer: C

81. Splitting of water is associated with Photosystem I lumen of thylakoid both

A. Photosystem

B. lumen of thylakoid

C. both Photosystem I and II

D. inner surface of thylakoid membrane

Answer: B

Watch Video Solution

82. The correct sequence of flow of electrons in the light reaction is

A. PSII, plastoquinone, cytochromes, PSI ferredoxin

B. PSI, plastoquinone, cytochromes, PSI ferredoxin

C. PSI, ferredoxin, PSII

D. PSI, plastoquinone, cytochromes, PSII ferredoxin

Answer: A

Watch Video Solution

- 83. The splitting of water molecule is associated with
 - A. Photosystem I
 - B. Photosystem II
 - C. Cytochromes complex
 - D. Coupling factor

Answer: B

Watch Video Solution

84. Which one of the following is not a down hill movement of electrons

is Z-scheme?

A. Pheophytin to PSI B. LHC II to pheophytin C. Ferredoxin to $NADP^{\,+}$ D. Both (1) & (3) **Answer: B Watch Video Solution** 85. The ultimate hydrogen acceptor and hydrogen donor, respectively in the photosynthesis of higher plants A. Ferredoxin in $NADP^{\,+}$ B. $NADP^{\,+}$ and water C. NADPH and OEC D. PS II PS I **Answer: B**

86. How many " down hill" movements of electrons is found in the Z-scheme?

A. 4

B. 5

C. 2

D. 1

Answer: C

Watch Video Solution

87. In the Z-scheme of $e^{\,-}\,$ transport , PSII and PSI are connected by

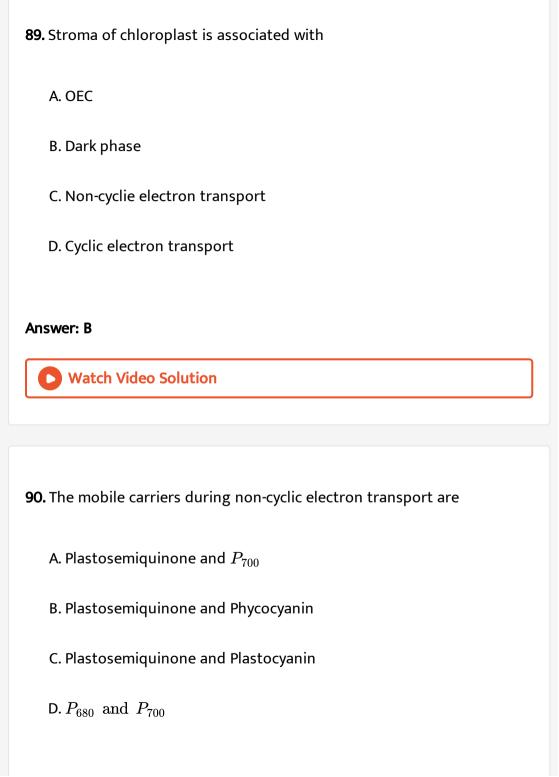
A. NADPH

B. ATP

C. photos

D. Electron transport chain

Answer: D


Watch Video Solution

88. Source of protons necessary for the reduction of $NADP^{\,+}$ is

- A. H_2O which undergoes oxidation
- B. PQH_2 which undergoes oxidation
- C. $H^{\,+}\,$ picked up by $PQ^{\,-}\,$
- D. $H^{\,+}$ pool of stroma

Answer: A

Answer: C

Watch Video Solution

- 91. In both cyclic and non cyclic Photophosphorylation/electron transport
 - A. ATP is produced
 - B. P_{700} is involved
 - C. quinone cycle operates
 - D. All the above

Answer: D

Watch Video Solution

92. Proton translocation is observed through a membrane complex present on thylakoid membranes namely

- A. PS-II complex
- B. PS-I complex
- C. Cytochrome b_6 f complex
- D. $CF_0 CF_1$ complex

Answer: D

93.

Watch Video Solution

Mineral elements involved in photolysis of water during

- - A. Mn and Mo
 - B. Ca and S

Photosynthesis are

- C. Mn and CI
- D. Ca and Mg

Answer: C

94. According to modern scheme of photosynthetic electron transport the correct sequence of electron transfer from excited 9700 to NADP + is

A.
$$A_1
ightarrow A_0
ightarrow F_x
ightarrow F_A/F_B
ightarrow Fd
ightarrow NADP^+$$

B.
$$A_1
ightarrow A_0
ightarrow F_A/F_B
ightarrow Fx
ightarrow FNR
ightarrow NADP^+$$

$$\mathsf{C}.\,A_0 o A_1 o F_A/F_B o Fx o NADP$$

D.
$$A_0
ightarrow A_1
ightarrow Fx
ightarrow F_A/F_B
ightarrow Fd
ightarrow NADP^+$$

Answer: D

Watch Video Solution

95. The primary electron acceptor in PSII is

A. Ferredoxin

B. PQ

Answer: D				
Watch Video Solution				
96. Ferredoxin is				
A. A polynucleotide with iron and sulfur				
B. Chlorophyll without Mg				
C. A polypeptide with iron and sulfur				
D. A copper contain protein				
Answer: C				
▶ Watch Video Solution				

C. Plastocyanin

D. Pheophytin

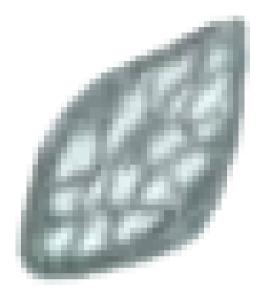
D	디
υ.	гu

Answer: C

Watch Video Solution

- **99.** In Hill's experiment on Photosynthesis, potassium ferric oxalate is used as an acceptor of
 - A. Oxygen
 - B. Hydrogen
 - C. Carbon
 - D. Nitrogen

Answer: B


100. Photo synthetically active radiation (PAR)

- A. 390 760 nm
- B. 390 810 nm
- C. 535 647 nm
- D. 647 760 nm

Answer: A

101. In Hill reaction potassium ferric oxalate is

- A. Source of oxygen evolution
- B. Reductant
- C. Oxidant
- D. Oxygen acceptor

Answer: C

102. Photophosphorylaton is a process in which

- A. Light energy is converted into chemical energy in the from of ATP
- B. NADP is formed
- C. Chemical energy is used to produce ATP
- D. CO_2 is reduced to a carbohydrate

Answer: A

- **103.** The primary electron acceptor in cyclic photo phosphorylation is
 - A. A protein that contains iron and sulphur
 - B. Carbon dioxide
 - C. FAD
 - D. NADP

Answer: A

Watch Video Solution

104. Cyclic Photophosphorylation produces

- A. ATP
- B. ATP + NADPH
- C. NADPH
- D. ATP, NADPH & ${\cal O}_2$

Answer: A

Watch Video Solution

105. The photosynthetic unit to trap the light energy is known as

A. Quantasome

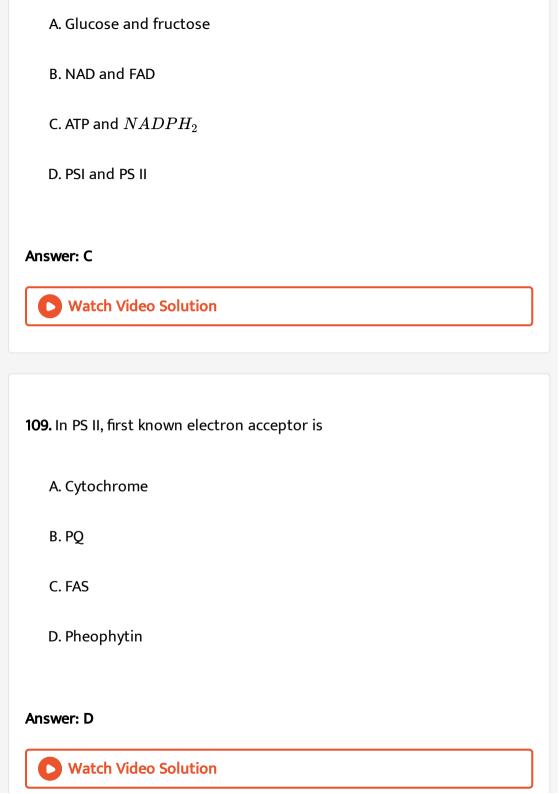
B. Mesosome C. Nucleosome D. Oxysome Answer: A **Watch Video Solution** 106. Which of the following statements about absorption spectrum is correct? A. In blue region peak of Chl-b forms at lower wavelength than peak of Chl-1 B. In red region height of peak of Chl-a is more than that of Chl-b C. In blue region of peak of Chl-a is more than that of Chl-b D. In red region peak of Chl-b forms at lower wavelength than that Chlb

Answer: B

Watch Video Solution

107. Enhancement Effect for the rate of Photosynthesis, observed by

Emerson is possible in the presence of


- A. shorter wavelength of light
- B. shorter wavelength of light
- C. infrared wavelength
- D. a combination of longer and shorter wavelength of light

Answer: D

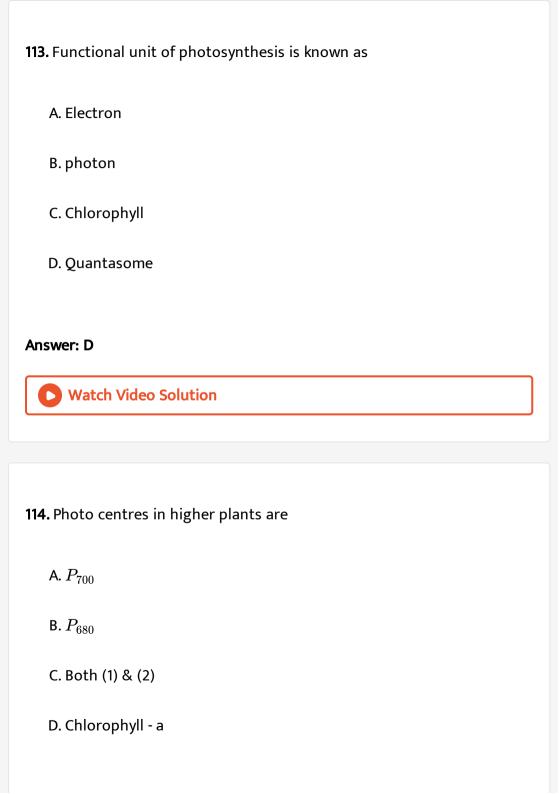
Watch Video Solution

108. Which of the following constitutes assimilatory power of Photosynthesis

110. During light reaction of Photosynthesis the electrons lost by pigment system II are compensated by

- A. CO_2
- $\mathsf{B.}\,H_2O$
- $\mathsf{C}.\,O_2$
- D. ATP

Answer: B


Watch Video Solution

111. DCMN kills the herbs by

- A. inhibiting photoreactionII of Photosynthesis
- B. checking electron transport system in photo-synthesis from is PS-II
 - to is PS-I

D. all of the above Answer: B **Watch Video Solution** 112. Which of the following electron carrier constrains copper? A. Ferredoxin B. Cytochrome C. Plastocyanin D. Cytochrome I **Answer: C Watch Video Solution**

C. inhibiting photoreaction-I of Photosynthesis

Answer: C

Watch Video Solution

115. The graph showing rate of Photosynthesis at different wavelengths of light is called

- A. Absorption spectrum
- B. Action spectrum
- C. Both (1) and (2)
- D. None of these

Answer: B

Watch Video Solution

116. Red drop occurs in wavelength of

A. 495 nm B. 690 nm C. 560 nm D. 586 nm **Answer: B Watch Video Solution** 117. The number of oxygen molecules produced per-quantum of light absorbed is A. Oxygen yield B. Photosynthesis yield C. Quantum yield D. Organic yield **Answer: C**

118. What will be the direction of energy flow between PS-I and PS-II when two pigment system absorb light ?

A.
$$PS-II o PS-I$$

B.
$$PS-I o PS-II$$

$$\mathsf{C.}\,PS-II\Leftrightarrow PS-I$$

D. None of these

Answer: A

Watch Video Solution

119. The normal state of an atom or molecule is known as

A. Ground state

B. Singlet state

D. Excited state
Answer: C
Watch Video Solution
120. Cyclic Photophosphorylation links to
A. PS-II
B. PS-I
C. dark reaction
D. Both (1) & (2)
Answer: B
Watch Video Solution

C. Both (1) & (2)

121. Light reaction of Photosynthesis occurs inside

A. stroma

B. Grana

C. Endoplasmic reticulum

D. Cytoplasm

Answer: B

122. Which of the following statements is true with regard to the light reaction of Photosynthesis ?

A. In PS-II the reaction centre Chlorophyll-a has an absorption peak at

700 nm hence , is called $P_{
m 700}$

B. In PS-II the reaction centre Chlorophyll-a has an absorption maxima

at 680 nm and is called P_{680}

- C. The splitting of water molecule is associated with PS-I
- D. Photosystem-I and II are involved in Z scheme

Watch Video Solution

- 123. Photolysis of water during Photosynthesis occurs with the help of
 - A. PS- II
 - B. PS I
 - C. Ferredoxin
 - D. Cytochrome

Answer: A

124. Photosynthesis cannot continue for long if during light reaction .

Only cyclic Photophosphorylation takes place. This is because

A. Only ATP is formed $NADPH^{\,+}\,+H^{\,+}$ is not formed

B. Photosystem I-stops getting excited at a wavelength of light beyond 680 nm

C. There is unidirectional cyclic movement of the electrons

D. There is no evolution of oxygen

Answer: A

- A. It takes longer wavelength of light and electrons from $H_2{\cal O}$
- B. It takes shorter wavelength of light and electrons from $H_2{\cal O}$
- C. It takes longer wavelength of light and electrons from NADP
- D. It takes shorter wavelength of light and electrons from NADP

Answer: B

- **126.** Match the following and choose the correct combination from the given option
- Column II Column II
- (A) Visible light (1)0.1 to 1nm
- (B)Ultra violet (2)400 to 700nm
- (C)X rays (3)Longer than 740 nm
- (D) Infra red \qquad (4)100 to 400nm (5) < 0.1nm
 - A. A B C D
 - 1 3 4 5
 - B. $\frac{A}{3}$ $\frac{D}{2}$ $\frac{C}{1}$ $\frac{D}{5}$

127. Primary electron acceptor in noncyclic transport is \underline{A} located towards

 \underline{B} donates its electrons to \underline{C} , respectively are

- A. Pheophytin, outside of membrane \mathcal{Q}_A
- B. A_0 innerside of membrane , $NADP^+$
- C. Pheophytin, innerside of membrane, PC
- D. A_0 innerside of membrane , PC

Answer: A

128. Protons & electrons acceptors (H_2 acceptors) in the Z , scheme are

A. Cytochromes, PC

B. PQ, $NADP^+$

C. Pheophytin,

D. H_2O

Answer: B

Watch Video Solution

129. Refer to the given reaction .

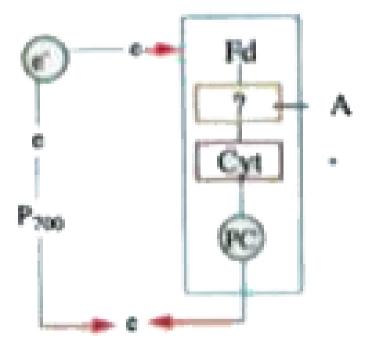
$$2H_2O
ightarrow4H^++O_2+4e^-$$

Where does this reaction take place in the chloroplasts of plants?

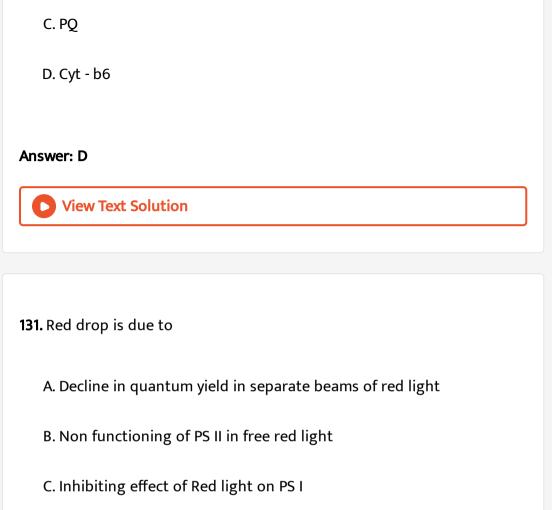
A. Outer surface of thylakoid membrane

B. Inner surface of thylakoid membrane

C. In the matrix (stroma)


D. Intermembrane space

Answer: B


Watch Video Solution

130. Identify A in the given figure and choose a correct option

A. PC

B. FRS

D. Oxidation of chlorophyll

Watch Video Solution

Answer: B

132. Hill reaction occurs in

- A. High altitude plants
- B. Total darkness
- C. Absence of water
- D. Presence of ferricyanide

Answer: D

- **133.** Consider the following event in the photochemical conversion of light energy into chemical conversion of light energy into chemical energy by chlorophyll during photosynthesis
- I) Energy transformation (light energy $\,
 ightarrow\, ATP$)
- II) Absorption of quantum of energy
- III)Ejection of electron from P_{680}
- IV) Transfer of light energy (resource transfer) $\,$

A. IV, II, I, II B.I, III, IV, II C. II, IV, III, I D. II, I, IV, III **Answer: C Watch Video Solution 134.** ATP responsible for fixing CO_2 and synthesis of sugar , is produced in the A. Lumen of thylakoid B. Inside the thylakoid membrane C. stroma of chloroplast D. Cytosol of cell **Answer: C**

135. Chemiosmotic theory of ATP synthesis in chloroplasts & mitochondria is based on

- A. membrane potential
- B. proton gradient
- C. accumulate of $Na^{\,+}$
- D. accumulation of $K^{\,+}$

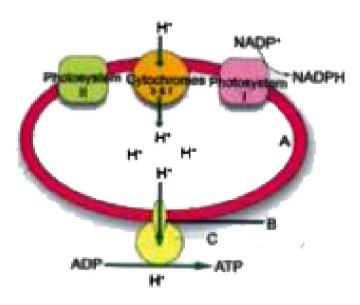
Answer: B

Watch Video Solution

136. ATP synthesis is linked to

- A. Development of water potential gradient across the membrane.
- B. Development of H.. gradient across the membrane

C. Reduction of PS I by $NADP^{\,+}$


D. Oxidation of PS II by H_2O

Answer: B

Watch Video Solution

137. Identify the parts marked as A, B and C in the given figure showing ATP synthesis through chemiosmosis

A. $\frac{A}{(1)}$ Thylakoid lumen F_0 F_1

 \boldsymbol{A} (1)Thylakoid lumen F_1 F_0 C. $\frac{A}{(1)}$ Chloroplast lumen F_0 F_1 B CB - C(1) Chloroplast lumen F_1 F_0

Answer: A

ATPase is

A. According to concentration gradient

138. Movement of H^+ from lumen to stroma through the F_0 portion of

B. By simple diffusion

C. By active transport

D. Against conc . gradient

Answer: A

139.	Chem	iosmosis	requires
133.	CHEIH	1031110313	requires

- I) A membrane II) A proton pump
- III) P roton gradient IV) ATPase
 - A. I and IV only
 - B. I, II, and III only
 - C. I, III and IV only
 - D. I, II and IV.

Watch Video Solution

140. According to the chemiosmotic hypothesis, the photosynthetic ATP formation occurs during the movement of protons from

A. Thylakoid lumen into the stroma through. F_0-F_1 complex (ATP

synthase complex)

B. stroma into the thylakoid lumen

C. Intermembrane space to mitochondrial matrix through F_0-F_1

D. Both (1) & (3)

complex

Answer: A

Watch Video Solution

141. Proton pump is a movement of protons from

A. Lumen to stroma

B. stroma to Lumen

C. stroma to Cytoplasm

D. Grana to stroma

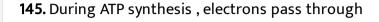
Answer: B

Watch Video Solution

142. Number of the protons required to synthesised one ATP during chemiosmosis

- A. 2
- B. 4
- C. 6
- D. 9

Answer: A



Watch Video Solution

143. Photophosphorylation in chloroplast is most similar to which of the following mitochondrial reactions?

A. Oxidative phosphorylation B. Substrate level phosphorylation C. Oxidative decarboxylation D. Hydrolysis Answer: A **Watch Video Solution** 144. Chemiosmotic theory of ATP synthesis in chloroplast & mitochondria is proposed by A. Mitchell B. Arnon C. Emerson D. Hill Answer: A

- A. CO_2
- B. O_2
- $\mathsf{C}.\,H_2O$
- D. Cytochromes

- 146. Chemiosmosis requires
 - A. Membrane
 - B. Proton pump
 - C. Proton gradient

D. All	the	abov

Watch Video Solution

- 147. Dark reaction in Photosynthesis is called so because
 - A. it can occur in dark also
 - B. it does not directly depend on light energy
 - C. it cannot occur during day light
 - D. it occurs more rapidly at night

Answer: B

D. both C_3 and C_4 plants Answer: A **Watch Video Solution 149.** The enzyme that is not found in a C_3 plant is A. RuBP Carboxylase B. PEP Carboxylase C. NADP reductase D. ATP synthase **Answer: B Watch Video Solution**

A. C_4 Plants

B. C_3 Plants

 $\mathsf{C}.\,C_2$ Plants

150. The reaction that is responsible for the primary fixation of CO_2 is catalysed by

A. RuBP Carboxylase

B. PEP Carboxylase

C. RuBP Carboxylase and PEP Carboxylase

D. PGA synthase

Answer: C

Watch Video Solution

151. When CO_2 is added to PEP, the first stable product synthesized is

A. pyruvate

B. glyceraldehdes - 3 - phosphate

C. phosphoglycerate

ח	oyal	loacetate
ᆫ.	OAG	Oacctate

Watch Video Solution

152. For every CO_2 molecule entering into the Calvin cycle, the number of molecules of ATP Calvin cycle, the number of molecules of ATP and of NADPH required , respectively are

- A. 3 and 3
- B. 2 and 3
- C. 6 and 4
- D. 3 and 2

Answer: D

153. The turns of Calvin cycle requires to form one glucose molecule
A. 1
B. 2
C. 3
D. 6
Answer: D
Watch Video Solution
154. RuBP is
A. First stable compound PCR cycle
B. Substrate for reduction phase
C. Last compound of carboxylation phase
D. Primary CO_2 acceptor of RPP cycle

Answer: D Watch Video Solution

155. This is the most abundant enzyme in the mesophyll

- A. Hexokinase
- **B. RUBISCO**
- C. Fructose 6 phosphatase
- D. Sedoheptulose 7 phosphatase

Answer: B

Watch Video Solution

156. Conversion of PGA to G - 3 - P in PCR cycle involves

A. Oxidative decarboxylation

- B. Decarboxylation and deamination
- C. Phoshorylation and reduction
- D. Reduction and transamination

Answer: C

Watch Video Solution

- 157. During dark reaction of photosynthesis
 - A. 6 c sugar is broken down into 3 c sugar
 - B. Photolysis of water occurs
 - $\mathsf{C}.\,\mathit{CO}_2$ is reduced to organic compounds
 - D. $NADP^{\,+}$ is reduced

Answer: C

158. Name the enzyme which changes its characteristics with change in concentration of ${\cal O}_2$

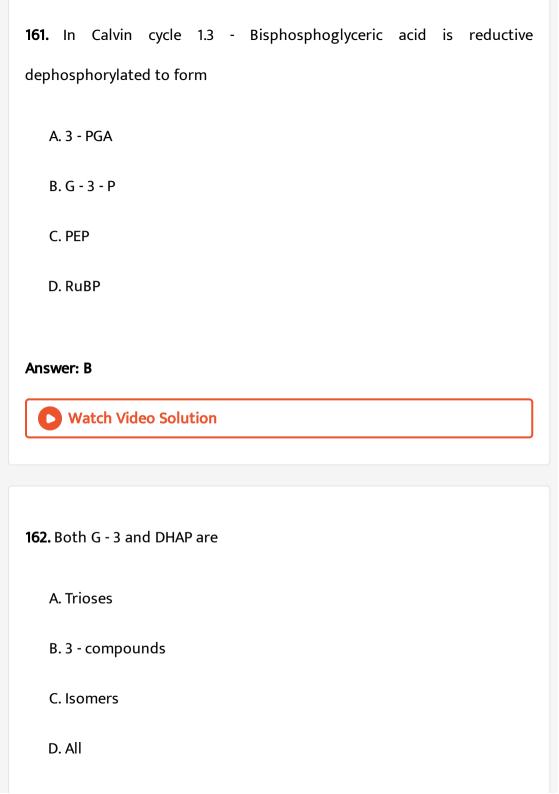
- A. PEP Carboxylase
- B. Hexokinase
- C. Rubis co
- D. Pyruvic dehydrogenase

Answer: C

Watch Video Solution

159. When $12CO_2$ molecueles are utilized in C_2 cycle, number of troise phosphates exported out from the chloroplast into the cytosol for the synthesis of hexose will be

- A. 2
- B. 4


C. 6								
D. 12								
Answer: B								
Watch \	/ideo Solut	ion						
160. Number	of water	molecule	(s)	required	for	each	CO_2	during
carboxylation	reaction in	C_3 cycle is	;					
A. 6								

B. zero

C. 12

D. 1

Answer: D

Watch Video Solution

163. Number of G - 3 - P and DHAP molecules required to regenerate 6 molecules of RuBP in Calvin cycle respectively are

- A. 4,6
- B. 6,4
- C. 6,6
- D. 4,4

Answer: B

Watch Video Solution

164. Common product formed due to the activity of transketolase enzyme during C_3 cycle

- A. Ribulose 5 phosphate
- B. Ribose 5 phosphate
- C. Xylulose 5 phosphate
- D. Fructose 5 phosphate

Answer: C

Watch Video Solution

through C_3 cycle in C_3 plants is

165. Assimilatory power required to produce one molecule of glucose

- A. 6 ATP & 9 NADPH
- B. 30 ATP & 18 NADPH
- C. 18 NADPH & 12 ATP
- D. 18 ATP & 12 NADPH

Answer: D

166. Primary carboxylation occurs in \mathcal{C}_3 and \mathcal{C}_4 plants respectively with the help of

A. RuBP carboxylase and PER carboxylase

B. RuBP carboxylase and PER carboxylase

C. REP carboxylase and RuBP carboxylase

D. REP carboxylase and RuBP carboxylase

Answer: A

Watch Video Solution

167. In Calvin cycle, G - 3 - P reacts with

A. DHAP, E-4, P, X-5-P

B. DHAP, Fructose, 1, 6 Bisphosphate, Ribose - 5 - Phosphate

 $C. CO_2$ Rubp, DHAP

D. DHAP, Fructose - 6 - phosphate, Sedoheptulose - 7 - Phosphate

Answer: D

Watch Video Solution

168. Synthesis of sugars in all photosynthetic plants takes place by

A. CO_2 fixation with PEP case

B. Calvin cycle reaction

C. Hatch and Slack reactions

D. Both C_3 and C_4 cycle reactions

Answer: B

Watch Video Solution

169. Primary acceptor of CO_2 in C_3 cycle is

A. 3 - carbon - ketose sugar

B. 3 - carbon - aldose sugar

C. 5 - carbon - aldose sugar

D. 3 - carbon - ketose sugar

Answer: D

170. To produce 4 sucrose molecules the number of ATP and

 $NADPH+H^{\,+}$ required in C_3 plants is

A. 144 & 96

B. 120 & 48

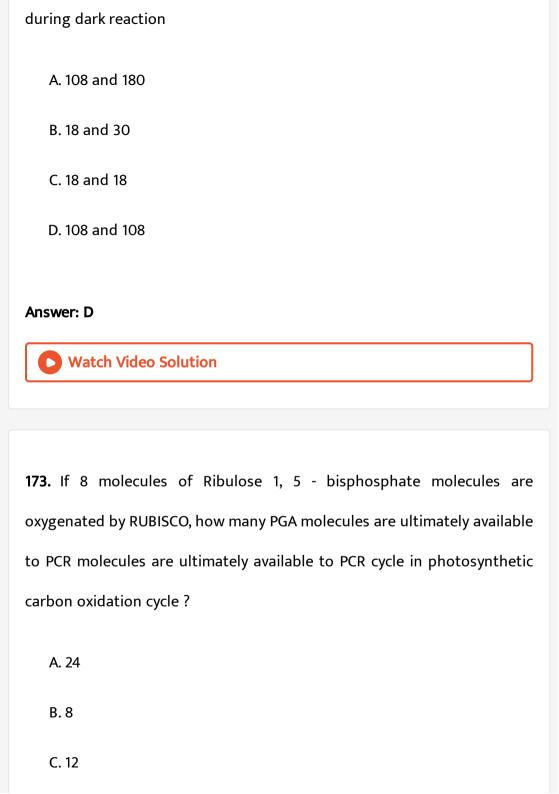
C. 188, 192

D. 72,46

Answer: A

Watch Video Solution

171. When 54 molecules of CO_2 fixed by RuBisCO in a C_3 plant , number of G_3-P participate in regeneration phase respectively


- A. 90,18
- B. 54,54
- C. 60,48
- D. 18, 90

Answer: D

Watch Video Solution

172. The number of ATP required in mosophyll cells of C_3 plants and bundle sheath cells of C_4 plants respectively for net export of 12 G - 3 -P

D	16
υ.	10

Answer: C

Watch Video Solution

174. The immediate product of carboxylation in C_3 plants

A. RuBP

B. PGA

C. OAA

D. GAP

Answer: B

Watch Video Solution

175. Which of the following isomeric reaction occurs in regeneration phase

I) Ribose 5 -phosphate \rightarrow Ribulose 5 - phosphate

II) Xylulose 5 - phosphate $\ \ o \ \$ Ribose 5 phosphate

III) GAP $\,
ightarrow\,$ DHAP

IV) DHAP $\,
ightarrow\,$ GAP

IV) DHAP rarr GAP

A. I & III

B. II & III

C. III & IV

D. II & IV

Answer: A::B

Watch Video Solution

176. The four carbon compound formed during the regeneration of RUBP in Calvin cycle

A. Sedoheptulose phosphate

B. Xylulose phosphate

C. Erythrose phosphate

D. Ribose phosphate

Answer: C

177. The over all reaction of the Calvin cycle is

A.

В. $3RUBR + 3CO_2 + 6ATP + 6NADPH + H^+
ightarrow 3PGA + 6ADP$ -

 $3RUBR + 3CO_2 + 9ATP + 6NADPH + H^+
ightarrow 3PGA + 9ADP$ -

C.

 $3RUBR+3CO_2+9ATP+6NADPH+H^+
ightarrow 6G-3P+9ADP$

D.

 $3RUBR+3CO_2+6ATP+6NADPH+H^+
ightarrow6G-3P+6ADPH$

Answer: C

Watch Video Solution

178. Number of troise molecules from G - 3P pool that enter into cytosol from chloroplast to form the main end product of C_3 cycle which is transported through phloem.

A. 2

B. 10

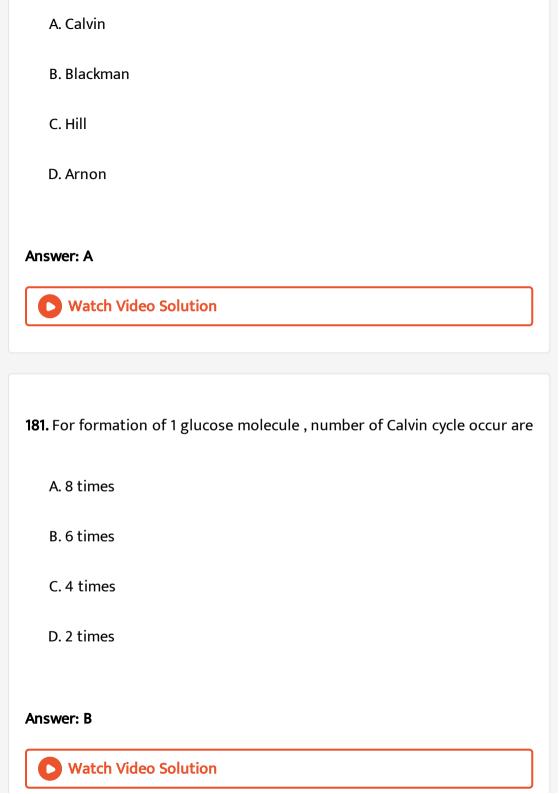
D. 6

C. 4

Answer: C

Watch Video Solution

179. During Calvin cycle , the first step in the regeneration of CO_2 acceptor is

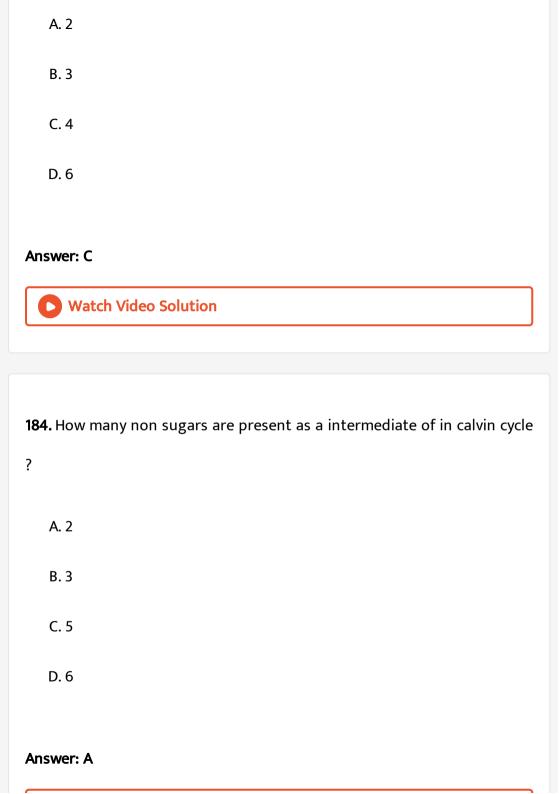

- A. Reduction
- **B.** Condensation
- C. Dephosphorylation
- D. Isomerisation

Answer: D

Watch Video Solution

180. Biochemical phase in photosynthesis was discovered for the first time by using C^{14}

182. In an experiment that carbon dioxide available to a C_3 plant was labelled with a radioactive isotope and the amount of radioactivity in the chloroplast was measured . As photosynthesis proceeded , in which of the following molecules did the radioactivity first appear ?


- A. PGAL
- B. PEP
- C. PGA
- D. RuBP

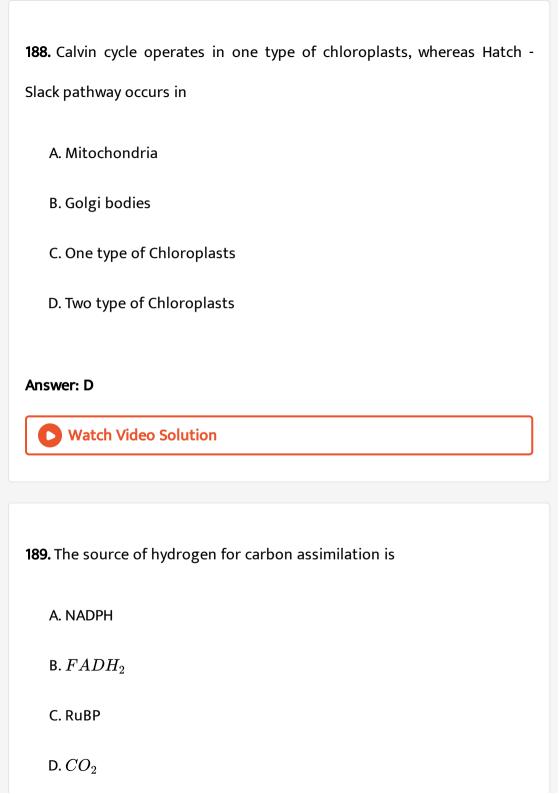
Answer: C

Watch Video Solution

183. How many XMP are formed in calvin cycle for the production of one glucose molecule

- A. Hexokinases
- B. Carboxydismutase
- C. Aldolase
- D. Oxysome

Answer: C


Watch Video Solution

186. Which of the following is essential to be regenerated to complete the

Calvin Cycle

- A. PGA
- B. RUBP

C. PEP
D. OAA
Answer: B
Watch Video Solution
187. Enzyme with dual nature is
A. Hexokinase
B. RuBisCO
C. RuBP
D. Pyruvic carboxylase
Answer: B
Watch Video Solution

Answer: A

190. How many molecules of inorganic phosphate are released in Calvin cycle in formation of one glucose ?

- A. 12
- B. 16
- C. 17
- D. 18

Answer: B

Watch Video Solution

191. Dark reaction of photosynthesis is called so because

A. It can also occur in dark B. Cannot occur during day C. Occurs more rapidly at night D. It does not require light **Answer: D** Watch Video Solution 192. How many Calvin cycles are required to produce 5 molecules of glucose? A. 60 B. 15 C. 30 D. 90 **Answer: C**

193. The type of compounds not formed in C_3 plants is

- A. 2C compound
- B. 5C compound
- C. 3C compound
- D. 4C compound

Answer: A

194. Site of PGA formation in C_3 plants & C_4 plants respectively

- A. Mesophyll cells & Mesophyll cells
- B. Bundle sheath cells & Mesophyll cells
- C. Mesophyllcells & Bundles sheath cells

D. Guardcells & Mesophyll cells

Answer: C

Watch Video Solution

- 195. Aldolase cateysing steps in regeneration phase of calvin cycle are
- A) 2G3P + 2DHAP
 ightarrow 2F16P
- B) F6P+G3P
 ightarrow XMP
- C) $SMP + G3P \rightarrow XMP + RiMP$
- D) EMP + DHAP o SHBP
 - A. All the above
 - B. AB only
 - C. BC only
 - D. AD only

Answer: D

View Text Solution

196. For every calvin cycle

A. One CO_2 molecule is fixed

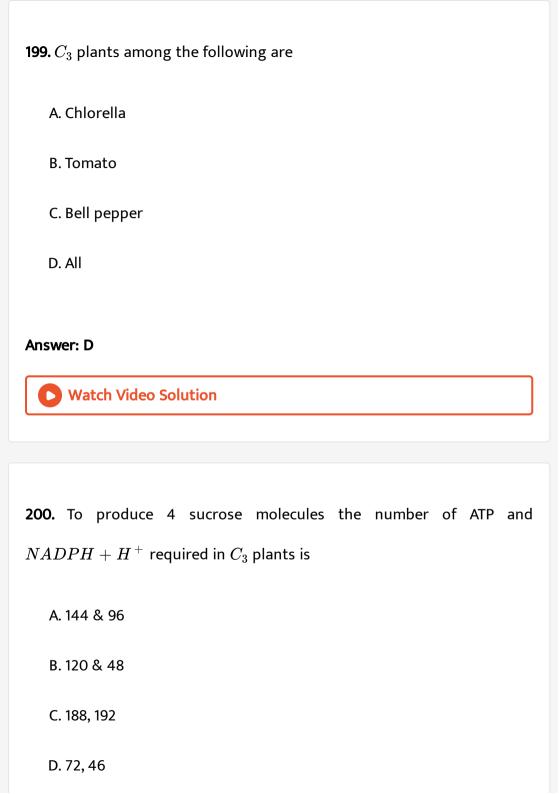
B. 2PGA molecules are formed

C. 3 ATP & 2NADPH are utilised

D. All the above

Answer: D

Watch Video Solution


197.phase in crucial in Calvin cycle for uninterrupted and continuous cycle .

A. Carboxylation phase

B. Reduction phase

D. All the above
Answer: C
Watch Video Solution
198. C_4 plants among the following are
A. Maize
B. Sugarcane
C. Opuntia
D.1 & 2
Answer: D
Watch Video Solution

C. Regeneration phase

Answer: A

Watch Video Solution

201. Identify the incorrect one

- A. In all plants light phase takes in similar way
- B. During dark phase CO_2 assimilation takes place in two ways
- C. In all plants PGA is first stable product
- D. Dark phase is indirectly dependent on light

Answer: C

Watch Video Solution

202. How much assimilatory power is required to form one glucose in a

 C_3 plant

A. 18 ATP - 12NADPH $+H^{\,+}$

B. 30 ATP - 12NADPH $+H^{\,+}$

C. 24 ATP - 18NADPH $+H^{\,+}$

D. 30 ATP - 18NADPH $+H^{\,+}$

Answer: A

Watch Video Solution

A. The number of G - 3P and

B. Erythrose - 4- Phosphate formed during the dark reaction

203. If $36CO_2$ molecules are fixed in C_3 plant what will be :

C. a = 144, b = 24

D. a = 72, b = 12

Answer: D

View Text Solution

204. Given table shows the $^{14}CO_2$ in which molecule would the radioactively appear first in these plants ?

- Wheat Sugarcane
- A. 3 Phosphoglycerate Oxaloacetate
- Wheat Sugarcane
- 3 Phosphoglycerate 3 Phosphoglycerate
- C. Wheat Sugarcane
 Oxaloacetate Oxaloacetate
- Wheat Sugarcane

Malate 3 - Phosphoglycerate

Answer: A

Watch Video Solution

205. During Hatch - Slack pathway of CO_2 reduction , C_4 - acids are broken down to release CO_2 and a - 3 carbon molecule in

- A. Mesophyll chloroplast
- B. Bundle sheath chloroplast

D. Mesophyll cytosol
Answer: B
Watch Video Solution
206. Kranz' anatomy is found in
A. Sugar cane
B. Maize
C. Sorghum
D. All the above
Answer: D
Watch Video Solution

C. Bundle sheath cytosol

207. Acceptor of CO_2 in C_4 and C_3 plants respectively

- A. PEP case and RUBISCO
- B. OAA and PGA
- C. PEP and RUBP
- D. PGAL and malic acid

Answer: C

Watch Video Solution

208. In C_4 plants , CO_2 is first fixed in

- A. Bundle sheath
- B. Mesophyll
- C. Guard cells
- D. All epidermal cells

Answer: B

Watch Video Solution

209. Which of the following feature is associated with C_4 plant

- A. High photorespiration
- B. All green cells posses calvin cycle enzymes
- C. Ability to tolerate high temperature
- D. O.A.A. is the initial product of CO_2 fixation in bundle sheath cells

Answer: C

Watch Video Solution

210. The term 'kranz' anatomy refers to

A. Presence of large size chloroplasts in bundle sheath cells

- B. Presence of thick walls in bundle sheath cells
- C. Appearance of wreath of cells surrounding the vascular bundles in

 C_4 leaf

D. Presence of three type of cells in leaves (palisade, spongy and bundle sheath) in C_4 leaf

Answer: C

- **211.** The first step of CO_2 fixation in Hatch and Slack's pathway in plants is
 - A. Formation of O.A.A by carboxylation of PEP in bundle sheath cells
 - B. Formation of O.A.A by the carboxylation of RUBP in mesophyll cells
 - C. Formation of PGA in mesophyll cells
 - D. Formation of O.A.A by carboxylation of PEP in mesophyll cells.

Answer: D

212. In C_4 plants bundle sheath shows

- A. Large inter cellular spaces and thick walled cells
- B. Large inter cellular spaces and thin walled cells
- C. Thick walled cells having many chloroplasts and no inter cellular spaces
- D. Thin walled cells with granal chloroplasts

Answer: C

- **213.** C_4 plants have higher net photosysnthetic rate because
 - A. They have no photorespiration
 - B. They have PEP as ${\cal C}{\cal O}_2$ acceptor

- C. They can photosynthesize in low light intensity
- D. They have kranz type of anatomy

Answer: A

Watch Video Solution

214. In leaves of C_4 plants sugars are synthesized in

- A. Stroma of chloroplast of mesophyll cells
- B. Grana of chloroplast of mesophyll cells
- C. Sieve tube elements of phloem
- D. Bundle sheath cells

Answer: D

Watch Video Solution

215. In C_4 pathway regeneration of PEP occurs in

- A. Epidermal cells of leaves
- B. Cytososl of bundle sheath cells
- C. Chloroplast of mesophyll cells
- D. Chloroplast of bundle sheath cells .

Answer: C

Watch Video Solution

216. Which of the following statement is not a special feature C_4 plants

- A. They have special type of leaf anatomy
- B. They tolerate higher temperature
- C. They show photorespiration
- D. They show response to high ligh intensity

Answer: C

Watch Video Solution

217. The form of carbon used for the carboxylation of phosphoenolpyruvate in C_4 plants is

- A. CH_4
- $B.HCO_3^-$
- $\mathsf{C}.\,H_2CO_3$
- D. C_2H_4

Answer: B

Watch Video Solution

218. The net requirement of assimilatory power for the formation of 6 hexose molecules in maize plant is

A. 72ATP, 48NADPH

219. What is the ratio of ATP requirement for the fixation of 6 molecules of

B. 90ATP, 60NADPH

C. 108ATP, 72NADPH

D. 180ATP, 72NADPH

 CO_2 in sugarcane and 5 molecules of N_2 in bean ?

Answer:	D

Watch Video Solution

A. 5:16

B. 3:16

C. 5:8

D. 3:8

Answer: B

220. What type of reaction occurs when Malic acid is converted into

Pyruvic acid in the bundle sheath cells of C_4 plants

- A. Decarboxylation
- B. Dehydrogenation
- C. Oxidative decarboxylation
- D. Transamination

Answer: C

Watch Video Solution

221. C_4 cycle was first discovered in

- A. Saccharum
- B. Sorghum

C. Maize

D. Finger millet

Answer: A

Watch Video Solution

222. Referthe given reaction

$$RuBP + O_2 \xrightarrow[ext{Oxygenase}]{ ext{RuBP}} ext{Phosphoglyceric acid} + ext{Phosphoglycolic and}$$

In is the first reaction of

A. C_3 path way

B. C_4 pathway

C. C_5 pathway

D. Glycolysis

Answer: A

223. Which of the following statement is not correct with reference of C_4 plants

- A. Kranz anatomy
- B. Dimorphic nature of Chloroplasts
- C. Agranal chloroplasts in bundlesheath cells
- D. Chloroplasts of mesophyll cells store starch

Answer: D

- **224.** C_4 plants are different from C_3 plants with reference to
 - A. The substrate that accepts CO_2 in carbon assimilation
 - B. Type of end products of photosynthesis
 - C. Number of ATP consumed in the synthesis of sugar

D. The type of pigments involved in Photosynthesis
Answer: A
Watch Video Solution
225. Dicarboxylic acids pathway is seen in
A. Leaves of Dolichos
B. Roots of Maize
C. Stems of Opuntia
D. Leaves of Saccharum
Answer: D
Watch Video Solution

226. In which cells of leaf, pyruvate is converted to PEP in \mathcal{C}_4 pathway ?

- A. Epidermal cells
- B. Mesophyll cells
- C. Bundle sheath cells
- D. Guard cells

Answer: B

Watch Video Solution

- 227. Choose wrong combination with respect to the location of enzymes in C_4 plants
 - A. PEPcase stroma of mesophyll cell chloroplast
 - B. RUBISCO stroma of bundle sheath cell chloroplast
 - C. Malic enzyme strone of bundle sheath cell chloroplast
 - D. Pyruvate dikinase stroma of mesophyll cell chloroplast

Answer: A

228. The following is not relate to C_4 plant

- A. Water use efficiency is more
- B. Photorespiration is not detectable
- C. CO_2 compensation points is high
- D. The primary acceptor of CO_2 is a 3C compound

Answer: C

229. Agranal chloroplast occur is

- A. Succulents
- B. C_4 plants
- C. Hydrophytes

D. C_3 plants

Answer: B

Watch Video Solution

- **230.** In C_4 plants CO_2 reduction occurs in
 - A. palisade tissue
 - B. spongy parenchyma
 - C. Bundle sheath cells
 - D. Guard cells

Answer: C

- A. 3C compound
- B. 4C compound
- C. 5C compound
- D. 6C compound

Answer: A

Watch Video Solution

232. In an experiment that carbondioxide available to a C_4 plant was labelled with a radioactive isotope and the amount of radioactivity in the chloroplast was measured . As photosynthesis proceeded , in which of the following molecules did the radioactivity first appear

- A. Oxaloacetic and
- B. PEP
- C. Malic acid
- D. RuBP

Answer: A

Watch Video Solution

233. PEP carboxylase is associated with

- A. CAM plants
- B. C_3 plants
- C. C_4 plants
- D. (1) & (3)

Answer: D

Watch Video Solution

234. which pair is wrong?

A. C_3 - Maize

B. C_4 - Kranz anatomy

C. Calvin cycle - PGA

D. Hatch & Slack cycle - OAA

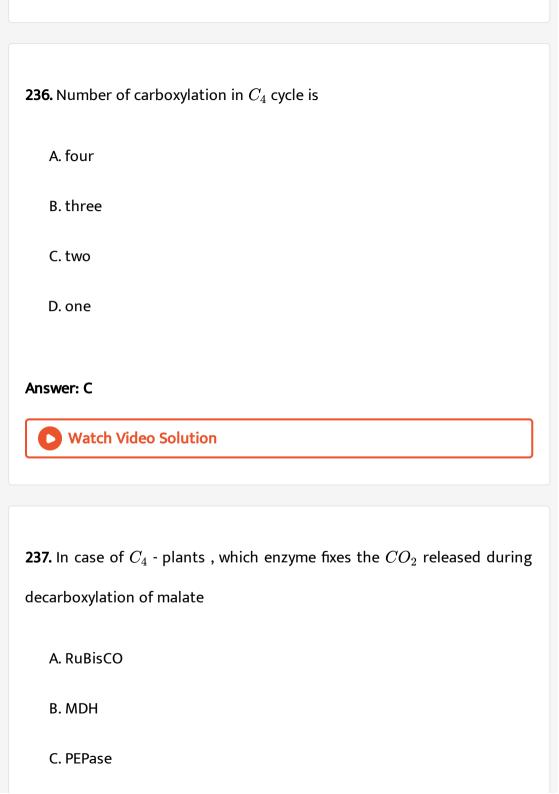
Answer: A

Watch Video Solution

235. Choose the correct statement for the fixation of one CO_2 molecule

A. 3ATP & 2 NADPH are required through calvin cycle

B. 5 ATP & 2 NADPH are required through Hatch & slack cycle


C. Photochemical reactions are involved in photolysis of water &

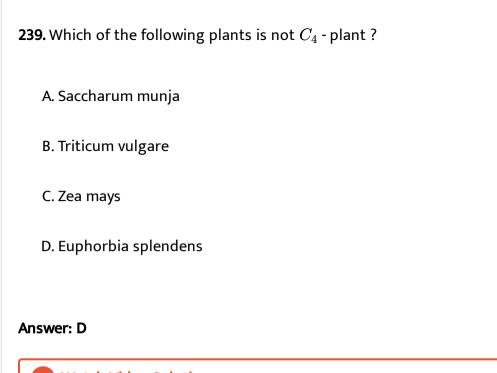
phosphorylation of ADP into ATP

D. all of the above

Answer: D

D. None of these

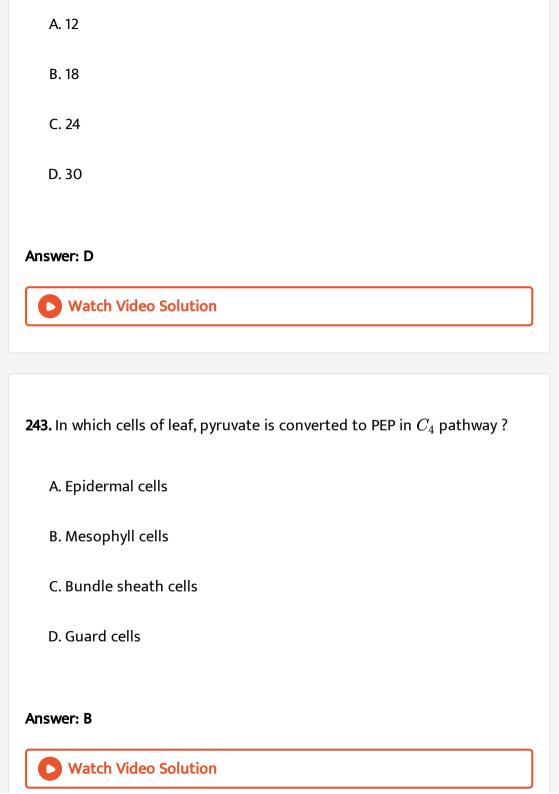
Answer: A


Watch Video Solution

238. In the C_4 - plants , C_4 cycle occurs in the mesophyll cells and C_3 - cycle occurs in bundle sheath cells, whereas in CAM plants .

- A. $C_4 \; {
 m and} \; C_3$ cycles occur in the mesophyll cells only
- B. C_4 cycle occurs in bundle sheath cells and C_3 cycle in mesophyll cells
- C. C_4 cycle very rarely
- D. $C_4 \; {
 m and} \; C_3$ cycles occur in bundle sheath cells

Answer: A



Watch Video Solution

240. C_4 plants are found among

- A. Dicots only
- B. Monocots only
- C. Both (1) and (2)
- D. In family Poaceae (Gramineae) only

Answer: C Watch Video Solution 241. Which of the following plants is a better photosynthesiser? A. Mango B. Sugacane C. Wheat D. Rice **Answer: B Watch Video Solution 242.** ATP molecules required to synthesise one molecule of glucose by C_4 pathway are

244. Which of the following is a 4 - carbon compound?

- A. Oxaloacetic acid
- B. Phosphoglyceric acid
- C. Ribulose bisphosphate
- D. Phosphoenol pyruvate

Answer: A



Watch Video Solution

245. Which of the following is wrongly matched

- A. Sorghum Kranz anatomy
- B. PEP carboxylase Mesophyll cells
- C. Blackman Law of minimum

D. Photosystem II - P_{700}
Answer: C
Watch Video Solution
46. CAM plants among the following are
A. Opuntia
B. Pineapple
C. Bryophyllum
D. All the above
Answer: D

A. secondary growth B. diseases resistance C. reproduction D. conserving water **Answer: D Watch Video Solution 248.** In which of the following CO_2 fixation and Calvin cycle are separated in time A. C_4 plants B. C_3 plants C. CAM plants D. All the above **Answer: C**

249. In CAM pathway the first dicarboxylic acid is formed as resultant of

A. Night CO_2 fixation

B. Decarboxylation of malic acid

C. Second CO_2 fixation

D. Phosphorylation of pyruvic acid

Answer: A

250. During day time , CAM plants procure carbon dioxide for photosynthesis from

A. Pyruvic Acid

B. Oxaloacetic Acid

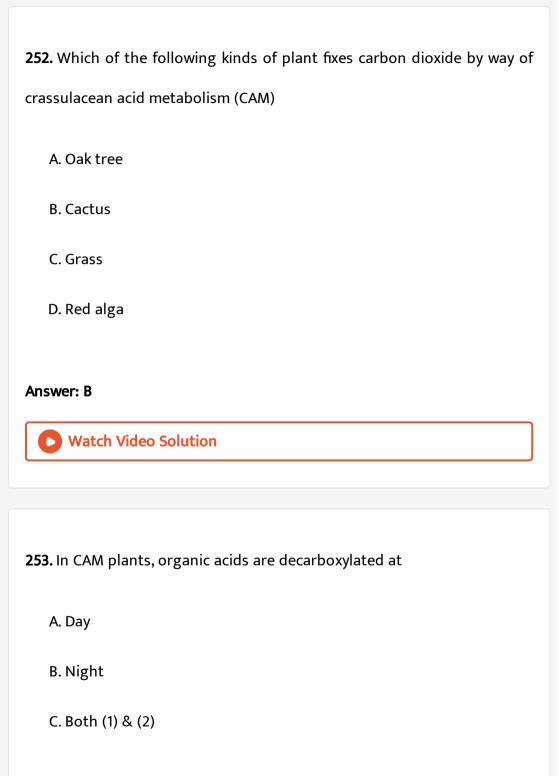
C. Oxalic Acid D. Malic Acid

Answer: D

Watch Video Solution

251. The number of ATP required in excess to assimilate atmospheric CO_2 to four molecules of triose phosphates in C_2 plants as compared to C_3 plants is

A. 60


B. 24

C. 30

D. 12

Answer: B

D. None of these

Answer: A

Watch Video Solution

254. Which of the following equation holds true for acidification reactions of CAM pathway?

A.
$$PEP + CO_2 + H_2O \xrightarrow{ ext{PEPcase}} ext{OAA} + H_3PO_4$$

B.
$$\mathrm{OAA} + NADH \xrightarrow{\mathrm{Dehydrogenase}} \mathrm{Malic} \ \mathrm{acid} + NAD^+$$

C. Malic acid
$$+NADP^+ \xrightarrow[\mathrm{enzyme}]{\mathrm{Malic}}$$
 Pyruvic + CO + NADPH

D. Both (1) and (2)

Answer: D

255. The organic acid concentration in CAM plants

- A. Decreases during day
- B. Increases at night
- C. Both (1) and (2)
- D. Remains same always

Answer: C

Watch Video Solution

256. Sunken stomata are usually found in

- A. C_3 plants
- B. CAM plants
- C. Insectivorous
- D. Phanerogams

Answer: B

Watch Video Solution

257. CAM pathway is observed in

- A. Pineapple
- B. Maize
- C. Sunflower
- D. Sugarcane

Answer: A

Watch Video Solution

258. In CAM - plants , carbon dioxide required for photosysnthesis enters the plant body during

A. Day time through the lenticelsB. Night through the stomata, which are kept openC. Day time when the stomata are open

D. Night when the hydathodes are open

Answer: B

- **259.** During day time , CAM plants procure carbon dioxide for photosynthesis from
 - A. Pyruvic Acid
 - B. Oxaloacetic Acid
 - C. Oxalic Acid
 - D. Malic Acid

Answer: D

260. During photorespiration RuBisCO acts as

- A. Oxygenase
- B. Carboxylase
- C. Transaminase
- D. Reductase

Answer: A

Watch Video Solution

261. Which of the following statements are true for photorespiration?

- A. No synthesis of ATP
- B. No synthesis of NADPH
- C. Release of CO_2

D. All the above
Answer: D
Watch Video Solution
262. Inhibition of photosynthesis due to photorespiration of a type of
A. Competitive inhibition
B. Non - competitive inhibition
C. Uncompetitive inhibition
D. Feed back inhibition
Answer: A
Watch Video Solution

263. The unique uneconomical process which is mediated by RuBisCO is

A. Respiration B. Photorespiration C. Photosynthesis D. Transpiration **Answer: B Watch Video Solution** 264. The substrate of photorespiration is formed in A. Peroxisome B. Mitochondrion C. Chloroplast D. Glyoxysome **Answer: C Watch Video Solution**

265. In which type of reactions related to plant photosynthesis peroxisomes are involved ?

- A. Glycolate cycle
- B. Calvin cycle
- C. Bacterial photosynthesis
- D. Glyoxylate cycle

Answer: A

Watch Video Solution

266. The enzymes acting as both carboxylase at one time & oxygenase at another time

- A. PEP carboxylase
- **B. RUBISCO**

C. Carbonic anhydrase D. ATP ase Answer: B **Watch Video Solution** 267. The following compounds are intermediates in the pathway of photorespiration I) Phosphoglycolate II) Serine III) glyoxylate IV) glycine The correct sequence of their appearance in the pathway is A. I,II, III, IV B. I,III, IV,II C. II,I,III,IV

Answer: B

D. II,I,IV,III

268. Inhibition photosynthesis in high concentration of oxygen is mainly due to

A. distribution of RuBP carboxylase

B. inactivation of RuBP carboxylase

C. non-synthesis of RubP carboxylase

D. RuBP carboxylase acting as oxygenase

Answer: B

Watch Video Solution

269. The substrate of photorespiration is

A. Malic acid

B. Oxaloacetic Acid

C. Glycolic acid
D. PGA
Answer: C
Watch Video Solution
270. During photorespiration , the oxygen consuming reaction occur in
A. Stroma of chloroplasts and mitochondria

B. Stroma of chloroplasts and peroxisomes

C. Grana of chloroplasts and peroxisomes

D. Stroma of chloroplasts

Watch Video Solution

Answer: B

271. How many molecules of glycine are required torelease one molecule
of CO_2 in photorespiration ?
A. One
B. Two
C. Three
D. Four
Answer: B
Watch Video Solution
Watch Video Solution
Watch Video Solution 272. Glycolate accumulates in chloroplasts, when there is
272. Glycolate accumulates in chloroplasts, when there is
272. Glycolate accumulates in chloroplasts, when there is A. High CO_2

Answer: B

Watch Video Solution

273. Organelles associated with photorespiration are

- A. Chloroplast, mitochondria, Peroxisome
- B. Chloroplast mitochondria, lysosome
- C. Mitochondria , peroxisome , centrosome
- D. Nucleus, centrosome peroxisome

Answer: A

Watch Video Solution

274. Which of the following is formed during photorespiration?

A. Sugar cane

B. Phosphoglycolate C. NADPH D. ATP **Answer: B** Watch Video Solution 275. The ratio between the number of 2 - carbon and 3 - carbon intermediates having $-NH_2$ group formed in photosynthetic oxidation cycle is A. 1:1 B.2:1

C. 3:2

D. 3:4

Answer: B

276. The rate of photosysnthesis is determined by the factor available at

A. very low

B. optimum

C. sub optimum

D. maximum

Answer: C

Watch Video Solution

277. Black man's law of limiting factor is applicable to

A. only photosynthesis

B. only respiration

C. only physical process

D. any biochemical proces

Answer: D

Watch Video Solution

278. Light is rarely a limiting factor for photosynthesis in all the following plants but is oftenly a limiting factor in

- A. Sciophytes
- B. Heliophytes
- C. Normal C_3 plants
- D. Normal C_4 plants

Answer: A

279. The major limiting factor for photosynthesis is
A. O_2
B. Light
$C.CO_2$
D. water
Answer: C
Watch Video Solution
280. Tomato and bell pepper are
A. $C_3 \; { m and} \; C_4$ plants respectively
B. $C_4 \; { m and} \; C_3$ plants respectively
C. C_3 plants
D. C_4 plants

Answer: C

Watch Video Solution

281. The external photosynthetic factor that influences the process more through plant rather directly on photosynthesis is

- A. CO_2
- B. Water
- C. Light
- D. Temperature

Answer: B

Watch Video Solution

282. In normal plants light saturation occurs at

- A. 10% of full sunlight
- B. 50% of full sunlight
- C. double to full sunlight
- D. four time to full sunlight

Answer: A

Watch Video Solution

283. Photosynthesis

- A. Affected by the simultaneous interaction of several factors
- B. Its rate determined by the factor available at optimum level
- C. Influenced more by the the external factor than internal factors
- D. At one particular time more than one factors functions as limiting

factor

Answer: A

284. In C_3 and C_4 plants , the CO_2 saturation respectively is

A. At about $360\mu1L^{-1}$ beyond $450\mu1L^{-1}$

B. Less than $360\mu1L^{-1}$, less than $450\mu1L^{-1}$

C. More than $360\mu1L^{-1}$, less than $450\mu1L^{-1}$

D. Beyond $450\mu1L^{-1}$, at about $360\mu1L^{-1}$

Answer: D

285. Quality of light refers to

A. intensity of light

B. frequency of light

C. wavelength of light

D. duration of light

Answer: C

Watch Video Solution

286. A point at which illuminated plant parts stop absorbing CO_2 from their environment , is known is

- A. CO_2 compensation point
- B. CO_2 saturation point
- C. CO_2 optimum point
- $\operatorname{D.}{CO_2} \operatorname{limiting point}$

Answer: A

287. Excessive elongation of plants and poor development of leaves when they were grown in darkness is called

- A. Foolish seedling disease
- B. Bolting
- C. Embolism
- D. Etiolation

Answer: D

Watch Video Solution

288. Which of the following influences feed back inhibition of Photosynthesis

- A. Chlorophyll degration
- B. Hight lightintensity
- C. Low CO_2 concentration

Answer: D
Watch Video Solution
289. Law of minimum was proposed by
A. Warburg
B. F.F. Blackman
C. Liebig
D. Emerson
Answer: C
Watch Video Solution
290. Warburg effect is

A. The enhancement effect of light on Photosynthesis

B. The feed back inhibition in Photosynthesis

C. The inhibitory effect of high CO_2 on Photosysnthesis

D. The inhibitory effect of high O_2 on Photosynthesis

Answer: D

Watch Video Solution

291. Warburg effect has not been observed in

A. Maize

B. Sugarcane

C. Sorghum

D. All of these

Answer: D

292. Which of the following colours of light work(s) best for photosynthesis?

A. Green

B. Yellow

C. Blue and red

D. violet and yellow

Answer: C

Watch Video Solution

293. For the process of photosynthesis, which one of the following is not essential?

A. Light and chlorophyll

 ${\it B.}\ CO_2$ and light

- C. Oxygen and glucose
- D. Water and minerals

Answer: C

Watch Video Solution

294. The limiting step in photosynthesis is the rate of

- A. O_2 evolution
- B. light reaction
- C. dark reaction
- D. CO_2 diffusion to photosynthetic site

Answer: B

295. High CO_2 compensation point is found in

- A. C_3 plants
- B. C_4 plants
- C. CAM plants
- D. Algae

Answer: A

Watch Video Solution

296. Dry weight of leaf is maximum during

- A. Morning
- B. Afternoon
- C. Noon
- D. Night

Answer: B

Watch Video Solution

297. Rate of photosynthesis is independent of

- A. Duration of light
- B. Intensity of light
- C. Temperature
- D. Respiration

Answer: D

Watch Video Solution

298. What will happen to the rate of photosysnthesis if rate of translocation of food is slow tha photosynthesis rate?

A. Becomes double **B.** Decreases C. Increases D. Remains same **Answer: B Watch Video Solution** 299. Which one of the following would not limit photosynthesis or not be a limiting factor photosynthesis? A. Light B. CO_2 C. Chlorophyll D. Oxygen Answer: D

300. Maximum O_2 evolution occurs from

- A. Forests
- B. Marine phytoplankton
- C. Crops
- D. Land mass

Answer: B

Watch Video Solution

301. Wavelength of light that carries out photosynthesis in bacteria is

- A. Blue
- B. Red
- C. Ultraviolet

D. Near infra red or far red

Answer: D

Watch Video Solution

302. It is difficult for most plants to carryout photosynthesis in very hot, dry environments why?

- A. Very intense light over powers pigment molecules
- B. The closing of somata keeps away CO_2 from entering and O_2 from leaving plants
- C. CO_2 build up in the leaves, blocking carbon fixation
- D. None of the above

Answer: B

303. Very strong light light has a direct inhibiting effect on photosysnthesis, which is known as

- A. Solarisation
- B. Etiolation
- C. Chlorosis
- D. Defoliation

Answer: A

Watch Video Solution

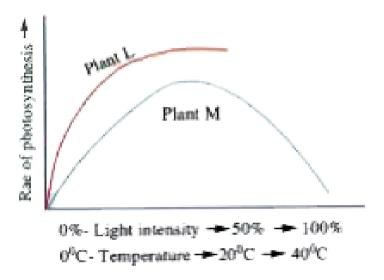
304. Potted plants are not allowed to remain in room of a patient during night as

- A. They consume \mathcal{O}_2 at night
- B. Produe CO_2 at night
- C. They release O_2 only during day

D. They are unable to photosynthesise and deplete CO_2 of he room at night

Answer: B

Watch Video Solution


305. A reduction in the quantity of oxygen evolution during photosynthesis may be observed at

- A. Light having wavelength more than 680 nm
- B. Light having wavelength less than 680 nm
- C. Light having wavelength 560 nm
- D. Light having wavelength less than 360 nm

Answer: A

306. When two plants L and M were exposed to different light intensities and temperature, they showed changes in their rates of photosynthesis, which have been represented in the following graph.

The graph indicates that

A. Plant L is a C_3 plant for which the light saturation point is 100% of full sunlight .

- B. Plant M is a C_4 plant for which the optimum temperature is around $20\,^{\circ}\,C$
- C. Plant M is a C_3 plant which is more affected at higher temperature and higher light intensity as compared to plant L

D. Plant L is a C_4 plant and cannot function at light intensities above the saturation point

Answer: C

Watch Video Solution

Exercise li

1. In an experiment demonstrating the evolution of oxygen in Hydrilla , sodium bicarbonate is added to water in the experiment ste- up . What would happen if all other conditions are favourable ?

A. Amount of oxygen evolved decreases as the availability of carbondioxide increases

B. Amount of oxygen evolved increases as carbondioxide in water is absorbed by sodium bicarbonate

C. Amount of oxygen evolved decreases as carbondioxide in water is absorbed by sodium bicarbonate

D. Amount of oxygen evolved increases as the availability of carbon dioxide increase

Answer: D

Watch Video Solution

2. In which following example chlorophyll a/b ratio is minimum

A. LHC

B. ETS

C. PSI

D. PS II

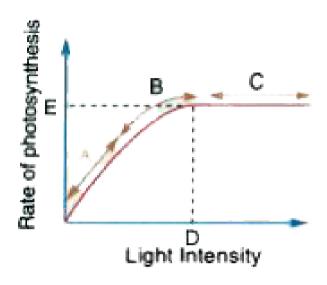
Answer: D

3. The oxygen liberated during the photosynthesis given by Engelmann
using all, except
A. Filamentous green alga Cladophora
B. Unicellular green alga Chlorella
C. Supension of aerobic bacteria
D. Prism to split the light in the its components
Answer: B
Watch Video Solution
4. Read the following statements :
How many of the above statements are correct ?
A. Two
B. One

C. Four
D. Three
Answer: D
View Text Solution
5. How many components listed below are part of cyclic ETS ? P_{700},P_{680} ,
NADP reductase, Hydrogen carrier, PS I, water Splitting Complex, PS II
A. Two
B. three
C. Five
D. Four
Answer: B
Watch Video Solution

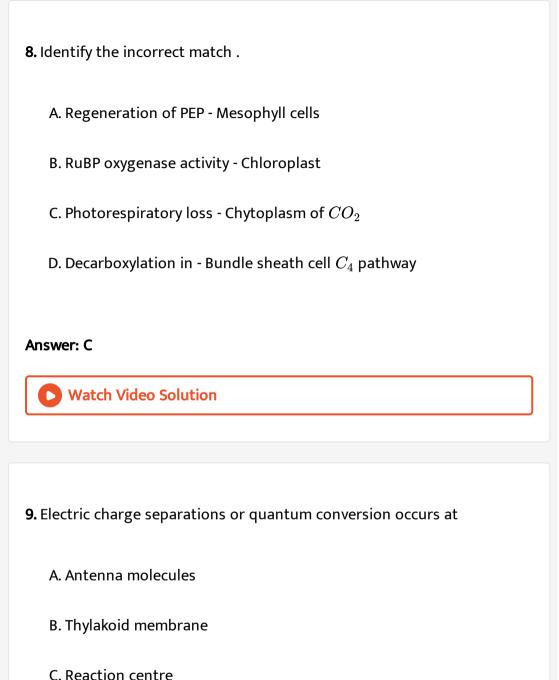
6. Regeneration of four molecules of RuBP in C_3 cycle requires the expenditure of ATP. A. 1

B. 4


C. 3

D. 2

Answer: B


7. Choose the correct labelling for given figure

- A. D- Saturation point, E Maximum photosynthesis
- B. A Achieved at high light intensity
- C. D 10% of total sunlight, E Compensation point
- D. A Light saturation at 10% of total sunlight

Answer: A

D. Stroma

Answer: B

Watch Video Solution

- 10. Sorghum and sugarcane plants show saturation at about
 - A. 50% of full sunlight
 - B. 10% of full sunlight
 - C. 360 ppm of CO_2
 - D. 500 ppm of CO_2

Answer: C

- **11.** C_4 Plants can tolerate saline conditions due to
 - A. Occurrence of organic acids

B. Absence of Photorespiraition

C. Presenc rod PEP carboxylase enzyme

D. presence of PEP Carboxylase enzyme

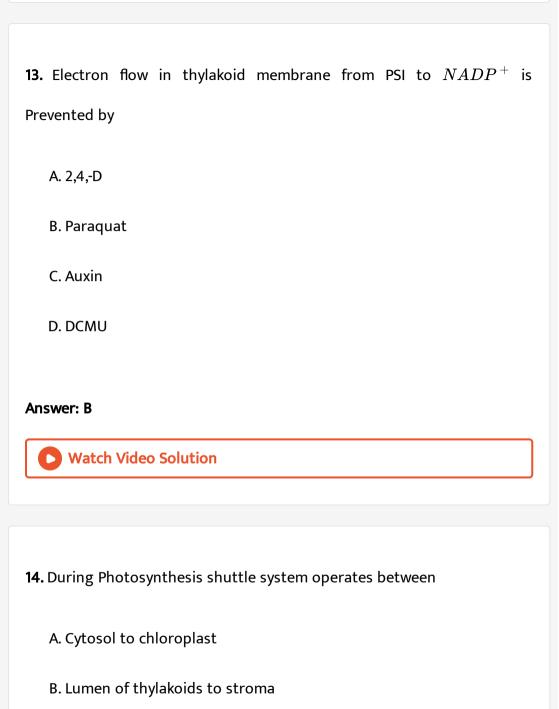
Answer: A

Watch Video Solution

12. Electron flow in thylakoid membrane from PS

12. Electron flow in thylakoid membrane from PS-II o PSI is prevented by II rarr PSI is prevented by

A. 2,4,-D


B. Urea

C. DCMU

D. Paraquat

Answer: C

C. Mesophyll cells to bundle sheath cells

D. Inter cellular spaces to mesophyll cells

Answer: C

Watch Video Solution

15. Plants growing in different strata in a water body manage minimum their photosynthetic efficiency by

- A. Changing source of energy (chemical)
- B. Adjusting pigment composition
- C. Utilising only blue region of PAR
- D. Producing more number of Chlorophyll a molecules

Answer: B

16. C_3 cycle was first studies in a plant of A group in plant kingdom & C_4 cycle was first studied in a plant of B group in plant kingdom A & B respectively are

- A. Dicot, monocot
- B. Algae, angiosperms
- C. Monocot, dicot
- D. Angiosperms, brown alga

Answer: B

- **17.** Choose the correct statement from the following regarding bacterial Photosynthesis
 - A. H_2 is the source of hydrogen
 - B. Dark reaction occurs in all but not light reaction

- C. All produce sulphur as by product
- D. All have pigment in chromatophores

Answer: B

Watch Video Solution

- 18. Weedicides used in the crop fields kill the weeks by
 - A. Preventing electron transport in respiration
 - B. Preventing dark phase in photosynthesis
 - C. Preventing light absorption by pigment
 - D. Preventing electron transfer in thylakoid membrane (or) in light phase

Answer: D

19. Isolated chloroplast cannot synthesize starch through dark phase inspite of possessing stroma and dark phase enzymes It is due to absence of

- A. Cytosol for exporting G3P
- B. Photophosphorylation
- C. Suitable Hydrogen acceptor
- D. Carbondioxide for dark phase reactions

Answer: D

- 20. Excited electron comes back to ground state by these process
 - A. Fluorescence
 - B. Phosphorescence
 - C. Energy transfer

[D. Any one of the above	
Ans	wer: D	

Watch Video Solution

21. One of the following gesture of electron is useful to green plants in production of assimilatory power during photochemical reactions

- A. Fluorescence
- B. Phosphorescence
- C. Energy transfer
- D. All the above

Answer: C

- **22.** Starch formation during dark phase is observed in these regions

 A. Chloroplasts
 - B. Amyloplasts
 - C. Cytosol of mesophyll cells
 - D. 1 & 3

Answer: D

- **23.** Starch storing structure in green algae and higher plants respectively are
 - A. Chloroplast, chloroplast
 - B. Pyrenoids , amyloplast
 - C. Underground organs , amyloplast
 - D. Chloroplast , pyrenoids

Answer: B

- 24. Chlorophyll ' C" differ from Chlorophyll 'a' and ' b ' in
 - A. Absence of Mg
 - B. Ability to dissolved in water
 - C. Absence of phytol tail
 - D. Absence of porphyring structure

Answer: C

- 25. Pigment with four pyrrole rings in their structure are
 - A. Chlorophyll

B. Phycoerythrin
C. Phycocyanin
D. All the above
Answer: D
Watch Video Solution
26. Chlorophyll appears When flouresed and carotene appears
(colour)
A. Orange , blue
B. Red green
C. Green , orange
D. Blue , red
Answer: B
Watch Video Solution

27. A give dicot family consists of several genera which are

- A. Only C_3 plants
- B. Only C_4 plants
- C. C_3 (or) C_4 plants
- D. C_3 & C_4 plants

Answer: C

- 28. Leaf anatomy has bundle sheath around the Vascular bundle in
 - A. C_3 plants
 - B. C_4 plants
 - C. all dicot plants
 - D. 1 or 2

Answer: B

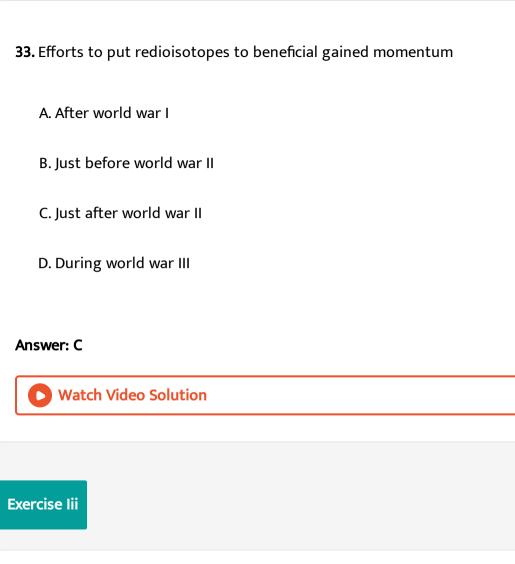
- **29.** Malic dehydrogenase enzyme is present in
 - A. Mitochondria
 - B. Chloroplast
 - C. Cytosol
 - D.1&2

Answer: D

- **30.** In C_4 plants enzymes of PCR cycle are present in
 - A. Mesophyll cells

B. Bundle sheath cells C. (1) & 2 D. None **Answer: B Watch Video Solution** 31. Common organic acids found in both Chloroplast and mitochondria in C_4 plants are A. PGA, PA B. OAA,MA C. PEP,MA D. Aspartic acid, OAA **Answer: B Watch Video Solution**

32. In the above diagram A & B represent respectively



- A. Mesophyll cells in upper epidemics & lower epidermis
- B. Mesophyll cells in temperature & tropical plant leaves
- C. Chloroplast alignment at high & low light in tensity
- D. Variation in Chloroplast number in different seasons

Answer: C

- **1.** Phosphoenol pyruvate (PEP) is the primary CO_2 acceptor in :
- A. C_3 plants
 - B. C_4 plants
 - C. C_2 plants

D. C_3 and C_4 plants

Answer: B

- **2.** With reference to factors affecting the rate of Photosynthesis, which of the following statements is not correct ?
 - A. Light saturation for CO_2 fixation occurs at 10% full sunlight .
 - B. Increasing atmosphere CO_2 concentration up to 0.05% can enhance CO_2 fixation rate
 - C. C_3 plants respond to higher temperatures with enhanced Photosynthesis while C_4 plants have much lower temperature optimum.
 - D. Tomato is a . greenhouse crop which can be grown in ${\cal C}O_2$ enriched atmosphere for higher yield.

Answer: C

- **3.** Emerson's enhancement effect and Red drop. have been instrumental is the discovery of :
 - A. Photophosphorylation and non-cyclic electron transport
 - B. Two photosystem operating simultaneously
 - C. Photophosphorylation and cycling electron transport
 - D. Oxidative phosphorylation

Answer: B

Watch Video Solution

4. Oxygenic photosynthesis occurs in

B. Rhodospirillum C. Chlorobium D. Chromatium Answer: A **Watch Video Solution** 5. Anoxygenic photosynthesis is characteristic of A. Rhodospirillum B. Spirogyra C. Chlamydomonas D. Ulva Answer: A Watch Video Solution

A. Oscillatoria

6 Transition state structure of the substate formed during an enzymatic
6. Transition state structure of the substate formed during an enzymatic
reaction is
A. Transient but stable
B. Permanent but unstable
C. Transient but unstable Transient but unstable
D. Permanent and stable
Answer: C
Watch Video Solution
7. An aleg which can be employed as food for human beings
A. Ulothrix
B. Chlorella

D. Polysiphonia

Answer: B

Watch Video Solution

- 8. Read the following four statements (A-D) Both,
- A) Photophosphorylation and oxidative phosphorylation involve uphill transport of protons across the membrane
- B) In dicot stems , a new cambium originates from cells of pericycle at the time of secondary growth
- C)Statements in flowers of Glorious and Petumia are polyndrous
- D) Symbiotic nitrogen-fixers occurs in free living state

How many of the above statement are right?

- A. One
- B. Two
- C. Three
- D. Four

Answer: B

Watch Video Solution

- **9.** Which one of the following organisms is correctly matched with its three characteristics ?
 - A. Maize : C_3 pathway , Closed vascular bundles , Scutellum
 - B. Pea : C_3 pathway , Endospermic seed, Vexillary aestivation
 - C. Tomato: Twisted aestivation, Axile Placentation, Berry
 - D. Onion: Bulb, Imbricate aestivation, Axile Placentation also in soil

Answer: A

Watch Video Solution

10. The process that makes important difference between C_3 and C_4 plants is

B. Transportation C. Glycolysis D. Photosynthesis Answer: A **Watch Video Solution** 11. Kranz anatomy is typical of . A. C_4 - plants B. C_3 - plants C. C_2 - plants D. photorespiration **Answer: A Watch Video Solution**

A. Photorespiraition

12. The process that makes important difference between C_3 and C_4 plants is

A. Photosynthesis

B. Photorespiraition

C. Transportation

D. Glycolysis

Answer: B

13. The correct sequence of cell organelles during Photorespiraition is

A. Chloroplast, mitochondria, peroxisome

B. Chloroplast, vacuole, peroxisome,

C. Chloroplast, Golgi bodies , mitochondria

D. Chloroplast , Rough endoplasmic reticulum Dictyosomes
Answer: A
Watch Video Solution
14. Of the total incident solar rediation the proportion of PAR is
A. about 60%

B. less than 50%

C. more than 80%

Watch Video Solution

15. CAM helps the plants in

D. about 70%

Answer: B

- A. Conserving water
- B. Secondary growth
- C. Disease resistance
- D. Reproduction

Answer: A

Watch Video Solution

- 16. In Kranz anatomy, the bundle sheath cells have
 - A. thick walk, many intercellular spaces and few chloroplasts.
 - B. thin walls, many intercellular spaces and no chloroplasts.
 - C. thick walls , no intercellular spaces and large number-of chloroplasts.
 - D. thin walls , no intercellular spaces and several chloroplasts .

Answer: C

17. PGA as the first carbon dioxide fixation product was discovered in

A. Bryophyte

Photosynthesis of

B. Gymnosperms

C. Angiosperm

D. Alga

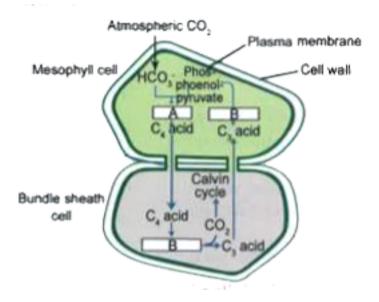
Answer: D

Watch Video Solution

18. C_4 Plants are more efficient Photosynthesis than C_3 plants due to

A. Higher leaf area

B. Presence of large number of chloroplast in the leaf cells


- C. Presence of thin cuticle
- D. Lower rate of photorespiraition

Answer: D

Watch Video Solution

19. Study the pathway given below:

In which of the following options correct words for all the three blanks

A,B and C are indicated?

A. $\frac{A}{\text{Fixation}}$ $\frac{B}{\text{Transamination}}$ $\frac{C}{\text{Regeneration}}$ B. $\frac{A}{\text{Fixation}}$ $\frac{B}{\text{Decarboxylation}}$ $\frac{C}{\text{Regeneration}}$ C. $\frac{A}{\text{Carboxylation}}$ $\frac{B}{\text{Decarboxylation}}$ $\frac{C}{\text{Reduction}}$ $\frac{A}{\text{Reduction}}$ $\frac{B}{\text{Reduction}}$

Reduction

Regeneration

Answer: B

D.

Decarboxylation

- **20.** Read the following four statements ,A,B,C and D select the right option having both correct statments.
- (A) Z scheme of light reaction takes place in presence of PSI only.
- (B) Only PSI is functional in cyclic photo phosphorylation
- (C) Cyclic Photophosphorylation results into synthesis of ATP and

$NADP_2$

(D) Stroma lamellar lack PSII as well as NADP reductase

A. A and B

B. B and C C. C and D D. B and D **Answer: D Watch Video Solution** 21. Oxygenic photosynthesis occurs in A. Chromatium B. Oscillatoria C. Rhodospirillum D. Chlorobium **Answer: B Watch Video Solution**

22. Stroma in the chloroplasts of higher plants contain
A. Light-indepedent reaction enzymes
B. Light-dependent reaction enzymes
C. pigments
D. Chlorophyll
Answer: A
Watch Video Solution
23. Cyclic Photophosphorylation produces
A. NADPH
B. ATP and NADPH
C. ATP, NADPH and oxygen

Answer: D

Watch Video Solution

- **24.** The C_4 plants are Photosynthetically more efficient than C_3 plants because
 - A. The carbon dioxide compensation points is more
 - B. Carbon dioxide generated during Photorespiraition is trapped and recycled through PEP carboxylase
 - C. The carbon dioxide efflux is not Prevented
 - D. They have more chloroplasts

Answer: B

25. In leaves of C_4 plants malic acid synthesis during carbon dioxide fixation, occurs in

A. epidermal cells

B. mesophyll cells,

C. bundle sheath cells

D. guard cells

Answer: B

Watch Video Solution

26. The wavelength of light absorbed by reaction centre of PS-II is

A. 640 nm

B. 680 nm

C. 720 nm

D. 940 nm

Answer: B

Watch Video Solution

27. The first acceptor of electrons from an excited chlorophyll molecule of

A. Cytochrome

Photosystem II is

B. Iron-sulphur protein

C. Ferredoxin

D. Pheophytin

Answer: D

